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Abstruct-Unitary similarity transformations furnish a power- 
ful vehicle for generating infinite generic classes of signal analysis 
and processing tools based on concepts different from time, 
frequency, and scale. Implementation of these new tools involves 
simply preprocessing the signal by a unitary transformation, 
performing standard processing on the transformed signal, and 
then (in some cases) transforming the resulting output. The re- 
sulting unitarily equivalent systems can focus on the critical signal 
characteristics in large classes of signals and, hence, prove useful 
for representing and processing signals that are not well matched 
by current techniques. As specific examples of this procedure, 
we generalize linear time-invariant systems, orthonormal basis 
and frame decompositions, and joint time-frequency and time- 
scale distributions. These applications illustrate the utility of 
the unitary equivalence concept for uniting seemingly disparate 
approaches proposed in the literature. 

I. INTRODUCTION 

HE time and frequency coordinate systems play such a T fundamental role in signal analysis and processing that 

it is virtually impossible to consider the subject of signal 

processing without them. Aside from their central conceptual 
function, a vast body of effective, efficient, and robust sig- 

nal processing algorithms have been developed within these 

frameworks. The Fourier transform, for example, is precisely 

the mapping between the time and frequency domains or 

coordinate systems. 

Nonetheless, for many types of signals in important appli- 

cations, standard tools have proven inadequate. The Fourier 

transform, to continue the example, does not explicitly indicate 

how the spectral components of a signal change over time, 

which is essential in applications such as speech, radar, sonar, 

biological, and transient signal analysis [I]. Hence, joint 

representations based simultaneously on both time and fre- 

quency have been created, including the narrowband ambiguity 

function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 11, the windowed short-time Fourier transform, the 

Gabor [2] and Wilson [3] orthonormal bases and frames, 

and the spectrogram and its generalization, Cohen’s class of 

bilinear time-frequency distributions [I]. 
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In turn, however, the constant time-frequency resolution 

analysis effected by these time-frequency representations has 

proven unsuitable for the wideband signals appearing in ap- 

plications such as image processing and wideband Doppler 

signal processing. For these types of signals, proportional- 

bandwidth analysis tools based on the concept of “scale” have 

been developed, including the Mellin transform [4], zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 5 ] ;  the 

joint time-scale wavelet transform and wavelet orthonormal 

bases and frames [2]; and bilinear wavelet generalizations 

such as the Altes-Marinovich distribution [6], [7], the affine 

Wigner distributions of the Bertrands [8]-[ IO], the affine class 

[I I]-[13], the time-frequency-scale classes of Cohen [ 11, [ 141, 

and the hyperbolic and power classes of Papandreou et al. 
[ 151, [ 161. Further generalizations of the time-frequency and 

time-scale techniques well adapted to studying chirping signals 

have been provided by the chirpletlmetaplectic transform 

framework studied by Berthon [17], Grossman, and Paul 

[18], Mann and Haykin [19], [20], and Baraniuk and Jones 

[21], [22], and the polynomial Wigner distribution studied by 

Boashash and O’Shea [23]. 

While tools such as the Fourier transform, the short-time 

Fourier transform, the wavelet transform, and the bilinear time- 

frequency and time-scale classes are natural for many signals, 

there still exist large classes of signals (frequency modulated 

and dispersed signals are two examples) for which neither a 

time-frequency nor a time-scale analysis is appropriate. These 

types of signals demand new, better matched analysis and 

processing tools. 

Historically, new signal processing tools have been devel- 

oped in a piecemeal fashion, with a new tool being created 

for each new signal class of interest. We do not take this 

approach here. Rather, in this paper, we present a theory 

for designing infinite generic classes of signal analysis and 

processing systems based on alternate coordinate systems. The 

benefits of the theory are twofold: First, it allows the almost 

trivial development of many new processing schemes tailored 

to certain signal characteristics, and second, it allows the use 

of well-understood, robust, and efficient classical algorithms 

in the new contexts. 

Our approach is based on a special family of “basis chang- 

ing” operators-the unitary transformations-which convert 

traditional systems into new systems with different proper- 

ties [24]. Fig. 1 illustrates the general scheme: An arbitrary 

conventional processing system P (linear filter, adaptive fil- 

ter, spectral estimator, detector, time-frequency or time-scale 

representation, etc.) is cradled between two unitary transfor- 

mations U and V. As we will see, the unitary transformations 
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Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1. Prototype unitarily equivalent system: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP represents a traditional 
analysis/processing system, whereas U and V are unitary transformations 

~ 4 1 .  

change the fundamental coordinate system of the processor 

P, mapping familiar concepts such as time and frequency to 
new concepts more natural for the analysis and processing of 

certain types of signals.' 

As a simple example of the procedure we will develop, 

consider the recovery of a harmonic signal with slowly time- 

varying frequencies in a noisy environment, as might arise in 

the acoustic emissions of rotating machinery in the presence 

of Doppler shift or in the removal of background noise from 

a musical solo. Given the signal 

(1) 

with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh(x) = Eli akej2.rrkfox,  m a smooth, monotonic func- 

tion, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn1 a noise realization, we wish to recover the 

harmonic component h. Clearly, this signal is instantaneously 

harmonic and therefore calls for a set of narrow bandwidth 

filters; however, time-invariant filters would have to include 

the entire modulation bandwidth. Time-frequency filtering 

methods [25]-[27] could be applied, but they are usually 

computationally expensive and, moreover, are not fully charac- 

terized in terms of their statistical performance. Demodulation 

methods are likewise unattractive for this application because 

they do not preserve the scaling relationship of the harmonics. 

An alternative solution more suitable for such signals first 

warps the time axis of s by the function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw = m,-l. Let U 
represent this warping operator, that is, let 

(us)(z) = ~ W ( Z ) ~ ' / ' ~ S [ W ( Z ) ]  = liii(z)11/2h(z) + n2(x) (2) 

where the envelope liU11/2 containing the derivative of w 
preserves the energy in the signal at the output of U. With 

respect to the warped time axis, the component h is once again 

harmonic, and a simple linear time-invariant filter P designed 
to pass all multiples of the frequency f 0 ,  such as a comb 

filter, can be applied to remove most of the noise (under the 

"slowly varying assumption" on m, the derivative weighting is 

approximately constant). An inverse warping V = U-' takes 

the denoised signal back to the normal time domain if desired. 

Fig. 2 illustrates the results of a numerical simulation of the 
system U-lPU for a sawtooth wave h, and a sinusoidally 

varying warp m.2 
While perhaps somewhat simplistic, this example illustrates 

the central features of the proposed approach. The key point 

is that often, the application of a simple transformation or 

change of basis can turn a difficult, expensive problem into 

s(z) = hI.L(.)] + n1(.) 

'This paper is certainly not the first to propose a processing scheme 
like that in Fig. 1. Particular unitary transformations have a long history in 
signal processing and have been used to great advantage in a number of 
applications, including transform coding, transform domain adaptive filtering, 
and demodulation. However, the theory developed in this paper both unites 
these specific approaches and generalizes readily to other applications. 

'In the process of mapping zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA721 in (1) to n z  in (2), U changes the statistics 
of the additive noise. Fortunately, however, if zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi t 1  is white, then 122 is white 
as well. 
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Fig. 2. Retrieval of a slowly time-varying harmonic signal from a noisy 
environment [see (1) and (2)]. (a) The warped signal h [ m ( s ) ] ,  where h ( s )  is 
a harmonic sawtooth wave and m(r )  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs + .50.5 sin ( 2 . r r s / S O O ) .  The signal 
h could represent a musical note with vibrato or the acoustic emissions from 
Doppler-shifted rotating machinery. (b) The signal s ,  obtained by immersing 
the warped signal from (a) in 3 dB S N R  additive white noise. (c) Signal 
recovered after prewarping the axis of s by the function 11' = I I ?  ~ comb 

filtering to remove noise, and postwarping by the function m. 

an easy one that can be solved using standard methods. A 

first interpretation of the example suggests that the operator 

U allowed us to apply traditional time-invariant processing 

techniques to a signal that otherwise would have required 

much more complicated time-frequency filtering. A second, 

dual, interpretation suggests that the operator U converted 

the fixed comb filter-a traditional and well understood signal 

processing tool-into a new tool well suited to dealing with 

time-varying frequencies of a certain type. In both interpreta- 

tions, the operator U provides the key link. 

This paper is organized as follows. In the following section, 

after a brief discussion of operator representations of physical 

concepts, we introduce the concept of unitary equivalence, 
which is based on the cascade of systems shown in Fig. 1. 

The bulk of the paper then comprises three sections, each 

pertaining to a major application of unitary equivalence: linear 

time-invariant systems in Section 111, orthonormal basis and 

frame decompositions in Section IV, and joint time-frequency 

and time-scale distributions in Section V. A discussion and 

conclusion appear in the final section. In order to maintain 

a manageable scope in this paper, we focus on the power 

of the unitary equivalence concept for generalizing existing 

signal processing tools and for uniting seemingly disparate 

approaches proposed in the literature. We will not address 

extensively the important question of choosing the basis trans- 

formation most appropriate for a given data set. 

11. UNITARY EQUIVALENCE 

A.  Preliminaries on Operators 

The foundation of the unitary equivalence principle rests on 

three classes of operators: parameterized unitary and Hermi- 
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tian operators representing physical quantities, unitary signal 

transforms acting as density functions for physical quantities, 

and unitary coordinate transformations. 

Notation: We will operate primarily in the Hilbert space of 

square-integrable functions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL2 (IR), which has inner product 

(9, h)  = J zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg(z)h*(x) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdx for g, h E L2(R) and norm (1g1)2 = 
(9, 9). For convenience, we will also employ nonsquare- 

integrable functions such as the Dirac delta S(x) and the 

complex sinusoid e j n l r f z .  Both unitary and Hermitian op- 

erator3 representations prove useful in our development. In 

keeping with the standard set by [l], we will obey the 

following notation convention: Lowercase letters will denote 

functions and physical quantities, script capitals will denote 

Hermitian operators, and boldface capitals will denote all 

other operators, including unitary  transformation^.^ As our 

only exception, we will use the special symbol F to represent 

the Fourier transform. 
Operator Representations of Physical Quantities: We fol- 

low the approach of Gabor [321, Ville [331, and Cohen [l], 

[ 141 by associating physical quantities such as time, frequency, 

and scale with operators. To each abstract physical quantity 

“a,” this formalism links three equivalent representations: the 

variable a (a real number), a unitary operator A, parame- 
terized by the value a, and a Hermitian operator zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA. In the 

time domain, the unitary representations of time, frequency, 

and scale correspond to the time-shift, frequency-shift, and 

dilation operators, defined as 

Time shift: 

Frequency shift: (Ffg)(z) e j 2 * f ” g ( z )  

(Ttg)(z) -g(z - t )  

Dilation: (Dd,9)(z) e e-d/2g(e-dz). (3) 

We will drop the subscripts when our intent is clear from 

context. The Hermitian representations of time, frequency, and 

a quantity we will term logarithmic modulation (for reasons to 

be explained later) are defined in the time domain as [ 11, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[IO] 

Time: (7g)(z) = x.9(x) 

Frequency: 

(4) 
7 F  + 37 

2 
Log modulation: (Eg) (z )  ( 
Operator representations in domains different from the time 

domain are easily obtained using a similarity transformation 

(as we will do in Section 11-B). 
While the unitary and Hermitian representations of time, 

frequency, and scale appear very different, they are, in fact, 

equivalent. In particular, Stone’s theorem [34, p. 6141 states 

that for each parameterized unitary operator A, such that 

A , ,  A,, = A,, +az ,  there exists a unique Hermitian operator zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
U such that 

’A unitary operator U is a linear transformation from one Hilbert space onto 
another that preserves energy, that is, I I Ugl l 2  = 1191 1’. Unitary operators also 
preserve inner products (isometry), that is, (Ug.  U h )  = (9.  h ) .  An operator zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
21 is Hermitian (self-adjoint) if (Ug, h )  = (9.  Uh) .  

4Beware: The current notation does no? match that of 1241, [281-[31]. 

and 
1 A, - I  

B = -  lim -. 
327r a-0 a 

(Here, I denotes the identity operator.) For time, frequency, 

and scale, we have 

T - ~  = e j 2 ~ t 3  F~ = e . i 2 n f 7  D~ = e j 2 ~ d 3 1  , 1 . ( 5 )  

Generalized Fourier Transforms: The second important 

class of unitary transformations we will utilize consists of 

the generalized Fourier transforms, which can be interpreted 
as densities measuring the content of a certain physical 

quantity in a time signal. Given a unitary operator A, we 

define the A-Fourier transform F A  as the expansion onto the 

eigenfunctions U;(.) of A. The forward transform 2 of a 

signal s E L2(R) is given by5 

A 
S ( ( Y )  == (FAs) (Q)  2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(S(Z), U, ( x ) )  

= s(.)u~*(x) dx 
J 

while the inverse transform is given by 

s(5) = (Fi%-)(X) = @((a). u5*(x)) 

= [ qa)u:(5) dcu. 
J 

Both of these transforms are unitary. The A-Fourier transform 

generated by the Hermitian operator A is defined similarly in 

terms of the eigenfunctions of A. 
Since the eigenfunctions u t  and U: do not coincide, 

the unitary and Hermitian operators A and A generate two 

different signal transforms. Both are fundamental for studying 

the physical quantity a. Invariance of the A-Fourier transform 

to A (up to a phase factor) 

I (FAAas)(Q)I  = 

proves useful when the effect of A is to be ignored, while 

covariance of the A-Fourier transform to A [35] 

(6) (FAA,s ) (Q)  = ( F A * q ) ( N  - a )  

suggests that F A  measures the “a  content” of the signal s [l], 

[241, P81, [291.6 
Table I summarizes the eigenfunctions of the operators we 

have considered thus far and prompts the following identifi- 

cations: 

E 3  = FT corresponds to the usual Fourier transform 

F (invariant to time shifts, covariant to frequency shifts, 

measures frequency content). 

FT = FF corresponds to the identity transform Is = 
s (invariant to frequency shifts, covariant to time shifts, 

measures time content). 

51n an abuse of notation, we retain the indices of the functions inside the 
inner product symbol to indicate the variable of integration. 

6Covariance by translation in (6)  corresponds to only one of a range of 
possible covariances for an arbitrary operator pair A. A. However, for other 
covariances (a I+ a l a ,  for example), only the details change and not the 
interpretation of as the .A content measuring transform. Since with our 
definitions of time, frequency, and scale all covariances turn out to be additive, 
we will emphasize only this case in this paper. For more information on the 
general case, see [29]. 
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Eigenfunctions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
e:(.) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= e:(.) = eJznkZ 

= FD corresponds to the Mellin transform (invariant to 

scale changes, measures “logarithmic modulation” content) 

[I], [41, PI ,  [141. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Coordinate Transformations: Nonparameterized unitary 

coordinate transformations comprise the third and final class 

of transformations we will consider. A general formula for 

representing a coordinate transformation U on L2 (R) employs 

the linear superposition zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
r 

(Us)(z) = J KU(2. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv)s(v) dv 

with the requirement that the “rows” and “columns” of the 

integration kernel zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAKu(x,  U) must both form complete or- 

thonormal sets for L2(R).  Axis warpings of the form 

(Us)(z) = lW(z)1”2s[w(x)] (7) 

with 20 a smooth, one-to-one function, comprise a large 

subclass of unitary transformations [151, [161, [241, [361-1391. 

The functions w(z) = (zIksgn(z), k # 0, and ~ ( z )  = ex 
provide examples of simple yet useful warpings. 

The inner product of two unitary operators can be defined 

as the trace of their composition or, equivalently, as the inner 

product between their respective kernel functions 

(A, B) = t r A B  = KA(z ,  v )Kh(z ,  v ) d z d v .  ss 
This definition prompts a notion of the “angle” between two 

unitary operators and their associated physical concepts. For 

example, it is easily verified that time and frequency are 
orthogonal7 

However, scale is orthogonal to neither time nor frequency 

V t ,  f ,  d # 0. (9) 

B. Unitary Equivalence as a Coordinate Transformation 

To change the underlying basis of a signal s, we execute the 

unitary transformation s +-+ Us. To change the underlying ba- 

sis of an operator A, we execute the similarity transformation 

A H U-lAU. The concept of operators equivalent modulo 

such a change of basis motivates the following definition. 

’The angular Fourier transform [40] provides an equivalent interpretation 

TABLE I1 

REPRESENTING PHYSICAL QUANTITIES IN A SYSTEM P. THE FIRST 
THREE ENTRIES APPLY TO BOTH UNITARY AND HERMITIAN OPERATORS. 

EFFECT OF A UNITARY PREPROCESSING TRANSFORMATION U ON THE OPERATORS 

THE LAST ENTRY APPLIES TO ALL PAIRS OF UNITARY OPERATORS 

System P System PU 

Definition: Two operators zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA and A are unitarily equivalent 
if A = U-lAU, with U a unitary transformation. 

While the operator A represents a single physical quantity, 

the unitarily equivalent operator U- l AU can represent an 

infinite spectrum of different physical quantities, each corre- 

sponding to a particular choice of transformation U.’ 
The recumng theme of this paper is the application of 

unitary preprocessing transformations to conventional signal 

analysis and processing systems P to create new systems 

PU based on alternative physical quantities and coordinate 

systems. As we will see, the unitary transform U maps the 

physical quantities in P represented by the unitary operators 

A. B, . . . to new quantities in PU represented by the unitarily 

equivalent operators 

(10) 

The corresponding Hermitian representatgns undergo identical 

transformations, from A. U. . . .  to 2, B. .... Table 11 sum- 

marizes the primary effects on these operator representations. 

Note that while all eigenfunctions and content measuring 

transforms change with U, the relative angles between op- 

erators and concepts remain unchanged. Roughly speaking, U 
“rotates” all physical quantities through the same angle. 

To illustrate, consider time and frequency. These quantities 

are unitarily equivalent, with the Fourier transform operator 

IF as link 

(1 1) 

Application of a similarity transform of the form (10) to T 

and F results in two new operators 

A = U-lAU, B = U-lBU. . . . . 

FI, = IF-’ TI, F. 

- - 
TI, = U-’TI,U. FI, = U-lFkU. (12) 

The relationships between these four operators can be summa- 

rized in the following diagram: 

F 
TI, - Fk 

where the quantity B at the head of an arrow labeled Z is 

obtained from the quantity A at the tail as B = Z-lAZ. 

Results identical to ( 1  I)-( 13) hold for the Hermitian time and 

8 A  group theoretic interpretation of unitary equivalence in the context of 
signal processing is given in [29]. 
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frequency operators: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 H 7 = U-17U and 3 - H ? = 

U P 1 3 U  such that T - k  = ej2ak3 and F k  = ej27Fk7. 
The generalized Fourier transforms for the transformed time 

and frequency operators follow directly from (12), Table 11, 

and the corresponding results for time and frequency from the 

previous section. The T-covariant, F-invariant transform 

- - 

IF- = E- = F7U = U (14) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI F  
- 

measures T (transformed - time) content in signals, while the 

F-covariant, T-invariant transform 

FF = F;I. = F T U  = F U  (15) 

measures F (transformed frequency) content in signals. We 
will return to these results often in the sequel. 

The balance of this paper studies the equivalence classes 

of unitarily equivalent signal processing tools spawned by 
various choices for the system P and the unitary preprocessing 

transformation U.  We will find the unitary equivalence concept 

very useful for generalizing the concepts of time, frequency, 

and scale, mapping them to new concepts that can better match 

certain classes of signals to be analyzed or processed. 

111. UNITARY EQUIVALENCE AND 

LINEAR TIME-WVARIANT SYSTEMS 

Linear time-invariant9 (LTI) systems provide a simple set- 

ting in which to illustrate the primary effects of unitary 

coordinate transformations. An LTI system can be interpreted 
as computing the inner product of the input signal s with 

a reversed and time-shifted version of the impulse response 

function g 

with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg,(x) = g( -x). Time and frequency are the fundamental 

quantities for LTI systems. Covariance of P to time shifts (the 

defining property of an LTI system) follows from the isometry 

of T since 

(PTks)( t )  = ( T k s ,  Ttg,) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( s ,  T-kTtg,) 

= (s, T t - k g r )  = (TkPs)( t )  

= (Ps)(t - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI C ) .  (17) 

The expansion FT = Fp = IF onto the eigenfunctions of T 
and P (since T and P commute, they share a common set of 

eigenfunctions) measures frequency content. 

As anticipated in (12), the application of a unitary prepro- 

cessing transformation U to the input of an LTI system P maps 

the concepts of time and frequency to the c_oncepts associated 

with the new operators T = U - I T U  and F = U-IFU.  The 

fundamental coordinate system of P U  changes to t (remapped 

time) since from (16), we have 
- 

(PUs>( t )  = (U*% T3,) = ( 3 ,  u-’T;-gr) 

= (s, (U-’T$J)(U-’g,)). 

9Time-covarianr is a more accurate term. 

~ 
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Moreover, a simple calculation similar to (17) demonstrates 

that the system P U  is covariant by translation not to T but 

to T 

(PUT,S,(t) = (PUS)@- I C ) .  
- 

Thus, unitary preprocessing creates a T-“invariant” system 

from a T-“invariant” one. The fundamental transform for 

the system PU is the T-Fourier transform zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF;i; = FU.  

This transform measures in time signals the physical quantity 

associated with the new operator g. Using group theoretic 

arguments such as in [29], it is simple to show that unitary 
equivalence can construct LTI-based, A-invariant systems for 

all physical quantities a taking on values isomorphic to the 

real number system R. 
Example-Logarithmic The-Axis Warping: Consider the 

unitary warping operator” [6], [151 

that takes functions in L2(R+) and stretches them into func- 
tions in L2(IR). This transformation maps the unitary time 

operator to the scale operator 

on L2(lR+) and therefore converts linear time-invariant sys- 

tems P into linear scale-invariant systems PUI,, [l] ,  [141, 

[24], [41]. Scale changes (dilations or compressions) at the 

inputs to such systems manifest themselves as translations 

at the outputs. Scale-invariant systems find application wher- 

ever scale changes are of fundamental importance; wideband 

Doppler processing and the detection and estimation of signals 

of unknown size furnish two examples. 

The remaining transformed time and frequency operators 

are given by 

The operators 3-1 and H correspond to logarithmic modulation; 

3-1 was defined in (4), whereas H is given by 

The operator V, the Hermitian scale operator, corresponds to 

the “logarithmic time” operator [42] 

Note that H h  = ej27Fhv. The scale-invariant transform ED = 
FUl,, coincides with the Mellin transform on L2(R+), as 

discussed in Section 11-A. This transform was named the “scale 

transform” by Cohen in [I] and [ 141, but it must be emphasized 

that its invariance to scale changes prohibits it from measuring 

scale content in signals. The scale-covariant signal transform, 

l o  Strictly speaking, (1  8) is inaccurate in terms of dimensional analysis: The 
index z in the exponentials of (18) must be dimensionless, yet the function s 
expects an index with units of seconds. Correct notation for such an expression 
would involve factors of the form eI/’Ozg. where z o  is some arbitrary 
reference time. We will adopt a much cleaner (although cavalier) notation 
in our development by suppressing these normalization factors. 
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which does measure scale content, is Fz, = Ulog 1281, [291, 
[35]." 

An example of warping an LTI comb filter to match and 

denoise a warped version zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh[m(x)]  of a harmonic signal h(z)  
was sketched in the Introduction (see ( l) ,  (2), and Fig. 2). 

I- Iv. UNITARY EQUIVALENCE AND 

BASIS AND FRAME DECOMPOSITIONS 

In Sections I1 and 111, we found that a unitary similarity 
transformation takes the Fourier basis {U;}, which is natural 

for LTI systems, to the new basis {U-lu;}, which is natural 

for signals and systems related to the operators T = U-'TU 
and F = U-lFU. This coordinate changing procedure is 

not limited solely to the Fourier basis, however; it applies 

equally well to an arbitrary basis or frame. In this section, we 

will investigate several unitarily equivalent bases for L2(R). 
We choose the wavelet, Gabor, and Wilson orthonormal bases 

to illustrate the procedure; analogous constructions hold for 

biorthogonal bases and nonorthogonal frames [2]. Since time, 

frequency, and scale form the foundation for these bases, 

their unitarily equivalent counterparts utilize transformed time, 

frequency, and scale. 

Given a doubly indexed orthonormal basis {bm,n} for 
L2(R),  we can decompose any signal s E L2(R) as 

- 

m,n 

The elements of a wavelet basis are obtained by translating and 
scaling a nonarbitrary but fixed wavelet function gwavelet 121 

bwavelet 
m,n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(x) (D&FTntogwavelet)(x) 

with todo = 2, m, n E z, and D& = Dlog zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd .  These basis 

elements "tile" the time-frequency plane in a proportional- 

bandwidth (constant-Q) fashion; Fig. 3(a) depicts the tiling 

for an idealized wavelet basis. The elements of a Gabor basis 

are obtained by translating and modulating a nonarbitrary but 

fixed window function [32] 

Gabor bm,n ( T )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE (FmfoTntogGabor)(Z) 

(21) 
- j2xm fox  
- gGabor(x - ntO)e 

with t o f o  = 1 and m, n E Z. These basis elements tile 

the time-frequency plane in a constant-bandwidth fashion; 

Fig. 3(b) depicts the tiling for an idealized Gabor basis. 

Recently, constant-bandwidth bases of the Wilson type have 

been proposed as a well-localized alternative to the Gabor 

bases [3]. Their construction is similar to (21) but employs 

sine and cosine modulations. 

The wavelet, Gabor, and Wilson bases provide two dis- 
parate tilings of the time-frequency plane well suited to 

"Cohen's definition of FD as the scale transform follows from his 
identification of 'H in (4) as the Hermitian scale representation [l], zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[14]. 
However, closer scrutiny of the relationship between the operator pairs T, 7 
and D, 2, reveals that 2, defined in (19), rather than 'H, is the correct 
Hermitian scale representation. 

(a) (b) 

Fig. 3. Idealized tiling of the time-frequency plane by (a) the elements 
{bE;Tlet} of a wavelet orthonormal basis, and (b) the elements {b::;:'::'} 
of a Gabor orthonormal basis. 

representing certain classes of signals. However, not all sig- 

nals are well matched by proportional-bandwidth or constant- 

bandwidth analyses. For example, the energy of a frequency 
modulated signal will be spread over many basis coefficients 

in these types of expansions since such a signal traces a path 

in the time-frequency plane that matches neither of the basis 
tilings of Fig. 3. 

While the wavelet, Gabor, and Wilson bases may not 

be the most appropriate for representing certain classes of 
signals, there may exist unitarily equivalent bases that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAare 
appropriate. Consider the effect of operating on these bases 

with a unitary transformation U-'. Since U-' is unitary, 
the sets {U-lby$ct}, {U-lbG:bor}, m n  and {U-lbwilson m , n  I 
are also valid orthonormal bases for L2(R).  However, while 

the index parameters n and m represent time and scale in 
the wavelet bases and time and frequency in the Gabor and 

Wilson bases, they change to new concepts in these unitarily 

equivalent bases. 

To see this, we can write for the wavelet bases 

U-lbwavelet - 
m,n - U-l(D&TTntogwavelet) 

= ( U - ' D & ~  ~ ) ( ~ - l ~ n t ,  U) (U-lgwavelet) 
(22) 

and for the Gabor bases 

U- 1 bGabor - 
m , n  - U-1(FmfoTnto,9Gabor) 

= (U-'Fm joU)(U-'Tnt,U)(U-'gGab,r). 

(23) 

(The elements of a unitarily equivalent Wilson basis resemble 

(23).) Thus, U-l transforms the original time, frequency, and - 
scale operators to three new unitarily equivalent operators T, 
F, and D and maps the original wavelet gwavelet and window 

gGabor to two new functions. As with the linear systems of 
Section 111, the key to this procedure is clearly to choose 

U so that the unitarily equivalent basis better matches the 

characteristics of the signals at hand. 

Example-Fan Bases: Unitarily equivalent bases were first 

introduced in [22], [24], [36], and [37], where special polyno- 
mial warping operators manufactured bases employing chirp 

functions. For - example, the frequency domain warping trans- 

formation U, F-lU,F, with 

(U,s)(x) ( ~ ~ ~ - 1 ~ 2 ~ x ~ ( ' - c ) ~ 2 c ) s [ ~ x ~ 1 ~ ~  sgn (x)] (24) 
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time 

Fig. 4. Idealized tiling of the time-frequency plane by the elements { bky,z } 
of a fan orthonormal basis for the case zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc = 2 (linear chirp) (see (27)). The 
tiling is generated from a single, fixed function via scaling and convolution 
with chirp functions. 

for c # 0, warps the wavelet bases to the equivalence class 

of fan bases. This transformation maps the time operator to a 

chirp convolution operator of order c and chirp rate t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(ff& denotes the inverse Fourier transform from variable w 
to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx) and, interestingly, essentially commutes with the scale 

operator 

UT,lD&UT, = DL1,.. 

Thus, the elements of a fan basis employ scaling and convo- 

lution with chirp functions 

b f a n  - U;lbwavelet - 
m,n = m, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn - D’,m,cY:,ogfan. (27) 

0 

Here gfan = UT,lguravelet. The chirp convolution causes the 
basis elements to shear in the time direction in the time- 

frequency plane. The idealized plane tiling for the fan basis, 

shown in Fig. 4 for the case c = 2 (linear chirp), differs 
greatly from the wavelet and Gabor tilings of Fig. 3 and 

could be useful for representing linear chirp functions or 

signals dispersed along linear group delays. Other unitarily 

equivalent bases resulting from warping transformations have 

been proposed, including the FAM bases of Laine [38] and 

the warped polynomial bases of Philips (see [43] and the 

references therein). 

Other choices of the unitary warping operator U yield bases 

employing different building blocks and, thus, radically differ- 

ent time-frequency plane tilings. However, note from (22) and 

(23) that since U introduces only a single degree of freedom 

to a unitarily equivalent basis (it works on both the time and 

scale or time and frequency operators simultaneously), there 

exists an important tradeoff in its choice: Any changes that 

we make to one operator are also imparted in the other. Thus, 

special choices of unitary transformations can prove useful, 

such as the warp Uc, which maps time to chirp convolution, 

yet essentially commutes with scale. 

The coefficients of unitarily equivalent basis expansions 

may seem cumbersome to compute. However, the isometry 

of U-’ allows us to calculate the unitarily equivalent basis 

coefficients by first preprocessing the signal and then comput- 

ing the usual basis coefficients. That is, the coefficients of a 

unitarily equivalent wavelet basis expansion can be obtained as 

(s, b&) = (s, U-’b,,, wavelet ) = (Us, by:1et) 

with a similar calculation for the Gabor and Wilson bases. 

While indicating that unitarily equivalent basis expansions can 

be implemented just as efficiently (modulo the unitary prepro- 

cessing) as the original basis expansions, this computation also 

emphasizes the equivalence of changing bases to match signals 

and changing signals to match bases. 

It has been recently demonstrated that regularity (roughly, 

smoothness) plays an important role in basis expansions since 

the degree of regularity controls the extent to which errors in 

the basis expansion coefficients propagate into the resulting 

signal expansion (20) [44]. While results for arbitrary unitary 

transformations have thus far eluded us, we demonstrate in 

Appendix A that for a large class of frequency axis warping 

operators, the degree of regularity of a warped basis matches 

or exceeds that of the original basis. 

v. UNITARY EQUIVALENCE AND TIME-FREQUENCY ANALYSIS 

The utility of unitary equivalence for joint time-frequency 

analysis does not stop with orthonormal basis and frame ex- 

pansions. We now turn our attention to unitary transformations 

of bilinear time-frequency distributions (TFD’s). TFD’s map 

1-D signals to a 2-D time-frequency plane that indicates the 

joint time versus frequency content of signals; hence,unitarily 

equivalent TFD’s will indicate the joint T versus F energy 

content of signals. Unitarily equivalent TFD’s have numer- 

ous potential applications, including matching distributions 

to special signals and systems and constructing TFD’s with 

nonuniform time and frequency resolutions that match families 

of group delay and instantaneous frequency characteristics. 

A. U-Cohen’s Classes 

class [ I ] .  Examples include the Wigner distribution 

Most TFD’s of current interest belong to Cohen’s bilinear 

(Ws)(t, f )  2(F-fT-t~, FfTtsr) 

= 1 s ( t  + ;) s* ( t  - ;) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe--32Kf7 ’  dv 

where sr(u)  = s ( -U)  and ( t ,  f )  represent the time- 

frequency plane coordinates, as well as the spectrogram, the 

Choi-Williams distribution, and the cone-kernel representation 

[l]. Cohen’s class can be defined as essentially the set of 

all bilinear functionals C :  L2(R)  .+ L2(R2) covariant by 

translation to both time and frequency shifts 

(CF,,T,s)(t, f )  = (Cs) ( t  - 7, f - v). 

We now investigate the effect of a unitary preprocessing 

transformation - U on Cohen’s class and demonstrate that the 

operators T = U-lTU and F = U-IFU characterize the 

resulting distributions. We will call the unitary equivalence 

class CU of bilinear “T-F” distributions the U-Cohen’s 

class. Our approach is inspired by and generalizes the work 

of Altes [6] and Papandreou et al. [15], who obtained special 

cases of unitarily equivalent TFD’s using warping arguments. 



2216 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 43, NO. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA10, OCTOBER 1995 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Unitary preprocessing transforms every property of Cohen’s 

class into a dual property for each U-Cohen’s class (we need 

simply make the transformation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH Us in each case). We 

now summarize some of the more important attributes of a 
U-Cohen’s class; note that setting U = I yields the properties 

of the original Cohen’s class, which are detailed in [I]: 

1) U-Cohen’s class distributions are covariant by transla- 

tion to the operators T and F: 

(CUF,TTs)(a, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAb)  = (CUs)(a  - 7, b - U ) .  (28) 

Therefore, U-Cohen’s class distributions measure not 

joint time T and frequency F content but joint T and 

F content. Note that like T and F, ;I. and F remain 

orthogonal concepts (see (8) and Table 11). We will use 

the coordinates (a, b )  to represent the T-F plane. 

2) The natural functions for U-Cohen’s class distributions 

are the eigenfunctions of T and F (equivalently zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 
and ?) because these distributions are jixed for only 

these functions. That is, for T, the unique solution to 

the equation (CUT,sl)(a ,  b)  = (CUsl ) (a ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA~ ) V T  is 

the signal s1 = U: = U-lu:, whereas for F, the 

unique solution to the equation (CUF,s2)(a, - b )  = 
(CUsz)(a ,  b)Vu  is the signal s2 = U: = UP1uF T ’  

The U-  Wigner distribution 

- - 

(WUs)(a ,  b )  = 2(F-bT-,S,  F b T , S , )  

maps both of these eigenfunctions to impulse ridges in 

the ‘?-F plane since (WUU-l~:)(a ,  b)  = S(b - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU) 

and (WUU-l~: ) (a ,  b )  - = S(a - 7 ) .  - Therefore, we can 

interpret the functions u;f and U: as lying along the 

axes of the .?;-F plane. 

3) Each U-Cohen’s class distribution CU can be obtained 

by convolving the U-Wigner distribution with a kernel 

function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4~ 

(CUs)(a, b)  

4) The U-ambiguityfunction (U-AF) is based on T and 

@, with 

(AUs)(a, P )  = (Fa/2T8/2US, F-a/2T-8/2U4 - - 
= ( F , / a T p / z S ,  F - a / 2 T - 8 / 2 4  (30) 

where As denotes the narrowband AF [l]. All U- 
Cohen’s class distributions can be computed via the 2-D 
Fourier transform of a weighted U-AF 

(CUs)(a, b)  = 

Fa- ,Fp4[(AUs)(Q,  P)@C(Q, P)l(a, b).  

Here, the kernel @C corresponds to the 2-D inverse 

Fourier transform of the function q5c from (29). Note 

that the Cohen’s class TFD C and the U-Cohen’s 

class distribution CU share exactly the same kernel 

function @c. The U-AF is the inverse Fourier trans- 

form of the U-Wigner distribution, which implies that 

@w(a, p)  = 1. The U-AF maps the eigenfunctions of 

T and F to impulse ridges in the warped ambiguity 

plane since (AUU- l~T) (a ,  p)  = e-J2””’6(a) and 
(AUU-’uF)(a,  P )  = eJ2*raS (p). Gray and Helmick 

derive an alternative warped AF in [45]. 

5 )  U-distributions CU whose kernels satisfy the constraint 

@c(a,  0) = @c(O. p)  = It/Q., /3 p_ssess marginal 

distributions that measure the T and F content of the 

time signal s (see (14) and (15)) 

/ (CUs)(a, b )  db = IFls(a)12 = l(Us)(a)J2 (31) 

1 (CUs)(a ,  b)  da = J [ F p ( b ) J 2  = I ( F U S ) ( ~ ) ~ ~ .  (32) 

6) A U-Cohen’s class distribution CU is unitary-and 

therefore satisfies Moyal’s formula (CUsl, CUs2) = 
!(SI, s2)I2-if its kernel function is allpass: 

7) The interference structure of a U-Cohen’s class is based 

on a 2-D arithmetic mean. Considering the U-Wigner 

distribution, the level of the interference term at the 

point (a ,  b)  in the T-F plane is determined by the 

contributions from all other pairs of points in the plane 

that have arithmetic mean (a. b) [47], [481 

IWQ, P)I = l v a , ~  [I], ~461. 

Y J(WUs)(a, b)J2 = ~ ( W U S )  ( a  + z 2. b + - 
2 

z 
(WUs) ( U  - ?, b - 

In Cohen’s class, the choice of TFD-and thus the ker- 

nel function @c-is in many cases critical for accurately 

representing the time-varying frequency content of a signal. 

Therefore, optimal-kernel TFD’s that automatically select the 

“best” kernel function for a given signal have been developed 

[49], [50]. Since the Cohen’s class TFD C and the U-Cohen’s 

class distribution CU share exactly the same kemel function 

@c, kemel design, and optimal kernel design in particular, 
proceeds in exactly the same fashion in a U-Cohen’s class as 

in Cohen’s class. The sole difference is that kernels favoring 

signals resembling the time and frequency eigenfunctions in 

Cohen’s class will now favor signals resembling the trans- 

formed eigenfunctions. Kernel constraints yielding desirable 

U-Cohen’ s class properties can be determined simply by 

warping the properties back to Cohen’s class with the operator 

U-1. 

Each choice of unitary transformation U results in a U- 
Cohen’s class with radically different properties. 

Example-Scale and Logarithmic Modulation: As we saw 

in Section 111, the time-domain logarithmic warping operator 

(18) maps time to scale (T, H Dt) and frequency to 

logarithmic modulation (Ff H Hf), both defined on L2(R+).  
The UlOg-Wigner distribution corresponds to the time-domain 

Q distribution [6] derived by Altes using an identical warping 

argument. The covariance properties and marginals of Ulog- 

Cohen’s class distributions (covariance to D and H, scale 

and Mellin transforms as marginals when satisfied) make them 

ideally suited to studying signals resembling the single-sided 
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I I 
time 

(a) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAhyperbolic time 

(b) 

Fig. 5. 
frequency; (b) F-’ UIogF-Wigner distribution (Altes-Marinovich distribution [6 ] ,  [7]), with axes of hyperbolic time and scale. 

Joint distributions of a windowed sum of two hyperbolic chnp functions + up2 from (33) [51]: (a) Wigner distribution, with axes of time and 

eigenfunctions of D and H 

uF(z) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- - e ~ ’ ~ ~  log zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI ,  U:(.) = ~ / ’ s ( x  - e d ) ,  
1 

2 > 0. 

Example-Hyperbolic Time and Scale: The frequency- 

domain logarithmic warping operator F-’U1,,F maps 

frequency to scale (Ff zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH Df) and time to “hyperbolic 

time” (T, H LJ, where the hyperbolic time-shift operator 

Lt F-lH,F [13], [15]. Both D and L operate on the Hardy 
space of analytic signals, with L implementing a dispersive 

time shift that translates high-frequency signal components 

less than low-frequency signal components. We will call the 

F-lUl,,F-Cohen’s class the prehyperbolic class because it 
foreshadows the hyperbolic class we will see in Section V- 

B. The prehyperbolic class contains the Altes-Marinovich 

distribution [6], [7] as the F-lUl,,F-Wigner distribution. 

The covariance and marginal properties of F-’U1,,F- 

Cohen’s class distributions (covariance to D and L, expo- 

nentiated Fourier and Mellin transforms as marginals when 

satisfied) are matched to signals resembling the analytic eigen- 

functions [9] 

fi 

$(.) = FJA, L e J 2 r h  log *J L d/2 3 2 a e d z  , ud(x) = e  e zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
J;; 

(33) 
The terms hyperbolic time shift and prehyperbolic class stem 

from the concentration of the U: along hyperbolas in the 

time-frequency plane. The Doppler tolerance of these so-called 

hyperbolic chirp functions is of fundamental importance in 

applications such as wideband sonar and dispersive signal 

processing; in fact, several species of echolocating bats employ 

similar waveforms [4]. Fig. 5(a) and (b) illustrate the Wigner 
distribution and Altes-Marinovich distribution of the sum of 

two hyperbolic chirps [51]. The dramatic increase in clarity 

from (a) to (b) is indicative of the improvements obtainable 
by matching a joint distribution coordinate system to the data 

being analyzed. Ristic and Boashash perform a similar analysis 
in [52]. 

Example-Power Time Ship and Chirp Modulation: The 

time-domain power warping operator U, from (24) in Section 

IV maps the time operator to a power time shift [24] 

(Mts)(z) e 

*+,[ml/c(4 - tl>lzl (1-c)/2c l h / c ( 4  - tl (t--1)/2 

where m,(u) 5 JuIC sgn ( U )  and maps the frequency operator 

to a chirp modulation 

(Nfs)(z) E ej2?rflz1c sgn‘”’~(.). 

Marginals for U,-Cohen’s class distributions thus correspond 

to the power time transform ~ U , S ) ~  and the chirp transform 

IFU,s12 obtained by projecting the signal onto chirp functions 

of order c. All U,-Cohen’s class distributions enjoy covariance 

to M and N, making them ideal for studying (power) chirp- 

ing signals. The frequency-domain power warping operator 

F I U , F  works similarly and constructs distributions of chirp 

time shift F-lNtF and power frequency shift F I M f  F. 

B. VU-Cohen’s Classes 

Up to this point, we have concentrated exclusively on 

preprocessing transformations; however, postprocessing trans- 

formations also merit consideration. We define the VU- 
Cohen’s class as the set of bilinear functionals V C U ,  where 

C s  is a Cohen’s class TED, U is a unitary preprocessing signal 

transformation, and V :  L2(R2)  + L 2 ( R 2 )  is a postprocessing 

transformation defined on the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(a ,  b)  plane. 

The extra degree of freedom gained through postprocess- 

ing adds considerable richness to the already powerful U- 

Cohen’s classes. VU-Cohen’s classes can have covariance 

and marginals much more general than (28) and (31), (32). 
For example, setting U to the identity operator and choosing 

V such that (VCs)( t ,  r )  = r-’(Cs)(t, r-’) yields one of 

the time and inverse frequency classes of Cohen [ l ,  p. 2381, 
which contains some of the important distributions from the 

affine class [I 11-[13]. This new class and its relationship with 

the affine class is studied in more detail in [31]. 
While U- and VU-Cohen’s classes show considerable 

promise for matching signals different from simple pulses, 

sinusoids, and linear chirps, certain applications demand rep- 

resentations with explicit time and frequency axes. Therefore, 

rather than exploring postprocessing in complete generality 

(see [30] for more), we will focus now on using postprocessing 

to invert the action of U-’ on the ?-g plane, warping the 

(a ,  b)  axes of U-Cohen’s class distributions to new axes 

( t  , f ) providing correct time-frequency localization. While 

these VU-Cohen’ s class distributions measure time-frequency 
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Fig. 6. (a) VU-Wigner distribution (Altes Q TFD [6]  from the hyperbolic class [15]) obtained by applying the axis warping transformation V from (36) and 
(42) to the U-Wigner distribution of Fig. 5(b). The axes of this distribution correspond to (nonuniform resolution) time and frequency. Comparison with the 
Wigner distribution of Fig. 5(a) reveals the hyperbolic geometry underlying the localization of this VU-Cohen’s class; (b) optimal-kernel hyperbolic TFD zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[5 11. 

content in signals, their underlying fundamental operators 

remain T and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF. 
Our procedure for inverting the effect of U is best inter- 

preted graphically on the warped time-frequency plane. A U- 
Cohen’s class distribution CUs maps the time eigenfunction 

U?(.) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6(z - t )  localized at time t and the frequency 

eigenfunction U;(.) = e j z T f z  localized at frequency f to 

distributions localized on curves in the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(a ,  b) plane. The 

equations of these curves can be obtained from the U-Cohen’s 

class analogues of the time-frequency concepts of group delay 

and instantaneous frequency. Modifying the usual definitions 

of these quantities [ l ]  to account for the preprocessing by U ,  

we obtain a curve for the localization of U; (its “U-group 
delay”) 

i d  
p(b, t) -- -- - arg (FUuF)(b) 

27-r db 
(34) 

and a curve for the localization of U; (its “U-instantaneous 

frequency”) 

(35) 

If V reparameterizes the axes of the ( a ,  b)  plane in terms of 

these curves, then U? and U; will be localized along straight 

lines at time t and frequency f ,  and correct time-frequency 

localization will result, albeit with nonuniform resolution. The 

requisite reparameterization is given by 

(VCUs)( t ,  f )  = (CUs)[A(t,  f ) ,  B(t ,  f)l (36) 

where the functions A(t, f )  and B(t,  f )  denote the solution 

(when one exists) to the system of equations 

a = p(b, t ) ,  b = f )  (37) 

for a and b in terms o f t  and f .  The reverse reparameterization 

is also useful and is given by 

( v c u s ) [ T ( a ,  b ) ,  F ( a ,  b) ]  = (CUs)(a ,  b )  (38) 

where the functions T ( a ,  b )  and F ( a ,  b) denote the solution 

to the system (37) for t and f in terms of a and b. Since 

these functions are nonlinear in general, they have the effect 

of warping the geometry of the T-F plane so that impulses 

and sinusoids lie concentrated along lines parallel to the ( t ,  f )  
axes. 

For preprocessing transformations U of the warp type (7), 
analytic solution of (37) yields 

A(t ,  f )  =u~- ’ ( t ) ,  B(t.  f )  = f i i~ [w- ’ ( t ) ]  (39) 

(40) 

while for frequency axis warping transformations of the form 
F-lUF, with U of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwarp type, we have 

A(t,  f )  = tW[w- ’ ( f ) ] .  B(t.  f )  = w - l ( f )  
U 

T ( a .  b )  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 F ( a .  b) = w(b). 
w(b). 

The properties of a VU-Cohen’s class are summarized in 

Appendix B. 
Example-Hyperbolic Time and Scale: Reconsidering the 

IF-’UI,,F-Cohen’s class example from Section V-A, the 

formulas (39) and (40) give 

A(t. f )  = t f .  B(t.  f )  = log f (41) 

(42) T ( a .  b )  F ( a .  b )  = e b 

as the required axis reparameterization. Substitution of these 

quantities in (36) yields the hyperbolic class of TFD’s [15], 

which includes the frequency-domain Q TFD of Altes [6]. 

The hyperbolic geometry of the warping V defined by (42) 

is evident in the Q TFD of the sum of two hyperbolic 

chirp functions shown in Fig. 6(a). Fig. 6(b) illustrates an 

optimal kernel hyperbolic TFD [51] computed by applying 

the Cohen’s class optimal-kernel design procedure of [50] to 

the F1UlO,F-AF of the signal. 
Comparison of Figs. 5(a) and 6(a) reveals the salient feature 

distinguishing Cohen’s class from a VU-Cohen’s class, both 

of which measure the time-frequency content of signals: The 

geometry of Cohen’s class localizes perfectly the impulses U; 

and sinusoids U;, whereas the geometry of a VU-Cohen’s 

class perfectly localizes the functions U-lu; and U-lu;. 

Thus, for example, the hyperbolic class contains the TFD’s of 

choice for studying in time-frequency signals resembling the 

scale and hyperbolic time eigenfunctions from (33). 



BARANIUK zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAND JONES: UNITARY EQUIVALENCE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA NEW TWIST ON SIGNAL PROCESSING zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
~ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

2219 

C. Warp Synthesis 

The property of the hyperbolic class of localizing signals on 

hyperbolic paths in the time-frequency plane can be extended 

to arbitrary paths, as long as they are smooth and monotonic. 

We now consider the problem of warp synthesis, which is 

stated as follows: Find the unitary operator U generating a 

VU-Cohen’s class whose zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( t ,  f )  plane perfectly localizes two 

types of signals-those whose group delay lies along the curve 

r g d  ( f )  and those whose instantaneous frequency lies along 

the curve r;f(t). 
When a solution exists to the warp synthesis problem, 

it can be found by reversing the procedure of Section V- 

B. The two paths r;f and r g d  specify zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp ( b ,  t )  and 6(a, f ) ;  
integration yields functions from which the form of U can 

be inferred. Clearly, a key consideration is the invertibility of 

the system of (34) and (35). The solution is straightforward 

when U is constrained to be a time or frequency axis warping, 

however. In the time domain case, with U of the form (7), 
only the instantaneous frequency localization can be adjusted, 

the group delay localization being fixed along lines parallel to 

the frequency axis. Given a desired, monotonic instantaneous 

frequency function r;f(t), the corresponding warping function 

w for U is given by the inverse of the indefinite integral of r;f 

= +,  = 1 rif(+iU. 

For frequency warping operators of the form F-lUF,  an 

identical calculation yields TFD’s that localize along group 

delays of the form r g d  ( f ) and along instantaneous frequencies 

parallel to the time axis. 

Example-Hyperbolic Instantaneous Frequency: A desire 
to localize signals having hyperbolic instantaneous frequencies 

would prompt the choice r;f(t) = C/t.  Integration and 

inversion of rif yield the warping function w(.) = eXIC  
for use in the preprocessing operator U. The resulting Ulog- 

Cohen’ s class contains the scale versus logarithmic modulation 

distributions from Section V-A. 

Example-Hyperbolic Group Delay: Alternatively, a desire 

to localize signals having hyperbolic group delay would 

prompt the selection of r g d ( f )  = C / f .  Integration and 

inversion of r g d  yield the warping function w(.) = eXIC  for 

use in the preprocessing operator F ’ U F .  The prehyperbolic 

class of hyperbolic time and scale distributions results from 
this preprocessing. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
D. U-AfJine and VU-AfJine Classes 

Unitary equivalence remains equally valid for other joint 

signal representations, including the afJine class of TFD’s Q 
covariant to time shifts and scale changes [11]-[13] 

(QT,Dds)(t, f )  = ( Q ~ ) [ e - ~ ( t  - T ) ,  e d f ] .  (43) 

Members of the affine class include the Wigner, 

Choi-Williams, and Bertrand distributions, as well as 

the scalogram, the squared magnitude of the continuous 

wavelet transform. Clearly, as the operators T and D form 

the basis for the affine class, the unitarily equivalent operators 

T and D will form the basis for the preprocessed U-afJine 

class of distributions &U. The properties of a U-affine 
class parallel those of the affine class and can be obtained 

as readily as we obtained the U-Cohen’s class properties 

in Section V-A. Furthermore, a warping procedure identical 

to that of Section V-B will restore correct time-frequency 

localization to a U-affine class. 

Each example unitary operator introduced above also 

spawns a U-affine class. Of particular recent interest is the 

frequency domain power warping function Uc = F-’UcF 
(see (24)426)). Since Uc essentially commutes with the scale 

operator, the resulting UT,-affine class contains distributions 

measuring joint scale and “chirp time” content [24]. This class 

has been studied independently in [16] and contains, for the 
case c = 2, the scale-shear transform proposed in [21] and 

1221. 
The intersection of Cohen’s class and the affine class 

contains distributions covariant not only to time and frequency 

shifts but also to scale changes [ l l ] ,  [53]. Unitary prepro- 

cessing preserves this structure: Distributions lying in the 
intersection of the U-Cohen’s class and - -  U-affine class are 

covariant to the transformed operators T, F, and D. Similar 

results hold for the affine class-hyperbolic class intersection 

studied in [54]. 

Finally, the concept of the angle between two linear opera- 

tors introduced in Section I1 reveals a fundamental difference 

between Cohen’s class and the affine class: Cohen’s class is 

based on orthogonal concepts (see (8)), whereas the affine class 

is based on nonorthogonal concepts (see (9)). The nonorthog- 

onality of the affine class manifests itself, for example, in 

the “coupling” of the scale change d into both arguments 

in the covariance formula (43). Identical comments apply to 
U-Cohen’s and U-affine classes. 

VI. CONCLUSIONS 

Unitary equivalence provides a simple means of developing 

an infinite number of new signal analysis and processing tools 

tailored to different classes of signals or systems. The benefits 

of this general approach are twofold. First, it provides a general 

theoretical framework for deriving new tools with desired 

properties, instead of the piecemeal approach adopted in the 

past. Second, because the new tools can all be implemented 

by applying standard algorithms to a preprocessed signal, 
efficient, robust, and well-understood implementations are 

immediately available. Perhaps surprisingly, signal processing 

tools with characteristics very different from known methods 

often result from very simple transformations. 

We started this paper with the observation that only signal 

analysis and processing tools that are matched to the signal 

can provide maximum performance. Our development of the 

unitary equivalence principle elicits a two-step approach to 

matching systems to signals: First, generalize current tools 

by introducing extra degrees of freedom; then, within each 

class of generalized tools, select the one tool best suited to 

the given data. We have emphasized only the first step of 

this procedure in this paper; determining the unitary transform 

that achieves the desired goal remains the most challenging 

part of the problem. Techniques for automatically optimizing 
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the preprocessing are currently under investigation and could 

lead to substantial benefits in many applications. Nevertheless, 

the unitary equivalence principle has already proven its worth 

as a generalizing and unifying tool, with its application to the 

fan and chevron bases [24], [36], [37], the aforementioned 

hyperbolic and power classes [6], [15], [16], new signal 

transforms [28], [35], [38], and the relationships between joint 

distributions of arbitrary variables [29], [42]. 

The primary limitation of unitary equivalence is that the 

effect of a unitary transformation is distributed evenly on all 

variables in a system (since it introduces only a single degree 

of freedom). Thus, while a unitary transformation may result 

in desirable properties in a new system (scale invariance, for 

example), it may also result in a loss of some of the desirable 

properties of the original system (time-shift invariance, for 

example). We have also dealt exclusively with linear opera- 

tors in this paper; connections with nonlinear transformation 

techniques such as homomorphic signal processing [55] could 

yield new insight into unitary equivalence. 

APPENDIX A 

REGULARITY OF UNITARILY EQUIVALENT BASES AND FRAMES 

The regularity of a unitarily equivalent basis depends on 

the regularity of the generalized waveletlwindow function 

U-’g from (22) or (23). Complete results have not yet been 
determined, since in general, it is necessary to know both the 

operator U and the function g before a calculation can be 

made. However, for a special class of frequency axis warping 

operators, results follow easily. The following theorem has 

important implications, for it shows that warped bases can be 

more regular than the wavelet, Gabor, or Wilson bases from 

which they are derived. One example is the fan basis set (27) 

for c zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA> 1. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Theorem: Let g have zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa continuous derivatives, and let U-’ 

be a unitary transformation of the warping type (7), whose 

warping function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw is continuously differentiable and grows 

as Iw(w)I > zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACIvl‘, k > 0, for large / V I .  Then, the function 

IF-lU-lFg has at least k(a + $) - continuous derivatives. 

Proof: The assertion that the function g has a continuous 

derivatives is equivalent to stating that its Sobolev regularity 
is a or that the function ~ ~ + ( l / ~ ) g ( u )  E L2(R), where g 
denotes the Fourier transform of g [44]. Therefore, we need 

only show that the function ~ ~ [ ~ + ( ‘ / ~ ) 1 ( U - ’ g ) ( u )  E L2(R).  
Let p = a + i. Using the change of variable w = ~ ( u )  and 

the bound on w from the statement, we have 

Since g has regularity order a = p - $, this last term is finite, 

and the result follows. 0 
A simple explanation of the theorem is that for k > 1 

the frequency axis warping compresses the function g in the 

frequency domain, reducing the high frequency content of the 

resulting time domain function g, and thus making it smoother. 

APPENDIX B 
VU-COHEN’S CLASS PROPERTIES 

While leaving many of the desirable properties of a U-  
Cohen’s class intact, the postprocessing transformation V from 

Section V-B has the effect of changing the geometry of the 

4) 

- -  - 

analysis plane. The salient properties of a VU-Cohen’s 

can be summarized as follows:’* 

VU-Cohen’s class distributions remain covariant to T 
and F. However, the covariance relationship is no longer 

a simple 2-D translation; instead, we have 

VU-Cohen’s class TFD’s are fixed for the eigen- 

functions U-’uT and U-’uF of T and F. Thus, 
these functions remain the natural functions for a VU- 
Cohen’s class. Moreover, the VU-Wigner distribution 

VWU maps both of these functions to delta ridges 

lying along the curves A and B in the ( t ,  f )  plane 

since (VWUU-’uT)( t ,  f )  = 6[B(t ,  f )  - U ]  and 

Each VU-Cohen’s class TFD can be written in terms of 

the VU-Wigner distribution as 

(VWUU-’uF)( t ,  f )  = S[A(t, f) - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT I .  

Note that the relationship is no longer a simple 2-D 
convolution. 

All VU-Cohen’s class TFD’s can be computed by 

warping the 2-D Fourier transform of a weighted U-AF 

(30) of the signal 

This suggests a simple four-step procedure for comput- 

ing any VU-Cohen’s class TFD: 

1) preprocess the signal by U 

2) compute the usual AF of the processed signal 

3) weight the AF by the kernel function @c and 

compute the Fourier transform of the product 

4) warp the axes using V. 

‘*Note that while we write all formulas below in complete generality, 
considerable simplifications occur for specific unitary prewarping operators 
U, especially those from the axis warping subclass. 
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Note that the Cohen’s class, U-Cohen’s class, and VU- 
Cohen’s class distributions C, C U ,  and VCU all share 

the same kernel function @pc. 

5) VU-Cohen’s class distributions whose kernels satisfy 

the constraint zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA@c(a,  0) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= @ c ( O ,  /3) = l V a ,  /3 possess 

the marginal properties (see (31), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(32), and (38)) 

These path integrals implement in the ( t ,  f )  plane the 

tomographic equivalent - ofyrojecting the signal onto the 

eigenfunctions U: and U:, respectively. 

6) A VU-Cohen’s class distribution is unitary if its kernel 

function is allpass. 

7) The interference structure of the VU-Wigner distribu- 

tion is based on a generalized mean: 

I (VWUs)( t ,  f)I2 = 

and, therefore, interference terms will form along the 

curves A and B in the ( t ,  f )  plane. (See (42) and 
Fig. 6(a) for an example with the hyperbolic class.) 

GonGalvks and Flandrin have studied similar generalized 

means in the context of the affine class [56]. 
Because V zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwarps the geometry of the ( a ,  b)  plane, there 

exist important differences between a U-Cohen’s class and a 

VU-Cohen’s class. First, in general, the distribution VCUs 
does not correspond to a Cohen’s class TFD of some pre- 

processed signal. Second, although VU-Cohen’s class TFD’s 

provide correct time-frequency localization of signals, they 

cannot in general be simultaneously covariant to both time 

and frequency shifts. Note, however, that there do exist V U -  

Cohen’s class TFD’s covariant to one or the other of these 

shifts. For example, the unitary Bertrand distribution [8]-[ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA101 
from the affine and hyperbolic classes is covariant to not only 

hyperbolic-time shifts and scale changes but also to regular 

time shifts. In general, VU-TFD’s covariant to T or F are 

characterized by kernels corresponding to Cohen’s class TFD’s 

covariant to the inversely transformed operators UTU-l or 
UFU-l (note the reversed order of U and U-’). 
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