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Unitary Equivalence of Fock Representations
on the Weyl Algebra
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Received August 17, 1970

Abstract. A necessary and sufficient condition for unitary equivalence of pure quasi-
free states over the Weyl algebra is proved. Some partial results on states over the Weyl
algebra are formulated in Theorem 1, and Lemmas 1, 4, 5 and 6.

1. Introduction

As early as 1931 von Neumann [1] proved the uniqueness of the
Schrédinger representation, for Boson-systems with a finite number of
degrees of freedom. Afterwards a number of people [2] proved that for
Boson-systems with an infinite number of degrees of freedom this theorem
fails and that there exists a lot of inequivalent representations.

Kastler [3] gave for the first an algebraic formulation of this problem
and proved von Neumann's theorem [1] in a more general form. He
defined the underlying C*-algebra for a free Boson-system roughly
speaking generated by the Boson creation and annihilation operators,
and formulated the problem of equivalence in terms of states on this
algebra.

In this work we follow the same method and prove a necessary and
sufficient condition {see Theorem 2 below) in order that two pure quasi-
free states on the Boson C*-algebra are unitarily equivalent.

The essential technical difficulty which we had to solve to derive the
proof of the criterium, is the construction of finite symplectic subspaces
of a sympletic space H which are invariant under two different complex
structures on H. This problem is solved in the case that the product of
the complex structures has a pure point spectrum.

Some other partial results on states over the Weyl algebra are for-
mulated as remarks following the lemmas, the proofs being trivial
extensions of the proofs of the lemmas.

* Aspirant N.F.W.0O.. Belgium.
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I1. Pure Quasi-free States on the Weyl algebra A(H, 6)

Let (H, o) be a separable symplectic space, i.e. a real vector space H,
equipped with a regular, antisymmetric, real bilinear form. Hence H is
a locally convex topological space equipped with the topology defined
by the semi-norms

0, = lole, vl
and we suppose that H is complete for this topology, we call H o-complete.

Let A(H, o) be the algebra generated by finite linear combinations of
the functionals é :y e H— 0, defined by

0,(0)=0 if p*o

=1 if p=9¢g
with the product law:

S — piocw, ) §
0,0,=¢ Optg-

The mapping 0, — 07 =0_,, is an involution and

n

Z aiéwl

i=1

=3 |a;| with «eC
i=1
is a norm on A{H, o) such that A(H, o) turns out to be a normed *-algebra.
The set of representations ©m of A(H, o) such that the mapping
seR—-m(d,,) is strongly continuous, determines a unique C*-algebra
norm on A(H, o). Its closure A = A(H, ¢) is a C*-algebra, which we call
the Weyl algebra. For more details see [4].
A state on the Weyl algebra is a positive linear functional, normalized
to one.

Any operator J on H satisfying

J"=—J (“+7 adjoint with respect to o)

J? = —1 (1 unit operator)

s;tp,p)=—a(Jyp, ) >0 forall w40, weH

defines a complex structure on the real space H. Given such a complex
structure J on H, the linear functional on 4(H. ¢) defined by

w,(0,)=exp{— 3 s,(w, p)}

extends to a state w; on W= A(H, o). In fact w; is a pure quasi-free state
(see [5]).

In what follows we denote by J and K two such complex structures,
by s;(p, )= —a(Jp, @) and sg(p, p)= — (K, ¢) the corresponding
real scalar products and by w; respectively wg the corresponding pure
states; further by n,{ny), #;(#y) and R, = 7,(W)" (Rg = 1 (A)") the GNS

20



270 A. Van Daele and A. Verbeure:

representation, representation space and the associated von Neumann
algebra induced by the state w,(wg).
Consider a net ¥ ={H,},.; of symplectic subspaces of H satisfying:
() JH,CH,; KH,CH, foreach H,e¥%,
(i) each H, is a finite regular symplectic subspace of H,
(i) to all pairs H,, H;€% there is a H, e % with H,.UH,CH_,
(iv) | H, generates H.

ael

Then = {N,=A(H,, 0)},.; 1s a net for A: Le. it is a collection of
C*-subalgebras of U satisfying:
(i) to all pairs A, Ay e.# thereis a A e.J with A, UWA,CA,
(i) the unit of U is contained in all A, .7,
(iii) for any continuous representation = (i.e. —n(d,) is continuous)
| ) 7(2,) is weakly dense in ()"
xel

By analogous techniques as in [6] we prove:

Theorem 1. The pure states w; and wy on A(H, o) are quasi-equivalent
(hence unmitarily equivalent) if and only if there is a U, e.# such that

(o, — oWl <& for e>0.
A is the set of elements of N commuting with W,,.

Proof. Suppose w; and wy equivalent, then it follows immediately
from [6, Corollary to Propositions 2 and 3] that there is a U, €.# such
that || (w; — wg)| W || < & The converse is proved by a slight modification
of the proof of Proposition 13 of [6] and using von Neumann'’s theorem
[1] yielding that for all H,e ¥ the restrictions w,;|2A, and wy |2, are
type I states, hence that w; and wg are locally normal states in this sence.
We omit further details of the proof. Q.ED.

[II. Unitary Equivalence

Now we will apply Theorem 1 to establish the theorem of unitary
equivalence. First we prove a number of Lemma’s.

Lemma 1. If o, and wy are unitary equivalent states, then the operator
1+ JK is a compact operator with respect to the metric defined by sx or
by s,.

Proof. We prove it for s, For s the same proof can be repeated.
Now @; and wy being equivalent factor states, for every ¢>0 there is
a finite subspace H, such that [6; Corollary to Propositions 2 and 3]

oy — o A(Hq, 0) = sup_ |w,(x) —wk(x)| <e.
xEA(fID.irJ)‘
[xft=
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This follows from the definitions of the nets ¢ and .#. The condition of
invariance for J and K is irrelevant for this statement. Hence

oy — o) A(H, o) <&

where H§ = HQ H,, is the orthogonal complement of H, with respect to
o. Moreover H, can be taken as an invariant subspace for the operator J
{not a priori invariant for J and K).

In particular for all y e Hg such that s;(p, y)=1

sup |;(3,) — wg(d,)] <e.
we H
Hence
sup |1 — @2 Bwwl < ppl
weH(j

Since the function x— expx, xR is continuous, it follows from the
previous inequality that for any ¢ > 0 there is a finite subspace H, such
that

sup |o((J - K)wp,yp){ <o

we
sy{w, ) =1

which is equivalent with
sup Is; (A +JK)p,p)|<d.
we dp

sy(w,w)=1

Let E, be the orthogonal projection on H, then we have that

(A +JK) - E1+JK)~(1+JK)E,— Eq(1+JK) Eyl;, <9
where
si{Ay, A *
vel \ 8500, )

Since E, is of finite rank, this inequality proves that the operator
1+ JK can be approximated in norm by finite rank operators and hence
is compact. In particular the operator JK has a pure point spectrum.

QED.

Remark 1. Without proof we remark that an analogous result as in
Lemma 1 can be proved for all quasi-free states on the Weyl algebra.

Lemma 2. Let E be a non-zero finite projection, commuting with J and
K. Consider the operator A= — +(1+JK)E. Then A is hermitian with
respect to s; and we have the following inequalities.

11+ 3Tr 4 < det(1 + A) < exp(3 Tr 4)
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where detg(1 + A) is defined as the product of the eigenvalues of (1 + A)E
on EH.

Proof. First remark that

si(—IK) . @)= — oKy, @) =0y, Kg)= —o(Jip, (= TK) )
=s;(p, (= JK) @) = s¢(, ¢)

and that s is a scalar product, hence the operator —JK is strictly
positive with respect to s,.

Since [E,J]_=[E,K]_=0, the operator —JKE is a hermitian
finite rank operator on EH which can be diagonalized. Let v be an
eigenvector in EH of (—JKE) with eigenvalue A then />0 and

1
(—JK)Ky=Jyp=—K(K)y=-K(JK)"p=—Kyp

hence 1/4 is an eigenvalue of —JK with eigenvector Ky e EH.
Consequently, if {1;|i=1,...,n} are the eigenvalues of —JKE, then
{1/4,li=1,...,n} is exactly the same set of numbers. Therefore

/Ll+/1—-2)
el

Tra=Y (Ai
i=1

Otherwise
1 i
o1+ /l"+7_2
detEl+A:n( > 1+ ——.
i=1 ozl 4 /
Let
1 1
,ul— 3 (;11‘}‘/,{—2),

since /;>0 we have p; =0 hence
1
11+ Y w= ] (1+*><exp( Zu)
2 | s> 1 2 > 1

which is equivalent to

1 1
1§1+jTrAgdetE(1+A)§exp?TrA.

QE.D.
Lemma 3. Let {H,},.; be an increasing and absorbing net of finite,
J-invariant subspaces of H and let the real dimension of H, be 2n, for all
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a el Then the elements

1 fly
e e A ROCER:
T weH,
where dv is the Lebesgue measure on H induced by the metric determined

by s;, form a decreasing net of projections in A(H, o)

Proof. Since [|6,]| =1 for all e[

1 He .
(L) | o)<
T well,
and further A(H,, o) is a simple type 1 C*-algebra, hence P(H,) e A(H, ).
Further w;(3,) = w,(_,) and so

N 1\
putr=( " § apaodp=(1]" | wesde=pi).

n weHy pel,
It remains to prove the inclusion, if H,C Hy then
P(Ha) P(Hﬂ) = P(Hﬁ)

because for H, = H, this proves also that P(H,) is a projection.
Consider now
Tc(naJrnﬁ) P(Ha) P(HB) = j‘ j wl(éw) wJ((s(p) 51/;(5(() dw d(ro

weH, peHg

j j O‘)J((Su;) w.l(éifu:) 5{641‘6(%5) dwdé

weH, CeHpg

| exp(— 45,08 8)9, 1(&d¢

Celp

i

where
I oexpl—s,(p.w)+5,(E w)—iolp, O] dy.

weHy
We prove now that [(&)=n"- yielding the result. Consider the
symplectic basis* of Hy: {e, Je;[i=1, ..., n,} with respect to J, such that
{e. Jeli=1,...,n,} is a symplectic basis of H, with respect to J, then

Y= Z x;e;+v.Je),

ng

&= z (die;+ i Je),
i=1

X;, Vis 41 11; € R (real numbers)

U {e, Je,} is a symplectic basis if it is a basis and if {¢;} is an orthonormal set for s,.
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and one checks that
H j exp [ —(x;+ 4 — iy, ) — (v + 1+ ijvi)z] dx;dy,

hence I(&) = n"=. Q.E.D.

Lemma 4. Suppose H,, is a J-invariant finite subspace of H, let E, be
the orthogonal projection on H,, then with the same notations as in

Lemma 3 : .
ox(P(H,) = {detEo ( ! NZJK ﬂ ’

Proof. By definition of P(H,) we have

1y 1 1 ;
ot = (| § ep|= 5 s 3 sty

we Hg

For allye H,
1 i
5 S0+ sk, w) = 5;(Qw, v)

1-J

where Q = E, <———2—) E, is a strictly positive finite rank operator on

(Hy, ;). There exists an orthonormal basis {p;|i=1,...,2n,} with
respect to s; such that

Q= 4p; -
2ng
Lety= ) x;p; then
i=1
2ngp

s, (Qy, p)= Z 2ix}

and
wx(P(Hy))= i +fme*"”x'zcl‘c
K 0 o 1/; R i
2ny 1
= ——= = [dety, Q] *.
/,l 0

=1

QED.

Lemma 5. With the same notations and assumptions as in Lemma 3 the
following holds true:

(i) for all subspaces H, one has cw,(P(H,))=1,

(i) if w is any state on A(H, o) such that for all H,, o(P(H,))=1 then
W= ;.
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Proof. (1) Follows immediately from Lemma 4 putting K= J. To
prove (ii) for each H, consider the restrictions w, = w |, and 0} = w; |,
because the union U 7(A,) is dense in 7(2) for any continuous representa-

24

tion 7 it is sufficient to prove that w, = wj for each H,. This will now be
proved.

Let n3, QF, #7 be respectively the representation, cyclic vector and
representation space induced by w7, then it follows from (i) that

my(P(H,)) Q) = Q5 .

Furthermore the set {n7(d,) Q5@ € H,} is dense in the representation
space A7 and an casy calculation (see e.g. the proof of Lemma 3) shows
that

n3(P(H,)) m5(0,) QF = (2. 73(6,.) Q7) €] .

Hence 7j(P(H,)) is the projection operator on Qf € #7.
Each H, being finite dimensional it follows from von Neumann's
theorem [1] that
@, = Ttz 0" 7§

where ¢” is a density matrix (0 < ¢* <1, Tr 0 =1). From w(P(H,)=1 we
get ( (H,))=1 and Trp0 n,( {(H,)=1. Hence (£}, 0*Q5)=1 and ¢*
being a density matrix, it follows that p* is the projection operator on
Q% and w, = w]. Q.E.D.

Corollary 1. With the same notations and assumptions as in Lemma 3
we have that | w; — wyll = 2(1 — q)f where g = inf wg(P(H,)).
8
Proof. 1t follows from Lemma 3 and 5 that Lemma 2.5 of [7] holds
true for the net of projections {P(H,)},.; as defined in Lemma 3. Hence
wg being pure, we have the result. QED.

Lemma 6. Suppose that w; and wyg are pure quasi-free states on the

Weyl algebra A(H. o) and that H, is a finite, J and K invariant subspace
of H, then

Iy — wg) | A(Hy, 0)|| = [ (w; — )| A(Hy. ).
Proof. Let ¥ =m,®ny be the direct sum of the representations

and 7ig; ¥ is a representation on # = #, P Hy. Let x=Q,D0,y =00 Qg
and denote by @,, z € # the vector state m,(A)=(z, Az) on B(#). Then

Hw, — w) A(HE, 0) | = (o, — o )| P(A(HE, o)
and
;= w) A(Hg, o) | = (0, — 0 ) [(4(H, o) .
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Applying Kaplansky density theorem we get

[{w; — wg) 4(Hg, 0)|l = (0, —w )| P(4(Hg. 0)" |
and
{w; — wg) 4(Hq, 0)°] = [(0, — w )| P(4(H,, 0))'|| .
[t remains to prove that

Y(A(HZ, o)) = ¥ (A(Hq, o)) .

H, being J and K invariant, the restrictions ni;| A(H,, 0), x| A(H,, 0)
and hence ¥I|A(H,, o), Y|A(H;,0) [8; Prop. 5.4.12] are irreducible
representations. Hence the von Neumann algebras: P= W(A(H, 0))".
Q=Y(A(Hy, o)), and R=¥(A(H, 0))" are of type I. Moreover it is clear
that the von Neumann algebra generated by P and Q equals R and that
PC Q. Hence P and Q is a factorization of R. Since P and Q are type |
factors, it follows that this factorization must be paired [9] i.e. P and Q
are cach others commutants:

If

P=¢

and

P=Y(A{H,, 0)Y 2P(4(Hy, 0))' 2 P.
Hence

¥ (4(H,. 0)") = ¥(4(Hg, 0))'

Q.ED.

Remark 2. Without proof we mention that Lemma 6 can also be
proved for locally normal states on the Weyl algebra.

Theorem 2. The pure quasi-free states w; and wy on the Weyl algebra
A(H, o) are unitary equivalent if and only if the operator (J — K)* (J — K)
=[J, K], +2 is a trace class operator with respect to s,.

Proof. Suppose first that [J, K], +2 is a trace class operator with
respect to s;. Then JK + KJ=JK + (J'K)~! has a pure point spectrum
and hence JK has this property; JK being hermitian with respect to s,,
there exists an orthonormal basis of eigenvectors {y,}; of H. To any
finite subset {y, |i=1,...,k} corresponds a finite subspace generated
by {y,.Jw, li=1,.. k}. If JKy, =4, 1, then Ky, =—2, Jy, and

1
KJy, = T Wn, hence this subspace is invariant for J and K, and the

orthogonal brojection on this subspace commutes with J and K.
Consider the net {H,}, of all such subspaces of H. Each H, is invariant
under J and K and their union (] H, generates H. Let {E,}, be the

3
corresponding net of projections; each E, commutes with J and K.
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Since [J, K], + 2 is a trace class operator, for every ¢ > 0 there is an
index o, such that for all E,<1—E

fels)

ITrQ+ [J, K] E, | <¢
or
lTr(1+JK)Ea1<%

By Lemma 2:

1-JK g

< il
detEa< 5 ) S expg

and by Lemma 4

wg(P(H,)) Z exp <* 1F6> )

Let p= inf  wg(P(H,)) then 1 Zp=exp (— 15

Ea<(1—Eq)

i) and from Corol-

lary 1 and Lemma 6 we get
ey — 0| A(H,,, 0)°[| = 2(1 — p)* .

Clearly if ¢ tends to zero, then (1 — p) tends to zero and from Theorem 1
it follows that w, and wg are unitary equivalent.

Conversely, suppose that w; and wg are unitary equivalent, then by
Lemma 1, the operator 1+ JK is compact and JK has a pure point
spectrum. Again we consider the net {H,}, of subspaces and the net {E,},
of projections as defined above. Moreover we consider the corresponding
net {2, = A(H,, o)} of C*-subalgebras of A. By Theorem 1 and Lemma 6
there is a subspace H, €{H,}, such that

e, — o) | A(Hy, o)l <.
From Corollary 1 it follows that
2
. €
>1—
E~/<(1tn—fE%>wK(P(H”’)):1 4 -
E,e{Ey}a
By Lemma 4
su det I-JK 1 e
E,<(1 pEz ) Ey 2 = 4 )
By Lemma 2

K 2\ -2
11+  swp Tr—ﬁilE < 1—i
) 4 4

Ey<(1=Ex,
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1 82 -2
L1+ ¢ Tr[- Q4 [ K] ) (- E)]< (1—7)

/

Since H,, is a finite subspace the operator 2+ [J, K], is a trace class
operator Q.ED.

Remark 3. The condition appearing in Theorem 2 can of course also
be expressed in terms of the scalar product sg. The problem is completely
symmetric in s; and sg. It is just a matter of choosing a symplectic basis
in H with respect to J or to K.

Remark 4. After the preparation of this work we were informed about
an analogous result by Courbage, Miracle-Sole and Robinson [10] who
gave a characterization of all states quasi-equivalent with the Fock
representation of the canonical commutation relations. An essential dif-
ference with our work is a different choice of underlying C*-algebra and
method of derivation. Furthermore our criterium is given directly in
terms of the states we are considering.
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