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Unitary-coupled restricted Boltzmann machine ansatz

for quantum simulations
Chang Yu Hsieh1✉, Qiming Sun2, Shengyu Zhang1 and Chee Kong Lee2✉

Neural-network quantum state (NQS) has attracted significant interests as a powerful wave-function ansatz to model quantum

phenomena. In particular, a variant of NQS based on the restricted Boltzmann machine (RBM) has been adapted to model the

ground state of spin lattices and the electronic structures of small molecules in quantum devices. Despite these progresses,

significant challenges remain with the RBM-NQS-based quantum simulations. In this work, we present a state-preparation protocol

to generate a specific set of complex-valued RBM-NQS, which we name the unitary-coupled RBM-NQS, in quantum circuits. Our

proposal expands the applicability of NQS as prior works deal exclusively with real-valued RBM-NQS for quantum algorithms. With

this scheme, we achieve (1) modeling complex-valued wave functions, (2) using as few as one ancilla qubit to simulate M hidden

spins in an RBM architecture, and (3) avoiding post-selections to improve scalability.
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INTRODUCTION

Hybrid quantum-classical (HQC) algorithms1 offer an exciting
avenue to explore the potential of a noisy intermediate-scale
quantum2 device without quantum error corrections. The HQC
algorithms run on parametrized quantum circuits aiming to
minimize an objective function, such as the average energy. The
Variational Quantum Eigensolver3 (VQE) and Quantum Approximate
Optimization Algorithm4 are two prominent examples leading
the current wave of HQC algorithm developments. In particular, VQE
has been experimentally demonstrated on several leading platforms
of quantum computations3,5–8. These encouraging experimental
outcomes strengthen our anticipation that quantum simulations9–13

should be among the first set of applications to benefit from
quantum computations. Nevertheless, it is also becoming increas-
ingly clear that further developments14–19 are required to improve
VQE and similar HQC algorithms if the goal is to establish an
unambiguous quantum advantage for problems of realistic inter-
ests. For instance, many recent developments attempt to address
the following aspects: (1) design wave-function ansatz5,14,20–25 with
efficient usage of variational parameters and circuit depth, (2)
reduce the number of required measurements26–33, and (3)
overcome the challenge of high-dimensional optimization34–43

needed for training parametrized circuits. Any of these technical
challenges could potentially become a computational bottleneck
for an HQC algorithm beyond the small-scale testings reported in
the recent literature.
In this work, our primary focus is to investigate whether neural-

network quantum states (NQS)44–46 can be tailored to better fit the
paradigm of HQC algorithms. We focus on a particular form of
NQS based on the restricted Boltzmann Machine (RBM) architec-
ture. Within the communities of computational many-body
physics, quantum information and condensed matter physics,
there is a growing trend of adopting neural networks techniques,
such as the RBM architecture, for various applications. Notable
examples include identification of different phases of matter47–52,
scalable quantum state tomography53,54, efficient sampler to
accelerate Monte Carlo simulations55–57, quantum error correction
codes58–61, and variational ansatz for many-body simulations62–72.

Especially, the work by Carleo and Troyer62 demonstrated that a
complex-valued RBM model can efficiently model many-body
wave functions with fewer variational parameters than tensor-
network methods for some spin-lattice models. Subsequent
investigations73–78 have further clarified and affirmed the useful-
ness of variants of Boltzmann machines to model many-body
quantum states of complex systems. These encouraging results
and rapidly accumulated knowledge about RBM-NQS motivated
us to investigate whether it is suitable to apply this family of
ansatz in the context of quantum simulation algorithms. In most
part of this work, we should use RBM-NQS and NQS interchange-
ably when there is no risk of ambiguity.
While there are already quantum simulation algorithms79,80

using NQS as variational ansatz with encouraging results, some
fundamental obstacles limit their scope of applications. For
instance, the existing approaches require the preparation of an
extended wave function composed of all visible and hidden spins.
As each hidden spin is explicitly modeled with an ancilla qubit,
these prior methods consume too many qubits, which are
expensive resources for near-term quantum devices. Furthermore,
there is no scalable strategy for preparing a general NQS in
quantum circuits. This is because many NQS can only be obtained
via non-unitary transformations on an input state. Existing NQS-
based simulation algorithm79 relies on a probabilistic post-
selection to achieve the non-unitary operations. Finally, the lack
of complex parameters severely limits the usefulness of the NQS
for quantum simulations. For instance, (1) complex-valued wave
functions allow us to simulate fermions in time reversal symmetry
breaking systems such as electrons in the presence of a magnetic
field. (2) To simulate quantum dynamics, it is a necessity to
account for the accumulation of dynamical phase factors.
The aforementioned limitations certainly have cast doubts on

whether the NQS should be used in quantum simulations; despite
many of their theoretical merits as wave-function ansatz and
convincing demonstrations in classical simulations cited above. To
address these deficiencies, we propose a state-preparation
protocol for creating complex-valued NQS in a quantum circuit.
In particular, the state-preparation protocol does not use N+M
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qubits to model N visible spins and M hidden spins explicitly. This
is because every term in a RBM Hamiltonian commutes with each
other, we can explicitly arrange the order in which the unitary
gates acting on the hidden spins. Hence, a single ancilla qubit
(representing one hidden spin) can be recycled upon measure-
ment and be reused to represent another hidden spin in a
subsequent stage. This qubit-recyle scheme81,82 tremendously
reduces the number of physical qubits (down to just one extra
ancilla at the bare minimum) needed to execute the proposed
state-preparation protocol. This advantage cannot be under-
estimated as typical RBM-NQS might use as many as M= poly(N)
hidden spins.
In order to avoid a probabilistic state preparation discussed in

ref. 79, we have done two things differently. First, we consider a
further restricted subclass of RBM-NQS ansatz, dubbed the
unitary-coupled RBM-NQS. For these states, the visible and hidden
spins are only coupled by unitary operators, i.e. the coupling
parameters for a RBM wave function are purely imaginary-valued.
Owing to unitary couplings, a state preparation circuit scales as
OðNMÞ in circuit depth. There is no obvious disadvantage to
confine an ansatz selection to unitary-coupled RBM-NQS. As
thoroughly analyzed in Supplementary Note 2, arbitrary RBM-NQS
can be systematically converted into a unitary-coupled form
without sacrificing representation accuracy. Furthermore, numer-
ical investigations in this work demonstrate that unitary-coupled
RBM can accurately model a wide range of physical systems
without excessive number of hidden spins.
The second thing we have done differently is to modify a strict

post-selection on hidden spins. As explained later, an NQS is
properly generated when all hiddens are projected onto
þj i ¼ 0j i þ 1j ið Þ=

ffiffiffi

2
p

. In this work, we observe that a single NQS
can be decomposed into an ensemble of modified NQS, which are
essentially outputted by a quantum circuit when a projective
measurement on hidden spins yields a state other than þj i. Under
this ensemble scheme, expectation values for any observable of
the original NQS can be estimated from these modified NQS
within a Monte Carlo framework.
Finally, we modify the imaginary-time-dependent variaitonal

algorithm34 to better suit the specific structure of an NQS. We
term this algorithm NQS-imaginary-time evolution (NQS-ITE). Due
to the commutative structure of a NQS ansatz, the simulation
algorithm based on the imaginary-time-dependent variational
principle (ITDVP) can be drastically simplified as one just needs to
perform measurement on one quantum circuit instead of working
with OðN2

var Þ different quantum circuits where Nvar is the number
of total variational parameters. For large-scale simulations, Nvar /
OðMNÞ could be a huge number.
In summary, the present work has both expanded the scope of

application for NQS-based HQC simulations and has lowered the
barrier for experimental implementations. In order to frame the
significance of this work in a better perspective, we summarize
and clarify the challenges we set out to address in prior works in
Supplementary Note I.

RESULTS

Preparing a complex-valued NQS in a quantum circuit

A brief introduction of NQS can be found in the “Methods” section.
All NQS may be obtained from at least one bipartite Ising

Hamiltonian ĤRBMðθÞ ¼
P

ibi v̂
z
i þ

P

jmj ĥ
z

j þ
P

ijW ij v̂
z
i ĥ

z

j , where v̂zi

or ĥ
z

j is the Pauli Z operator for the visible or hidden qubit,

respectively. We also denote complex-valued RBM parameters as
θ= [b1, …, bN, m1, …, mM, W11, …, WNM], and use superscripts R
and I to denote the real and imaginary parts, respectively. The
complex-valued NQS can be created with a two-step approach.
First, entangle N+M qubits (including all visible and hidden spins

of an RBM architecture) according to

ΨvhðθÞj i ¼ eĤRBMðθÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

vh þþ � � � þh je2Ĥ
R

RBMðθÞ þþ � � � þj ivh
q

2

6

4

3

7

5
þþ � � � þj ivh;

(1)

where þj i ¼ 1
ffiffi

2
p ð 0j i þ 1j iÞ, ĤR

RBMðθÞ is the Hermitian part of the

RBM Hamiltonian and the subscript vh denotes visible and hidden
(ancilla) qubits. Equation (1) gives a conceptually simple wave
function that could be generated by first applying single-qubit

transformations expðbi v̂zi Þ and expðmjĥ
z

j Þ on individual qubits

followed by expðW ij v̂
z
i ĥ

z

j Þ to couple qubits. The quantum

operations are non-unitary when RBM parameters take on real

parts, i.e. b R
i ≠ 0, m R

j ≠ 0, or W R
ij ≠ 0. In general, the non-unitary

two-qubit operation mediating entanglement across the
visible–hidden layer are difficult to implement. One could adopt
the probabilistic scheme introduced in ref. 79 to generate the
inter-layer couplings with an extra ancilla qubit. However, for
complex-valued wave function, this approach in ref. 79 is difficult
to scale with the number of qubits involved. An alternative to
implementing the non-unitary two-qubit operation is the quan-
tum imaginary-time evolution algorithm proposed by ref. 83;
however, such algorithm requires deep circuits for systems with
long correlation length.
Once the extended wave function ΨvhðθÞj i is generated, all

ancilla qubits (i.e. hidden spins) are post-selected for þj ih and the
desired NQS in Eq. (16) is reconstructed in the quantum circuit,

ΨvðθÞj i ¼ h þþ���þjΨvhðθÞh i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ΨvhðθÞh jP̂ðhÞþ ΨvhðθÞj i
p

¼ 1
Nv

P

h

eĤRBMðθ;hÞ þþ � � � þj iv;
(2)

where P̂
ðhÞ
þ ¼ þþ � � � þj ih þþ � � � þh j, Nv ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

vh þþ � � � þh jeĤRBMðθÞP̂
ðhÞ
þ eĤRBMðθÞ þþ � � � þj ivh

q

and eĤRBMðθ;hÞ is an

operator acting on the visible spins only as we replace the Pauli

operator ĥ
z

j with a binary value (±1) of hj∈ h= [h1, …, hM]. From

the second line of Eq. (2), it is clear that the hidden spins jointly

mediate a specific quantum transformation,
P

he
ĤRBMðθ;hÞ , on the

visible-spin wave function. Since this transformation invovles post-
selection and non-unitary in general, the amplitude-amplification
type of techniques84,85 and other more advanced techniques such
as linear combination of unitaries86 are not convenient due to the
need for extra quantum resources and longer quantum circuits are
generally expected. Overall, the challenge to efficiently implement
P

he
ĤRBMðθ;hÞ creates another obstacle to prepare complex-valued

NQS in quantum circuits.
In the rest of this section, we describe a scalable state-

preparation protocol that overcomes these two obstacles. In
particular, we implement complex-valued NQS using as few as
one ancilla qubit and entirely avoids the post-selection. To
simplify presentations, we illustrate how to prepare a subset of
NQS that we dub the unitary-coupled RBM-NQS, which only allow
purely imaginary-valued inter-layer couplings W ij ¼ iW I

ij . Genera-
tion of unitary-coupled RBM-NQS bypass the inherent challenge
to mediate entanglement via non-unitary transformations.
Figure 1a gives a circuit diagram of preparing a unitary-coupled
RBM-NQS composed of two visible spins with inter-qubit
couplings mediated by two hidden spins. The Hadarmard gates
prepare the þj i state, and the parametrized single-qubit rotations
are not fixed along the z-axis because of the non-unitary
operations, exp b R

i v̂
z
i

� �

and expðm R
i ĥ

z

i Þ. In the circuit diagram of
Fig. 1a, the single-qubit rotations Rn(θ) are determined via

relations of the form exp b R
i v̂

z
i

� �

þj i=c ¼ RnðθÞ þj i with the
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normalization factor c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

þh j exp 2b R
i v̂

z
i

� �

þj i
q

. Figure 1b gives a

schematic depicting the RBM state generated by the circuit in
Fig. 1a. As explained in Supplementary Note II, the unitary-
coupled RBM-NQS does not necessarily suffer loss of expressive
power. While we claim it is better to model quantum systems
with unitary-coupled RBM-NQS for near-term applications; there
is a straightforward extension of the current protocol to generate
arbitrary complex-valued NQS in case it is desired. We defer the
discussion of this extension to Supplementary Note VI.

Scalable preparation of a unitary-coupled RBM-NQS in a
quantum circuit

To begin, we note that Eq. (2) can be cast in an alternative form

ΨvðθÞj i ¼ 1
Nv

þh j eĥ
z

M mMþ
P

i
iW I

iM v̂
z
ið Þh i

þj i
h i

M
þh j eĥ

z

M�1 mM�1þ
P

i
iW I

iM�1 v̂
z
ið Þh i

þj i
h i

M�1
� � �

´ þh j eĥ
z

1 m1þ
P

i
iW I

i1 v̂
z
ið Þh i

þj i
h i

1
e
P

i
bi v̂

z
i þþ � � �þj iv :

(3)

Each block, þh j½� � �� þj i½ �j , encodes jth hidden spin’s effects on
all visible ones. Clearly, one can use a single ancilla qubit to
implement these transformations sequentially. As shown in Eq. (3),
we specifically consider W ij ¼ iW I

ij for the unitary-coupled RBM-
NQS. Our proposed approach to bypass the post-selection of þj i
on all hidden spins is inspired by the following observation,

þh j eĥ
z

j mjþ
P

i
iW I

ij v̂
z
ið Þh i

þj i ¼
P

s¼±

þh jemR
j
ĥ
z

j sj i sh je imI
j
þ
P

i
iW I

ij v̂
z
ið Þĥzj þj i

¼ P

s¼±

Rsðm R
j Þ sh je imI

j
þ
P

i
iW I

ij v̂
z
ið Þĥzj þj i;

(4)

where a resolution of identity
P

sj¼± sj
�

�

�

sj
�
�

� for the ancilla qubit is

inserted in the middle and Rsðm R
j Þ ¼ hþjemR

j
ĥ
z

j jsi can be

computed classically as it is the transformation matrix element
associated with a single qubit. Not obtaining Rs(mj) experimentally
is the key to avoid post-selection. Note that the decomposition

of expðĥzj ðmj þ
P

i iW
I
ij v̂

z
i ÞÞ introduced in Eq. (4) is exact as these

operators commute. Using Eq. (4), we re-write Eq. (3),

ΨvðθÞj i ¼
P

sM¼±

� � � P
s1¼±

1
Nv

Q

M

j¼1

Rsj ðm R
j Þ

 !

sMh j eĥ
z

M imI
M
þ
P

i
iW I

iM v̂
z
ið Þh i

þj i � � �

´ s1h j eĥ
z

1 imI
1þ
P

i
iW I

i1 v̂
z
ið Þh i

þj i e
P

i
bi v̂

z
i þþ � � � þj iv

¼
P

sM¼±

� � �
P

s1¼±

N
s!

Nv

Q

M

j¼1

Rsj ðmR
j Þ

 !

Ψ
s!
v ðθÞ

�

�

�

�

�

;

(5)

where s!¼ ½s1; � � � ; sM�. jΨ s!
v ðθÞi is a visible-spin wave function

created by projecting hidden spins onto basis states js1 � � � sMih
instead of enforcing the post-selection þþ � � � þj ih. Due to the

decomposition introduced in Eq. (4), only a portion of expðĤRBMÞ
contributes to the generation of jΨ s!

v ðθÞi and N
s! is the

normalization to keep hΨ s!
v jΨ s!

v i ¼ 1. While there is no post-

selection in Eq. (5), there is now a summation over all possible s!.
Instead of working directly with Eq. (5), we are primarily

interested in the expectation value of an observable Ô, which can
be formulated as

ΨvðθÞh jÔ ΨvðθÞj i ¼
Z

dzj zjΨvðθÞh ij2
Z

dz0Oðz; z0Þ z0jΨvðθÞh i
zjΨvðθÞh i

	 


:

(6)

The equation above can be interpreted as follows. The
expectation value of an observable Ô can be turned into the
average of the expression inside the square bracket if we can
efficiently sample z according to the probability density
j zjΨvðθÞh ij2, i.e. projecting the NQS in some basis. We further
analyze this probability density by exposing the details of the RBM
architecture,

j zjΨvðθÞh ij2 ¼ j zjΨvðθÞh ij2
ΨvðθÞjΨvðθÞh i

¼
P

s!
N2

s!
N2v

QM

j¼1
R2sj

ðm R
j
Þ

� �

j zjΨ s!
v ðθÞ

D E

j2

P

s!
N2

s!
N2v

QM

j¼1
R2sj

ðm R
j
Þ

� �

;
(7)

Fig. 1 Quantum circuits for preparing unitary-coupled RBM states. Unitary-coupled RBM-NQS. a Quantum circuit to directly prepare a two-
qubit unitary-coupled RBM state having two hidden spins. The inter-layer coupling is mediated by unitary gates. Note θ0ij ¼ �θij . b Schematic

of the RBM state generated by the quantum circuit in panel a. c Scalable preparation of unitary-coupled RBM state described in Eqs. (3)–(5).
A sample circuit in which the hidden spins are projected onto þ�j i is shown.
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where
P

s! ¼
P

s1
� � �
P

sM
and it is implicitly assumed that

ΨvðθÞjΨvðθÞh i ¼ 1. Instead of performing the exact summation

over all s! in Eq. (7) (this is essentially the same summation in Eq. (5)
mentioned at the end of the last paragraph), we should estimate

this sum with the Monte Carlo method. We note that N2

s! in Eq. (7)

is the probability of observing {s1, ⋯, sM} upon measuring those M

hidden spins during the construction of the state jΨ s!
v ðθÞi. Hence,

samples of s! are effectively drawn from the probability density

N2

s! during the construction of jΨ s!
v ðθÞi. In short, we replace the

exact summation according to

X

s!
N2

s!f ð s!Þ �!Monte Carlo sampling of s!

according toN2

s!
1

Nexp

X

Nexp

k¼1

f ð s!kÞ; (8)

where f ð s!Þ ¼ ðQM
j¼1 R

2
sj
ðm R

j ÞÞjhzjΨ s!
v ðθÞij2 or f ð s!Þ ¼ ðQM

j¼1

R2sj ðm R
j ÞÞ for the numerator and the denominator in Eq. (7),

respectively, and Nexp is the number of sampling experiments
performed.
The factor ðQjR

2
sj
ðm R

j ÞÞ in Eq. (7) should be calculated

classically. This probability jhzjΨ s!
v ðθÞij2 is again sampled from

projective measurements on visible spins. The only thing that is
prohibitively expensive to estimate either classically or experi-
mentally is the normalization constant Nv. This is the reason we
introduce the denominator (which is really just 1) in Eq. (7) that
carries another Nv to cancel the one in the numerator. By using
Eqs. (6) and (7) together, the challenging post-selection is replaced
with a Monte Carlo framework that needs to sample multiple

jΨ s!
v ðθÞi according to Eq. (7). It is worth noting that, by using the

ensemble state preparation outlined here, only projective
measurements in the computational basis are used in estimating
the expectation value of an operator (e.g. the system Hamilto-
nian), whereas projective measurements along all three axes are
typically required in the standard VQE. Additional details on the
ensemble state preparation method may be found in Supple-
mentary Note III.

Quantum simulations with NQS-ITE

Next, we discuss the ITDVP to find a ground state of a Hamiltonian
Ĥ. The idea is to propagate a trial wave function ΨvðθτÞj i in the
imaginary-time domain. If the trial wave function Ψvðθ0Þj i at time
τ= 0 has a non-zero overlap with the ground state Ψgs

�

�

�

, then it
should converge to an ansatz closest to Ψgs

�

�

�

when τ≫ 1. With a
variational ansatz, the time-evolved ΨvðθτÞj i can be prepared in a
quantum circuit if θτ is given. In Supplementary Note IV, we
summarize the standard ITDVP34 for parametrized quantum
circuits and explain why we need to modify the standard

approach for the NQS anstaz considered in this work. In this
section, we present an overview of the NQS-ITE algorithm and
details of the derivation may be found in Supplementary Note V.
In short, the equations of motion for θτ assume the following

form:

_θn ¼
X

m

A�1
nmCm: (9)

The matrix A and vector C read,

Anm ¼ Re Ô
y
nÔm

D E

v
� Ô

y
n

D E

v
Ôm

� �

v

� �

; and

Cm ¼ Re Ô
y
mĤ

D E

v
� Ô

y
m

D E

v
Ĥ
� �

v

� �

;
(10)

where � � �h iv ¼ ΨvðθÞh j � � � ΨvðθÞj i. The On operators are defined
as follows,

Ôn ¼

i1�δv̂zi ; if θn ¼ bi;

i1�δ tanh mj þ
P

i iW
I
ij v̂

z
i

� �

; if θn ¼ mj;

iv̂zi tanh mj þ
P

i iW
I
ij v̂

z
i

� �

; if θn ¼ WI
ij;

8

>

>

>

<

>

>

>

:

(11)

where δ= 0 if θn ¼ b I
i or θn ¼ m I

j and δ= 1 if θn ¼ b R
i or

θn ¼ m R
j . We note that Eqs. (9)–(11) essentially give the stochastic

reconfiguration method for the variational Monte Carlo frame-
work. In the standard ITDVP approach34, every matrix element
Amn ¼ ∂θmΨvðθÞj∂θnΨvðθÞh i requires measurements with respect
to a distinct quantum circuit. Hence, it takes OðN2

var Þ sets of state
preparations to construct A matrix. By utilizing the commutative
property of operators in the RBM Hamiltonian, only one RBM state
needs to be prepared for constructing the entire A matrix. In fact,
one can simultaneously estimate all OðN2

var Þ matrix elements with
every given sample of z according to the definition of A matrix
element in Eq. (10). This could be a tremendous advantage for
large-scale simulations when Nvar / OðMNÞ could be a huge
number.
Next, we point out an interesting observation. The standard

gradient-based energy minimization, as done within the VQE
approach, updates θn with the equation of motion _θn ¼ Cn where
Cn being the gradient vector for the energy function
Eθ ¼ ΨvðθÞjĤjΨvðθÞ

� �

. The comparison of Eq. (9) to the equation
of motion above reveals that the NQS-ITE introduces a precondi-
tioner A−1 to the gradient vector in order to adjust the step size to
account for the intrinsically curved metric for the NQS manifold.
However, the evaluations of the matrix A requires no more
experimental efforts for NQS-ITE than for a standard gradient-
descent-based approach as explained. As the imaginary-time
method tends to give better result than the gradient descent, one
should always adopt the imaginary-time propagation whenever
NQS is used as the trial wave function. It is worth noting that a
quantum generalization of natural gradient descent has recently
been proposed for variational quantum circuits, this algorithm is

(a) (b) (c)

Fig. 2 Numerical results for molecular systems. The ground state energy of H2, LiH, and linear H4 molecules as a function of inter-nuclear
distances. The energies computed with the NQS-ITE algorithm and the exact diagonalization are solid red dots and solid black lines,
respectively. Results for a H2 (N= 2, M= 2), b LiH (N= 4, M= 4), and c linear H4 (N= 8, M= 24).
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also shown to be a better optimizer than the standard gradient-
descent approach87,88.

Numerical results

To demonstrate the effectiveness of RBM-NQS ansatz and NQS-ITE
algorithm, we report numerical simulations on three different
types of systems: molecules, spin chains, and nanostructures
(triple quantum dots (TQD)). We first present results with the
standard complex-valued NQS ansatz (which requires the
extended state preparation protocol described in Supplementary
Note VI), then we repeat the simulations for selected examples in
the last subsection to demonstrate that the unitary-coupled RBM-
NQS could achieve the same level of accuracy with similar number
of hidden spins.

Molecular systems. We first test the NQS-ITE algorithm on
common molecular benchmarks: the dissociation curves of H2,
LiH, and an H4 chain. The molecular Hamiltonians are first
projected onto a discrete set of molecular orbitals. Here, we use
the conventional STO-3G basis set, which constitutes the
minimum number of orbitals required to represent a given atomic
shell. The resulting fermionic Hamiltonians are subsequently
mapped onto qubit Hamiltonians using the Bravyi–Kitaev
transformation89. The computation of the integrals in second
quantization and transformation of the Hamiltonians are done
using PySCF90 and OpenFermion91.
Modelling H2, LiH, and linear H4 molecules in the STO-3G basis

requires 2, 4, and 8 visible spins, respectively. The ground state
energies, estimated from the NQS-ITE algorithm, as a function of
inter-nuclear distance are plotted in Fig. 2. Despite using a modest
number of hidden spins, the NQS anstaz models the molecular
wave functions very well as the NQS-ITE algorithm gives nearly
exact numerical results for all cases in Fig. 2. We consider more
number of hidden spins for the linear H4 molecule in order to
correctly reproduce the wave function at large bond distance. Our
result on linear H4 molecule is largely consistently with the VMC
(variational Monte Carlo) result discussed in ref. 92, a comprehen-
sive benchmark studies of state-of-the-art simulation methods for
quantum chemistry and many-body physics. This consistency can
be understood as the RBM-NQS shares many similarities with the
Jastrow factor in the variational ansatz adopted for the VMC
method in that benchmark test.

Spin systems. Next, we consider the problem of finding the
ground state of three prototypical spin models, i.e. the transverse-
field Ising model, the antiferromagnetic Heisenberg (AFH) model
and the J1–J2 model. AFH and J1–J2 models are prominent
models to study frustrated systems in condensed matter physics.

The spin Hamiltonians can be written as

HTFI ¼ �h
X

i

σ̂
x
i �

X

<ij>

σ̂
z
i σ̂

z
j ; (12)

HAFH ¼ �h
X

i
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z
i þ

X
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x
i σ̂

x
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y
i σ̂

y
j þ σ̂

z
i σ̂

z
j ; (13)

HJ1J2 ¼ J1
X
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y
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z
i σ̂

z
j ;

(14)

where h is the uniform field strength, <ij> denotes the nearest-
neighbor couplings, and <<ij>> denotes the next nearest-
neighbor couplings. Open boundary condition is assumed for
these linear spin chains. In Fig. 3 we again compute the energies
using the NQS-ITE algorithm. Excellent agreement between NQS-
ITE and the numerically exact results are obtained as expected.
M= N number of hidden spins are used in all three cases
including frustrated AFH and J1–J2 chains.

Triple quantum dots (TQD). A lateral TQD is an artificial, fully
tunable molecule constructed using metallic gates localizing
electrons in a semiconductor field-effect transistor. A TQD allows
one to study new phenomena not present in a single or double
quantum dot, e.g. topological effects93,94. The Hamiltonian of the
TQD subject to a uniform perpendicular magnetic field, B ¼ Bẑ, is
given by

H ¼
X

i;σ

Eiσd̂
y
iσd̂iσ þ

X

σ;i;j; i≠j

~tij d̂
y
iσd̂jσ þ

X

i

Uin̂i#n̂i" þ
1

2

X

i;j; i≠j

V ijϱiϱj ;

(15)

where d̂iσ (d̂
y
iσ) is fermionic annihilation (creation) operator with

spin σ= ±1/2 on orbital i. n̂iσ ¼ d̂
y
iσd̂iσ and ϱ̂i ¼ n̂i# þ n̂i" are the

spin and charge density on orbital level i. Ui and Vij gives the
strength of on-site and off-site Coulomb repulsion, respectively.
Each dot is represented by a single orbital with energy Eiσ= Ei+
g*μBBσ, where g* is the effective Landé g-factor, μB is the Bohr
magneton. The dots are connected by magnetic-field-dependent

hopping matrix elements ~tij ¼ tije
2πiϕij where ϕij= ϕ is the

magnetic flux. The details of this model can be found in the
“Methods” section.
The ground state energy of the TQD as a function of magnetic

field is plotted in Fig. 4, we observe excellent agreement between
the results from the exact diagonalization and NQS-ITE. It is worth
noting that, at non-zero magnetic field, the ground state wave
function of a TQD could be complex, thus a complex RBM ansatz is
necessary for accurate representation of the ground state wave

(a)

h=0.5

h=1.5 h=1

(b) (c)

h=1

h=0.0

Fig. 3 Numerical results for spin systems. The ground state energy of spin chains computed with the NQS-ITE algorithm (solid red dots) and
exact diagonalization (solid black lines). Results for a Heisenberg chain as a function of chain length at different values of h field, b Ising chain
as a function of chain length at different values of h field, c J1–J2 chain with J1= 1 and J2= 0.5. In panel a, the result for h= 1 has been shifted
downwards by 2 units for visibility.
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function. Again, RBM-NQS may model this complex system with a
modest number of hiddn spins with M= N even in the non-
perturbtive regime (in which Coulomb repulsioon and kinetic
energy are of comparable strength) as displayed in Fig. 4b.

Results with unitary-coupled RBM-NQS. At last, we repeat calcula-
tions of a few models studied in previous sections with the
unitary-coupled RBM-NQS ansatz. The key insight revealed in
Figs. 5 and 6 is that, in most cases, the unitary-coupled RBM-NQS
delivers comparable performance to that of the standard complex
RBM-NQS. Although, it is also suggestive that the unitary-coupled
RBM simulation could be improved if one either uses a smaller
time-step size for the NQS-ITE algorithm or uses more number of
hidden spins. The first point is well illustrated by Fig. 5c and the
accompanied inset. The non-monotonic trend in the average
energy (during the imaginary-time evolution) is a signature that
the propagated quantum state is not well approximated by the
unitary-coupled RBM ansatz when the imaginary-time-step size is
large. This energy fluctuation improves consistently when the

time-step size decreases as shown in the inset of Fig. 5c. Note that
the NQS-ITE eventually finds the true ground state wave function
even when the time-step size is not taken to be smaller.
The second point is illustrated by comparing the representation

accuracy between a standard RBM-NQS and a unitary-coupled
RBM-NQS with the same number of hidden spins. Clearly, the
standard RBM ansatz achieves better accuracy. Although higher
accuracy may be attained when more number of hidden spins are
used for a unitary-coupled RBM ansatz. In fact, one can see that
both ansatzes achieve roughly the same relative error when there
are roughly same number of variational parameters for the AFH
model in Fig. 6a. Note a standard RBM has almost twice the
number of variational parameters (both real and imaginary
coupling parameters for each visible–hidden connections).
Finally, we also present another set of results (solid red lines) in

Fig. 5. These results are obtained with RBM ansatz whose
parameters are initialized with a mean-field solution to the
original problems. As shown, a better initial guess improves the
convergence rate in comparison to randomly initialized cases.

(a) (b)

Fig. 4 Numerical results for triple quantum dots. The ground state energy of a lateral TQD (N=M= 6) as a function of magnetic field
obtained from the NQS-ITE algorithm (solid red dots) and the exact diagonalization (solid black lines). Panel a Ui= 50∣t∣, Vij= 10∣t∣ and Ei= t,
and b Ui= 0.5∣t∣, Vij= 0.1∣t∣, and Ei= t.
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(c) (d)
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Fig. 5 Imaginary-time evolution with RBM states. Simulations of the ground state energy using NQS-ITE with random initialization (solid red
lines), mean-field initialization (solid blue lines), and random initialization for the unitary-coupled RBM ansatz (dashed green lines). The dashed
black lines show the ground state energy from exact diagonalization. Results for a H2 at equilibrium bond length (1.05Å), b LiH at equilibrium
bond length (1.5Å), c Heisenberg chain (N= 6, h= 0), and d Ising chain (N= 6, h= 0.5). The inset in c displays the results for the unitary-
coupled RBM ansatz using different time-step sizes, δτ, where τ= steps*δτ.
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Particularly, mean-field initial wave function already provides
nearly exact ground state wave function for lithium hydride
molecule, as it can be seen from Fig. 5b that the ground state
energy from the mean-field approximation is nearly identical to
the exact ground state energy. The accuracy of the mean-field
approximation for LiH molecule is possibly due to the low level of
electron correlations among the orbitals in minimal basis set. To
test this hypothesis, we solve for the ground state of LiH using the
Hartree–Fock method and found that it already provides a very
accurate ground state solution. In the “Methods” section, we
briefly comment how one can systematically make an intelligent
guess on a good initial state under various situations.

DISCUSSION

In conclusion, we present a practical approach to exploit a popular
machine-learning model for quantum simulations on a digital
quantum computer. Before fault-tolerant quantum computation
becomes readily available, the HQC algorithms will prevail as a
popular approach for investigating novel applications of a
quantum computer. Successful experimental demonstrations of
HQC algorithms have certainly attracted attentions and boosted
confidence in quantum computations. Nevertheless, many obsta-
cles still prevent a clear demonstration of unambiguous quantum
advantages for these HQC algorithms. One possible path towards
this goal is to investigate more powerful wave-function ansatz
that can achieve a good tradeoff between expressive power and
number of variational parameters. With fewer parameters,
potentially, one may deal with a shorter-depth state preparation
and deals with a simpler optimization problem.
From this perspective, the NQS certainly seems to be a

promising option to investigate. For instance it has been shown
that an RBM state could be mapped to the powerful matrix
product states commonly used in condensed matter physics, but
uses variational parameters more economically77. Additionally, it is
also known that a fully-connected RBM ansatz satisfies an
entanglement volume scaling. Thus, it is very intriguing to further
investigate whether one can exploit these properties to minimize
number of variational parameters under a realistic setting. While
the long-range connectivity between qubits is not necessarily easy
to realize in many quantum hardwares at the moment; it is at least
experimentally feasible with one of the leading hardware
architectures, the ion-trap-based quantum computers95,96 having
all-to-all connectivity among qubits. Theoretically, one may also
design quantum algorithms based on the deep Boltzmann
machines97 that further elevates the expressive power of
Boltzmann machine architectures with only short-range couplings
suitable for quantum hardware featuring local connectivity among
qubits.
In this work, we set out to improve the existing NQS state-

preparation protocol in the quantum circuits. As mentioned in the

introduction, prior quantum algorithms using RBM ansatz suffer
from several obstacles that prevents simulations for complex
systems with many degrees of freedom. Our proposed state-
preparation protocols have significantly expanded the scope of
applications for NQS as an ansatz for quantum simulations and
lowered the experimental barriers. By including complex-valued
parameters into the RBM-NQS, the proposed quantum algorithm
is capable of simulating some important quantum materials and
quantum dynamics98. Our numerical testings manifest encoura-
ging signs that the NQS ansatz performs remarkably well across a
variety of systems of practical and theoretical interests. Due to the
qubit-recycling scheme, we reduce the number of required qubits
from OðN þMÞ in previous works down to OðNÞ with sequential
implementations of visible–hidden layer interactions. By imposing
W ij ¼ iW I

ij , we avoid the probabilistic preparation of inter-layer
couplings, further improving the practicality of NQS-based
simulations. The ensemble state preparation bypasses the post-
selection on hidden spins.
Additionally, the circuit depth of preparing a unitary-coupled

RBM state scales as OðNMÞ whereas the implementation for a
standard RBM state either requires exponentially deep circuit or
probabilitic post-selection of ancilla qubits. Finally, it has been
previously shown that imaginary-time algorithm offers superior
performance compared to VQE34, but at the expense of more state
preparations and measurements. In this work, we exploit the
properties of RBM architecture and show that the number of
different quantum states required in the imaginary-time algorithm
could be reduced from OðN2

varÞ � OððNMÞ2Þ down to just one
circuit like the standard gradient descent for VQE. However, unlike
standard VQE cases, the Monte Carlo approach for observable
estimation allows us to perform measurement in one fixed basis
for the Pauli operators. Since the variational Monte Carlo requires
efficient estimation of ratios of wave function amplitudes which
might not be possible for arbitrary wave-function anasatz such as
the hardware efficient ones. Hence, the experimental costs for
NQS-ITE is comparable to what standard VQE with UCC or
hardware efficient ansatz demands if not significantly cheaper.
Since Boltzmann machine is a widely used machine-learning
model with many applications, we expect the HQC paradigm
building on the Monte Carlo framework and the NQS ansatz in this
work can be adopted for solving other important problems, such
as discrete optimizations and machine learning.

METHODS

RBM as trial wave function

Recently, Troyer and Carleo62 used the RBM neural-network architecture as
wave-function ansatz to model many-body physics and attained impress-
ive results. Since then, several other wave-function ansatz inspired by
neural-network architecture have been explored. Collectively, we now refer
to this set of wave-function ansatzs as the NQS. Although, in this work, we

(a) (b)

Fig. 6 Comparison between full RBM and unitary-coupled RBM states. Comparing relative errors between RBM-NQS and unitary-coupled
RBM-NQS for a AFH model with h= 0 andM= N= 6, and b TFI model with h= 0.5 and M= N= 6. The defiintion of the relative error is ∣Eexact−
Erbm∣/∣Eexact∣ where rbm refers to either RBM-NQS or unitary-coupled RBM-NQS.
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only consider RBM-NQS, which is particularly convenient to model
quantum systems composed of two-level systems (TLSs) such as spin
lattice commonly studied in condensed matter physics and quantum
chemistry problems formulated in terms of qubits. For these systems, each
TLS is directly identified with a visible spin in the corresponding RBM
model. The entanglement between these TLSs (or visible spins) is
mediated by the pairwise interactions between visible and hidden spins.
In short, a many-body wave function in the NQS form reads

ΨvðθÞj i ¼ 1

Nv

X

v

X

h

eEθðv;hÞ
 !

vj i; (16)

with energy function Eθ(v, h)= ∑ibivi+ ∑jmjhj+ ∑ijWijvihj, its complex

conjugate Eθðv;hÞ, and the normalization constant

Nv ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

v

P

he
Eθðv;hÞ

� �

P

he
Eθðv;hÞ

� �

r

. The RBM parameters are collectively

denoted by θ= {b, m, W}. As shown in Eq. (16), the hidden spins are
summed over in the bracket on the right-hand side of Eq. (16) to give a
wave function ΨvðθÞj i for the visible spins, which represent the physical
system of interest. In principle, θ should possess non-vanishing imaginary
components to describe complex-valued wave function.
To prepare an NQS in a quantum circuit, we should take the energy

function Eθ(v, h) and promote it to an Hermitian operator by replacing the
binary values of v and h with the corresponding Pauli operators. The
quantum-circuit analog of Eq. (16) is decomposed into Eqs. (1) and (2): first
entangle the visible and hidden spins and then post-selects the hidden
spins to mediate the desire non-unitary transformation on the visible-spin
wave functions.

Initial state preparation for quantum simulations

The NQS ansatz can be used in conjunction with most HQC simulation
algorithms in addition to the time-dependent variational method outlined
above. All these methods aim to solve highly non-trivial optimization in
which the quality of solutions or the convergence rate depends crucially
on the overlap of the initial state with the ground state Ψgs

�

�

�

. The two-
stage initialization protocols described here gives a systematic approach to
guide the preparation of high-quality initial states. In short, the idea is to
selectively optimize a subset of parameters to obtain an approximate
solution that could be used as the initial state in a subsequent simulation
optimizing over all parameters.
In the simplest case, one may consider a mean-field approximation,

which restricts the considerations to completely factorized product-state

wave function jΨ 0
v ð b

!Þi ¼ jψv1
ðb1Þi � � � � � jψvN

ðbNÞi for all visible spins in
a quantum simulation. We then subsequently use jΨ0

vð b
!Þi as the starting

point of another simulation in which the hidden spins are introduced
along with corresponding parameters {m1,⋯mM,W11,⋯WNM} that collec-
tively facilitate the formation of entangled NQS, ΨvðθÞj i. We note the
mean-field approximation (single-body physics problem) can be easily
done on a classical computer.
Nevertheless, for strongly correlated systems, the product states are not

guaranteed to support a high overlap with Ψgs

�

�

�

. Instead of optimizing b
!

(the mean-field approximation) in the first run, it will be beneficial to
consider an NQS with specifically designed sparse connectivity. In the
second-stage calculation, the fully-connected architecture will be restored
as usual, and the total number of variational parameters scale as OðNMÞ.
An obvious question is how to decide the connectivity of this sparsely
connected RBM architecture for the first-stage simulation, which needs to
balance the expressive power of the variational ansatz and the complexity
of the optimization tasks. For lattice systems, one may consider short-
range RBMs that constitute a special class of the well-established
entangled-plaquette states72. In this case, the total number of variational
parameters scale as OðNÞ.

Simulation details for numerical studies

In all our simulations, we use a constant learning rate of 0.01. The
variational parameters are initialized as Gaussian random numbers with
mean zero and variance 0.01, except in cases where the initial conditions
are obtained from mean-field solutions (Fig. 5, green dashed lines).

Hamiltonians of H2, LiH and H4. We treat the molecules in the minimal
STO-3G basis and use PySCF to compute the integrals in the second
quantization. The resulting fermionic Hamiltonians are subsequently

mapped onto qubit Hamiltonians using Bravyi–Kitaev transformation with
OpenFermion91. Due to the symmetry in H2, the final Hamiltonian consists
of 2 qubits99, whereas the LiH and H4 Hamiltonians contain 4 and 8 qubits,
respectively.

Hamiltonian for TQD. For TQD simulations, we use the parameters from
ref. 94, i.e. t=−0.23 meV, g*=−0.44, Ei=−∣t∣, and ϕ/B= 1.25T−1. We
consider two cases in Fig. 4: (a) Ui= 50∣t∣, Vij= 10∣t∣ (strongly localized
case), and (b) Ui= 0.5∣t∣, Vij= 0.1∣t∣ (non-perturbative regime). We use
Bravyi–Kitaev transformation to map the Hubbard Hamiltonian onto a
qubit Hamiltonian using OpenFermion.
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