
Unitary Evolution Recurrent Neural Networks

Martin Arjovsky ∗
MARJOVSKY@DC.UBA.AR

Amar Shah ∗
AS793@CAM.AC.UK

Yoshua Bengio

Universidad de Buenos Aires, University of Cambridge,

Université de Montréal. Yoshua Bengio is a CIFAR Senior Fellow.

∗Indicates first authors. Ordering determined by coin flip.

Abstract

Recurrent neural networks (RNNs) are notori-

ously difficult to train. When the eigenvalues

of the hidden to hidden weight matrix deviate

from absolute value 1, optimization becomes dif-

ficult due to the well studied issue of vanish-

ing and exploding gradients, especially when try-

ing to learn long-term dependencies. To circum-

vent this problem, we propose a new architecture

that learns a unitary weight matrix, with eigen-

values of absolute value exactly 1. The chal-

lenge we address is that of parametrizing uni-

tary matrices in a way that does not require ex-

pensive computations (such as eigendecomposi-

tion) after each weight update. We construct an

expressive unitary weight matrix by composing

several structured matrices that act as building

blocks with parameters to be learned. Optimiza-

tion with this parameterization becomes feasible

only when considering hidden states in the com-

plex domain. We demonstrate the potential of

this architecture by achieving state of the art re-

sults in several hard tasks involving very long-

term dependencies.

1. Introduction

Deep Neural Networks have shown remarkably good per-

formance on a wide range of complex data problems in-

cluding speech recognition (Hinton et al., 2012), image

recognition (Krizhevsky et al., 2012) and natural language

processing (Collobert et al., 2011). However, training very

deep models remains a difficult task. The main issue sur-

rounding the training of deep networks is the vanishing

and exploding gradients problems introduced by Hochre-

Proceedings of the 33
rd International Conference on Machine

Learning, New York, NY, USA, 2016. JMLR: W&CP volume
48. Copyright 2016 by the author(s).

iter (1991) and shown by Bengio et al. (1994) to be nec-

essarily arising when trying to learn to reliably store bits

of information in any parametrized dynamical system. If

gradients propagated back through a network vanish, the

credit assignment role of backpropagation is lost, as infor-

mation about small changes in states in the far past has no

influence on future states. If gradients explode, gradient-

based optimization algorithms struggle to traverse down a

cost surface, because gradient-based optimization assumes

small changes in parameters yield small changes in the ob-

jective function. As the number of time steps considered

in the sequence of states grows, the shrinking or expanding

effects associated with the state-to-state transformation at

individual time steps can grow exponentially, yielding re-

spectively vanishing or exploding gradients. See Pascanu

et al. (2010) for a review.

Although the long-term dependencies problem appears

intractable in the absolute (Bengio et al., 1994) for

parametrized dynamical systems, several heuristics have

recently been found to help reduce its effect, such as the

use of self-loops and gating units in the LSTM (Hochre-

iter & Schmidhuber, 1997) and GRU (Cho et al., 2014) re-

current architectures. Recent work also supports the idea

of using orthogonal weight matrices to assist optimization

(Saxe et al., 2014; Le et al., 2015).

In this paper, we explore the use of orthogonal and unitary

matrices in recurrent neural networks. We start in Section 2

by showing a novel bound on the propagated gradients in

recurrent nets when the recurrent matrix is orthogonal. Sec-

tion 3 discusses the difficulties of parameterizing real val-

ued orthogonal matrices and how they can be alleviated by

moving to the complex domain.

We discuss a novel approach to constructing expressive

unitary matrices as the composition of simple unitary ma-

trices which require at most O(n log n) computation and

O(n) memory, when the state vector has dimension n.

These are unlike general matrices, which require O(n2)
computation and memory. Complex valued representations

Unitary Evolution Recurrent Neural Networks

have been considered for neural networks in the past, but

with limited success and adoption (Hirose, 2003; Zimmer-

mann et al., 2011). We hope our findings will change this.

Whilst our model uses complex valued matrices and pa-

rameters, all implementation and optimization is possible

with real numbers and has been done in Theano (Bergstra

et al., 2010). This along with other implementation details

are discussed in Section 4, and the code used for the exper-

iments is available online. The potential of the developed

model for learning long term dependencies with relatively

few parameters is explored in Section 5. We find that the

proposed architecture generally outperforms LSTMs and

previous approaches based on orthogonal initialization.

2. Orthogonal Weights and Bounding the

Long-Term Gradient

A matrix, W, is orthogonal if W
⊤
W = WW

⊤ = I.

Orthogonal matrices have the property that they preserve

norm (i.e. ‖Wh‖2 = ‖h‖2) and hence repeated iterative

multiplication of a vector by an orthogonal matrix leaves

the norm of the vector unchanged.

Let hT and ht be the hidden unit vectors for hidden layers

T and t of a neural network with T hidden layers and T ≫
t. If C is the objective we are trying to minimize, then

the vanishing and exploding gradient problems refer to the

decay or growth of ∂C
∂ht

as the number of layers, T , grows.

Let σ be a pointwise nonlinearity function, and

zt+1 = Wtht +Vtxt+1

ht+1 = σ(zt+1) (1)

then by the chain rule

∂C

∂ht

=
∂C

∂hT

∂hT

∂ht

=
∂C

∂hT

T−1
∏

k=t

∂hk+1

∂hk

=
∂C

∂hT

T−1
∏

k=t

Dk+1W
T
k (2)

where Dk+1 = diag(σ′(zk+1)) is the Jacobian matrix of

the pointwise nonlinearity.

In the following we define the norm of a matrix to refer to

the spectral radius norm (or operator 2-norm) and the norm

of a vector to mean L2-norm. By definition of the oper-

ator norms, for any matrices A,B and vector v we have

‖Av‖ ≤ ‖A‖ ‖v‖ and ‖AB‖ ≤ ‖A‖ ‖B‖. If the weight

matrices Wk are norm preserving (i.e. orthogonal), then

we prove

∥

∥

∥

∥

∂C

∂ht

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

∂C

∂hT

T−1
∏

k=t

Dk+1W
T
k

∥

∥

∥

∥

∥

≤

∥

∥

∥

∥

∂C

∂hT

∥

∥

∥

∥

T−1
∏

k=t

∥

∥Dk+1W
T
k

∥

∥

=

∥

∥

∥

∥

∂C

∂hT

∥

∥

∥

∥

T−1
∏

k=t

‖Dk+1‖ . (3)

Since Dk is diagonal, ‖Dk‖ = maxj=1,...,n |σ
′(z(j)k)|,

with z
(j)
k the j-th pre-activation of the k-th hidden layer.

If the absolute value of the derivative σ′ can take some

value τ > 1, then this bound is useless, since ‖ ∂C
∂ht

‖ ≤
∥

∥

∥

∂C
∂hT

∥

∥

∥
τT−t which grows exponentially in T . We there-

fore cannot effectively bound ∂C
∂ht

for deep networks, re-

sulting potentially in exploding gradients.

In the case |σ′| < τ < 1, equation 3 proves that that ∂C
∂ht

tends to 0 exponentially fast as T grows, resulting in guar-

anteed vanishing gradients. This argument makes the rec-

tified linear unit (ReLU) nonlinearity an attractive choice

(Glorot et al., 2011; Nair & Hinton, 2010). Unless all the

activations are killed at one layer, the maximum entry of

Dk is 1, resulting in ‖Dk‖ = 1 for all layers k. With

ReLU nonlinearities, we thus have

∥

∥

∥

∥

∂C

∂ht

∥

∥

∥

∥

≤

∥

∥

∥

∥

∂C

∂hT

∥

∥

∥

∥

T−1
∏

k=t

‖Dk+1‖ =

∥

∥

∥

∥

∂C

∂hT

∥

∥

∥

∥

. (4)

Most notably, this result holds for a network of arbitrary

depth and renders engineering tricks like gradient clipping

unnecessary (Pascanu et al., 2010).

To the best of our knowledge, this analysis is a novel con-

tribution and the first time a neural network architecture has

been mathematically proven to avoid exploding gradients.

3. Unitary Evolution RNNs

Unitary matrices generalize orthogonal matrices to the

complex domain. A complex valued, norm preserving ma-

trix, U, is called a unitary matrix and is such that U∗
U =

UU
∗ = I, where U

∗ is the conjugate transpose of U. Di-

rectly parametrizing the set of unitary matrices in such a

way that gradient-based optimization can be applied is not

straightforward because a gradient step will typically yield

a matrix that is not unitary, and projecting on the set of uni-

tary matrices (e.g., by performing an eigendecomposition)

generally costs O(n3) computation when U is n× n.

The most important feature of unitary and orthogonal ma-

trices for our purpose is that they have eigenvalues λj with

Unitary Evolution Recurrent Neural Networks

absolute value 1. The following lemma, proved in (Hoff-

man & Kunze, 1971), may shed light on a method which

can be used to efficiently span a large set of unitary matri-

ces.

Lemma 1. A complex square matrix W is unitary if and

only if it has an eigendecomposition of the form W =
VDV

∗, where ∗ denotes the conjugate transpose. Here,

V,D ∈ C
n×n are complex matrices, where V is unitary,

and D is a diagonal such that |Dj,j | = 1. Furthermore, W

is a real orthogonal matrix if and only if for every eigen-

value Dj,j = λj with eigenvector vj , there is also a com-

plex conjugate eigenvalue λk = λj with corresponding

eigenvector vk = vj .

Writing λj = eiwj with wj ∈ R, a naive method to learn a

unitary matrix would be to fix a basis of eigenvectors V ∈
C

n×n and set

W = VDV
∗, (5)

where D is a diagonal such that Dj,j = λj .

Lemma 1 informs us how to construct a real orthogonal

matrix, W. We must (i) ensure the columns of V come

in complex conjugate pairs, vk = vj , and (ii) tie weights

wk = −wj in order to achieve eiwj = eiwk . Most neu-

ral network objective functions are differentiable with re-

spect to the weight matrices, and consequently wj may be

learned by gradient descent.

Unfortunately the above approach has undesirable proper-

ties. Fixing V and learning w requires O
(

n2
)

memory,

which is unacceptable given that the number of learned pa-

rameters is O(n). Further note that calculating Vu for an

arbitrary vector u requires O(n2) computation. Setting V

to the identity would satisfy the conditions of the lemma,

whilst reducing memory and computation requirements to

O(n), however, W would remain diagonal, and have poor

representation capacity.

We propose an alternative strategy to parameterize unitary

matrices. Since the product of unitary matrices is itself a

unitary matrix, we compose several simple, parameteric,

unitary matrices to construct a single, expressive unitary

matrix. The four unitary building blocks considered are

• D, a diagonal matrix with Dj,j = eiwj , with parame-

ters wj ∈ R,

• R = I − 2 vv∗

‖v‖2 , a reflection matrix in the complex

vector v ∈ C
n,

• Π, a fixed random index permutation matrix, and

• F and F−1, the Fourier and inverse Fourier trans-

forms.

Appealingly, D, R and Π all permit O(n) storage and

O(n) computation for matrix vector products. F and F−1

require no storage and O(n log n) matrix vector multiplica-

tion using the Fast Fourier Transform algorithm. A major

advantage of composing unitary matrices of the form listed

above, is that the number of parameters, memory and com-

putational cost increase almost linearly in the size of the

hidden layer. With such a weight matrix, immensely large

hidden layers are feasible to train, whilst being impossible

in traditional neural networks.

With this in mind, in this work we choose to consider recur-

rent neural networks with unitary hidden to hidden weight

matrices. Our claim is that the ability to have large hidden

layers where hidden states norms are preserved provides

a powerful tool for modeling long term dependencies in

sequence data. (Bengio et al., 1994) suggest that having

a large memory may be crucial for solving difficult tasks

with long ranging dependencies: the smaller the state di-

mension, the more information necessarily has to be elimi-

nated when mapping a long sequence to a fixed-dimension

state.

We call any RNN architecture which uses a unitary hidden

to hidden matrix a unitary evolution RNN (uRNN). After

experimenting with several structures, we settled on the fol-

lowing composition

W = D3R2F
−1

D2ΠR1FD1. (6)

Whilst each but the permutation matrix is complex, we
parameterize and represent them with real numbers for im-

plementation purposes. When the final cost is real and dif-

ferentiable, we may perform gradient descent optimization

to learn the parameters. (Yang et al., 2015) construct a real

valued, non-orthogonal matrix using a similar parameter-

ization with the motivation of parameter reduction by an

order of magnitude on an industrial sized network. This

combined with earlier work (Le et al., 2010) suggests that it

is possible to create highly expressive matrices by compos-

ing simple matrices with few parameters. In the following

section, we explain details on how to implement our model

and illustrate how we bypass the potential difficulties of

working in the complex domain.

4. Architecture details

In this section, we describe the nonlinearity we used, how

we incorporate real valued inputs with complex valued hid-

den units and map from complex hidden states to real out-

puts.

4.1. Complex hidden units

Our implementation represents all complex numbers us-

ing real values in terms of their real and imaginary parts.

Unitary Evolution Recurrent Neural Networks

Under this framework, we sidestep the lack of support

for complex numbers by most deep learning frameworks.

Consider multiplying the complex weight matrix W =
A + iB by the complex hidden vector h = x + iy,

where A,B, x, y are real. It is trivially true that Wh =
(Ax−By) + i(Ay+Bx). When we represent v ∈ C

n as
(

Re(v)⊤, Im(v)⊤
)⊤

∈ R
2n , we compute complex matrix

vector products with real numbers as follows

(

Re(Wh)
Im(Wh)

)

=

(

A −B

B A

)(

Re(h)
Im(h)

)

. (7)

More generally, let f : Cn → C
n be any complex func-

tion and z = x + iy any complex vector. We may write

f(z) = α(x, y) + iβ(x, y) where α, β : Rn → R
n. This

allows us to implement everything using real valued oper-

ations, compatible with any any deep learning framework

with automatic differentiation such as Theano.

4.2. Input to Hidden, Nonlinearity, Hidden to Output

As is the case with most recurrent networks, our uRNN fol-

lows the same hidden to hidden mapping as equation 1 with

Vt = V and Wt = W. Denote the size of the complex

valued hidden states as nh. The input to hidden matrix is

complex valued, V ∈ C
nh×nin . We learn the initial hidden

state h0 ∈ C
nh as a parameter of the model.

Choosing an appropriate nonlinearity is not trivial in the

complex domain. As discussed in the introduction, using a

ReLU is a natural choice in combination with a norm pre-

serving weight matrix. We first experimented with placing

separate ReLU activations on the real and imaginary parts

of the hidden states. However, we found that such a non-

linearity usually performed poorly. Our intuition is that ap-

plying separate ReLU nonlinearities to the real and imagi-

nary parts brutally impacts the phase of a complex number,

making it difficult to learn structure.

We speculate that maintaining the phase of hidden states

may be important for storing information across a large

number of time steps, and our experiments supported this

claim. A variation of the ReLU that we name modReLU,

is what we finally chose. It is a pointwise nonlinearity,

σmodReLU(z) : C → C, which affects only the absolute

value of a complex number, defined as

σmodReLU(z) =

{

(|z|+ b) z
|z| if |z|+ b ≥ 0

0 if |z|+ b < 0
(8)

where b ∈ R is a bias parameter of the nonlinearity. For a

nh dimensional hidden space we learn nh nonlinearity bias

parameters, one per dimension. Note that the modReLU

is similar to the ReLU in spirit, in fact more concretely

σmodReLU(z) = σReLU(|z|+ b) z
|z| .

To map hidden states to output, we define a matrix U ∈
R

no×2nh , where no is the output dimension. We calculate

a linear output as

ot = U

(

Re(ht)
Im(ht)

)

+ bo, (9)

where bo ∈ R
no is the output bias. The linear output is real

valued (ot ∈ R
no) and can be used for prediction and loss

function calculation akin to typical neural networks (e.g. it

may be passed through a softmax which is used for cross

entropy calculation for classification tasks).

4.3. Initialization

Due to the stability of the norm preserving operations of

our network, we found that performance was not very sen-

sitive to initialization of parameters. For full disclosure

and reproducibility, we explain our initialization strategy

for each parameter below.

• We initialize V and U (the input and out-

put matrices) as in (Glorot & Bengio, 2010),

with weights sampled independently from uniforms,

U
[

−
√
6√

nin+nout
,

√
6√

nin+nout

]

.

• The biases, b and bo are initialized to 0. This implies

that at initialization, the network is linear with unitary

weights, which seems to help early optimization (Saxe

et al., 2014).

• The reflection vectors for R1 and R2 are initialized

coordinate-wise from a uniform U [−1, 1]. Note that

the reflection matrices are invariant to scalar multipli-

cation of the parameter vector, hence the width of the

uniform initialization is unimportant.

• The diagonal weights for D1,D2 and D3 are sam-

pled from a uniform, U [−π, π]. This ensures that the

diagonal entries Dj,j are sampled uniformly over the

complex unit circle.

• We initialize h0 with a uniform, U
[

−
√

3
2nh

,
√

3
2nh

]

,

which results in E
[

‖h0‖
2
]

= 1. Since the norm of

the hidden units are roughly preserved through unitary

evolution and inputs are typically whitened to have

norm 1, we have hidden states, inputs and linear out-

puts of the same order of magnitude, which seems to

help optimization.

5. Experiments

In this section we explore the performance of our uRNN

in relation to (a) RNN with tanh activations, (b) IRNN (Le

et al., 2015), that is an RNN with ReLU activations and

with the recurrent weight matrix initialized to the identity,

Unitary Evolution Recurrent Neural Networks

Figure 1. Results of the copying memory problem for time lags of 100, 200, 300, 500. The LSTM is able to beat the baseline only for

100 times steps. Conversely the uRNN is able to completely solve each time length in very few training iterations, without getting stuck

at the baseline.

and (c) LSTM (Hochreiter & Schmidhuber, 1997) mod-

els. We show that the uRNN shines quantitatively when

it comes to modeling long term dependencies and exhibits

qualitatively different learning properties to the other mod-

els.

We chose a handful of tasks to evaluate the performance

of the various models. The tasks were especially created

to be be pathologically hard, and have been used as bench-

marks for testing the ability of a model to capture long-term

memory (Hochreiter & Schmidhuber, 1997; Le et al., 2015;

Graves et al., 2014; Martens & Sutskever, 2011)

Of the handful of optimization algorithms we tried on the

various models, RMSProp (Tieleman & Hinton, 2012) lead

to fastest convergence and is what we stuck to for all ex-

periments here on in. However, we found the IRNN to be

particularly unstable; it only ran without blowing up with

incredibly low learning rates and gradient clipping. Since

the performance was so poor relative to other models we

compare against, we do not show IRNN curves in the fig-

ures. In each experiment we use a learning rate of 10−3

and a decay rate of 0.9. For the LSTM and RNN models,

we had to clip gradients at 1 to avoid exploding gradients.

Gradient clipping was unnecessary for the uRNN.

5.1. Copying memory problem

Recurrent networks have been known to have trouble re-

membering information about inputs seen many time steps

previously (Bengio et al., 1994; Pascanu et al., 2010). We

therefore want to test the uRNN’s ability to recall exactly

data seen a long time ago.

Following a similar setup to (Hochreiter & Schmidhuber,

1997), we outline the copy memory task. Consider 10 cate-

gories, {ai}
9
i=0. The input takes the form of a T+20 length

vector of categories, where we test over a range of values

of T . The first 10 entries are sampled uniformly, indepen-

dently and with replacement from {ai}
7
i=0, and represent

the sequence which will need to be remembered. The next

T − 1 entries are set to a8, which can be thought of as the

’blank’ category. The next single entry is a9, which rep-

resents a delimiter, which should indicate to the algorithm

that it is now required to reproduce the initial 10 categories

in the output. The remaining 10 entries are set to a8. The

required output sequence consists of T + 10 repeated en-

tries of a8, followed by the first 10 categories of the input

Unitary Evolution Recurrent Neural Networks

Figure 2. Results of the adding problem for T = 100, 200, 400, 750. The RNN with tanh is not able to beat the baseline for any time

length. The LSTM and the uRNN show similar performance across time lengths, consistently beating the baseline.

sequence in exactly the same order. The goal is to mini-

mize the average cross entropy of category predictions at

each time step of the sequence. The task amounts to hav-

ing to remember a categorical sequence of length 10, for T

time steps.

A simple baseline can be established by considering an

optimal strategy when no memory is available, which we

deem the memoryless strategy. The memoryless strategy

would be to predict a8 for T + 10 entries and then predict

each of the final 10 categories from the set {ai}
7
i=0 inde-

pendently and uniformly at random. The categorical cross

entropy of this strategy is
10 log(8)
T+20 .

We ran experiments where the RNN with tanh activations,

IRNN, LSTM and uRNN had hidden layers of size 80, 80,

40 and 128 respectively. This equates to roughly 6500 pa-

rameters per model. In Figure 1, we see that aside from the

simplest case, both the RNN with tanh and more surpris-

ingly the LSTMs get almost exactly the same cost as the

memoryless strategy. This behaviour is consistent with the

results of (Graves et al., 2014), in which poor performance

is reported for the LSTM for a very similar long term mem-

ory problem.

The uRNN consistently achieves perfect performance in

relatively few iterations, even when having to recall se-

quences after 500 time steps. What is remarkable is that

the uRNN does not get stuck at the baseline at all, whilst

the LSTM and RNN do. This behaviour suggests that the

representations learned by the uRNN have qualitatively dif-

ferent properties from both the LSTM and classical RNNs.

5.2. Adding Problem

We closely follow the adding problem defined in (Hochre-

iter & Schmidhuber, 1997) to explain the task at hand. Each

input consists of two sequences of length T . The first se-

quence, which we denote x, consists of numbers sampled

uniformly at random U [0, 1]. The second sequence is an in-

dicator sequence consisting of exactly two entries of 1 and

remaining entries 0. The first 1 entry is located uniformly

at random in the first half of the sequence, whilst the sec-

ond 1 entry is located uniformly at random in the second

half. The output is the sum of the two entries of the first se-

quence, corresponding to where the 1 entries are located in

the second sequence. A naive strategy of predicting 1 as the

output regardless of the input sequence gives an expected

mean squared error of 0.167, the variance of the sum of two

independent uniform distributions. This is our baseline to

beat.

Unitary Evolution Recurrent Neural Networks

Figure 3. Results on pixel by pixel MNIST classification tasks. The uRNN is able to converge in a fraction of the iterations that the

LSTM requires. The LSTM performs better on MNIST classification, but the uRNN outperforms on the more complicated task of

permuted pixels.

We chose to use 128 hidden units for the RNN with tanh,

IRNN and LSTM and 512 for the uRNN. This equates to

roughly 16K parameters for the RNN with tanh and IRNN,

60K for the LSTM and almost 9K for the uRNN. All mod-

els were trained using batch sizes of 20 and 50 with the best

results being reported. Our results are shown in Figure 2.

The LSTM and uRNN models are able to convincingly beat

the baseline up to T = 400 time steps. Both models do well

when T = 750, but the mean squared error does not reach

close to 0. The uRNN achieves lower test error, but it’s

curve is more noisy. Despite having vastly more param-

eters, we monitored the LSTM performance to ensure no

overfitting.

The RNN with tanh and IRNN were not able to beat the

baseline for any number of time steps. (Le et al., 2015) re-

port that their RNN solve the problem for T = 150 and the

IRNN for T = 300, but they require over a million itera-

tions before they start learning. Neither of the two mod-

els came close to either the uRNN or the LSTM in perfor-

mance. The stark difference in our findings are best ex-

plained by our use of RMSprop with significantly higher

learning rates (10−3 as opposed to 10−8) than (Le et al.,

2015) use for SGD with momentum.

5.3. Pixel-by-pixel MNIST

In this task, suggested by (Le et al., 2015), algorithms are

fed pixels of MNIST (LeCun et al., 1998) sequentially and

required to output a class label at the end. We consider two

tasks: one where pixels are read in order (from left to right,

bottom to top) and one where the pixels are all randomly

permuted using the same randomly generated permutation

matrix. The same model architectures as for the adding

problem were used for this task, except we now use a soft-

max for category classification. We ran the optimization

algorithms until convergence of the mean categorical cross

entropy on test data, and plot test accuracy in Figure 3.

Both the uRNN and LSTM perform applaudably well here.

On the correct unpermuted MNIST pixels, the LSTM per-

forms better, achieving 98.2 % test accurracy versus 95.1%

for the uRNN. However, when we permute the ordering of

the pixels, the uRNN dominates with 91.4% of accuracy in

contrast to the 88% of the LSTM, despite having less than

a quarter of the parameters. This result is state of the art on

this task, beating the IRNN (Le et al., 2015), which reaches

close to 82% after 1 million training iterations. Notice that

uRNN reaches convergence in less than 20 thousand itera-

tions, while it takes the LSTM from 5 to 10 times as many

to finish learning.

Permuting the pixels of MNIST images creates many

longer term dependencies across pixels than in the origi-

nal pixel ordering, where a lot of structure is local. This

makes it necessary for a network to learn and remember

more complicated dependencies across varying time scales.

The results suggest that the uRNN is better able to deal

with such structure over the data, where the LSTM is better

suited to more local sequence structure tasks.

5.4. Exploratory experiments

Norms of hidden state gradients. As discussed in Sec-

tion 2, key to being able to learn long term dependencies

is in controlling ∂C
∂ht

. With this in mind, we explored how

each model propagated gradients, by examining

∥

∥

∥

∂C
∂ht

∥

∥

∥
as

a function of t. Gradient norms were computed at the be-

Unitary Evolution Recurrent Neural Networks

Figure 4. From left to right. Norms of the gradients with respect to hidden states i.e.

∥

∥

∥

∂C

∂ht

∥

∥

∥
at (i) beginning of training, (ii) after 100

iterations. (iii) Norms of the hidden states and (iv) L2 distance between hidden states and final hidden state. The gradient norms of

uRNNs do not decay as fast as for other models as training progresses. uRNN hidden state norms stay much more consistent over time

than the LSTM. LSTM hidden states stay almost the same after a number of time steps, suggesting that it is not able to use new input

information.

ginning of training and again after 100 iterations of training

on the adding problem. The curves are plotted in Figure 4.

It is clear that at first, the uRNN propagates gradients per-

fectly, while each other model has exponentially vanishing

gradients. After 100 iterations of training, each model ex-

periences vanishing gradients, but the uRNN is best able to

propagate information, having much less decay.

Hidden state saturation. We claim that typical recurrent

architectures saturate, in the sense that after they acquire

some information, it becomes much more difficult to ac-

quire further information pertaining to longer dependen-

cies. We took the uRNN and LSTM models trained on

the adding problem with T = 200, and computed a for-

ward pass with newly generated data for the adding prob-

lem with T = 1000. In order to show saturation effects,

we plot the norms of the hidden states and the L2 distance

between each state and the last in Figure 4.

In our experiments, it is clear that the uRNN does not suffer

as much as other models do. Notice that whilst the norms of

hidden states in the uRNN grow very steadily over time, in

the LSTM they grow very fast, and then stay constant after

about 500 time steps. This behaviour may suggest that the

LSTM hidden states saturate in their ability to incorporate

new information, which is vital for modeling long com-

plicated sequences. It is interesting to see that the LSTM

hidden state at t = 500, is close to that of t = 1000, whilst

this is far from the case in the uRNN. Again, this suggests

that the LSTM’s capacity to use new information to alter

its hidden state severly degrades with sequence length. The

uRNN does not suffer from this difficulty nearly as badly.

A clear example of this phenomenon was observed in the

adding problem with T = 750. We found that the Pearson

correlation between the LSTM output prediction and the

first of the two uniform samples (whose sum is the target

output) was ρ = 0.991. This suggests that the LSTM learnt

to simply find and store the first sample, as it was unable

to incorporate any more information by the time it reached

the second, due to saturation of the hidden states.

6. Discussion

There are a plethora of further ideas that may be explored

from our findings, both with regards to learning representa-

tion and efficient implementation. For example, one hurdle

of modeling long sequences with recurrent networks is the

requirement of storing all hidden state values for the pur-

pose of gradient backpropagation. This can be prohibitive,

since GPU memory is typically a limiting factor of neural

network optimization. However, since our weight matrix is

unitary, its inverse is its conjugate transpose, which is just

as easy to operate with. If further we were to use an invert-

ible nonlinearity function, we would no longer need to store

hidden states, since they can be recomputed in the back-

ward pass. This could have potentially huge implications,

as we would be able to reduce memory usage by an order

of T , the number of time steps. This would make having

immensely large hidden layers possible, perhaps enabling

vast memory representations.

In this paper we demonstrate state of the art performance

on hard problems requiring long term reasoning and mem-

ory. These results are based on a novel parameterization

of unitary matrices which permit efficient matrix compu-

tations and parameter optimization. Whilst complex do-

main modeling has been widely succesful in the signal pro-

cessing community (e.g. Fourier transforms, wavelets), we

have yet to exploit the power of complex valued represen-

tation in the deep learning community. Our hope is that

this work will be a step forward in this direction. We moti-

vate the idea of unitary evolution as a novel way to mitigate

the problems of vanishing and exploding gradients. Empir-

ical evidence suggests that our uRNN is better able to pass

gradient information through long sequences and does not

suffer from saturating hidden states as much as LSTMs,

typical RNNs, or RNNs initialized with the identity weight

matrix (IRNNs).

Unitary Evolution Recurrent Neural Networks

Acknowledgments

We thank the developers of Theano (Bergstra et al., 2010)

for their great work. We thank NSERC, Compute Canada,

Canada Research Chairs and CIFAR for their support. We

would also like to thank Çaglar Gulçehre, David Krueger,

Soroush Mehri, Marcin Moczulski, Mohammad Pezeshki

and Saizheng Zhang for helpful discussions, comments and

code sharing.

References

Bengio, Yoshua, Simard, Patrice, and Frasconi, Paolo.

Learning long-term dependencies with gradient descent

is difficult. IEE Transactions on Neural Networks, 5,

1994.

Bergstra, James, Breuleux, Olivier, Bastien, Frédéric,

Lamblin, Pascal, Pascanu, Razvan, Desjardins, Guil-

laume, Turian, Joseph, Warde-Farley, David, and Ben-

gio, Yoshua. Theano: a CPU and GPU math expression

compiler. Proceedings of the Python for Scientific Com-

puting Conference (SciPy), 2010.

Cho, Kyunghyun, van Merriënboer, Bart, Bahdanau,

Dzmitry, and Bengio, Yoshua. On the properties of neu-

ral machine translation: Encoder–Decoder approaches.

In Eighth Workshop on Syntax, Semantics and Structure

in Statistical Translation, October 2014.

Collobert, Ronan, Weston, Jason, Bottou, Léon, Karlen,

Michael, Kavukcuoglu, Koray, and Kuksa, Pavel. Natu-

ral language processing (almost) from scratch. Journal

of Machine Learning Research, 12:2493–2537, 2011.

Glorot, Xavier and Bengio, Yoshua. Understanding the

difficulty of training deep feedforward neural networks.

International Conference on Artificial Intelligence and

Statistics (AISTATS), 2010.

Glorot, Xavier, Bordes, Antoine, and Bengio, Yoshua.

Deep sparse rectifier neural networks. International

Conference on Artificial Intelligence and Statistics (AIS-

TATS), 2011.

Graves, Alex, Wayne, Greg, and Danihelka, Ivo. Neural

turing machines. arXiv preprint arXiv:1410.5401, 2014.

Hinton, Geoffrey, Deng, Li, Yu, Dong, Dahl, George, Mo-

hamed, Abdel-rahman, Jaitly, Navdeep, Senior, Andrew,

Vanhoucke, Vincent, Nguyen, Patrick, Sainath, Tara, and

Kingsbury, Brian. Deep neural networks for acoustic

modeling in speech recognition. Signal Processing Mag-

azine, 2012.

Hirose, Akira. Complex-valued neural networks: theories

and applications, volume 5. World Scientific Publishing

Company Incorporated, 2003.

Hochreiter, S. Untersuchungen zu dynamischen neu-

ronalen Netzen. Diploma thesis, T.U. Münich, 1991.

Hochreiter, Sepp and Schmidhuber, Jürgen. Long short-

term memory. Neural Computation, 8(9):1735–1780,

1997.

Hoffman, Kenneth and Kunze, Ray. Linear Algebra. Pear-

son, second edition, 1971.

Krizhevsky, Alex, Sutskever, Ilya, and Hinton, Geoffrey E.

Imagenet classification with deep convolutional neu-

ral networks. Neural Information Processing Systems,

2012.

Le, Quoc, Sarlós, Tamás, and Smola, Alex. Fastfood - ap-

proximating kernel expansions in loglinear time. Inter-

national Conference on Machine Learning, 2010.

Le, Quoc V., Navdeep, Jaitly, and Hinton, Geoffrey E. A

simple way to initialize recurrent networks of rectified

linear units. arXiv preprint arXiv:1504.00941, 2015.

LeCun, Yann, Bottou, Léon, Bengio, Yoshua, and Haffner,

Patrick. Gradient-based learning applied to document

recognition. Proceedings of the IEEE, 1998.

Martens, James and Sutskever, Ilya. Learning recurrent

neural networks with hessian-free optimization. Inter-

national Conference on Machine Learning, 2011.

Nair, Vinod and Hinton, Geoffrey E. Rectified linear units

improve restricted boltzmann machines. International

Conference on Machine Learning, 2010.

Pascanu, Razvan, Mikolov, Tomas, and Bengio, Yoshua.

On the difficulty of training recurrent neural networks.

International Conference on Machine Learning, 2010.

Saxe, Andrew M., McLelland, James L., and Ganguli,

Surya. Exact solutions to the nonlinear dynamics of

learning in deep linear neural networks. International

Conference in Learning Representations, 2014.

Tieleman, Tijmen and Hinton, Geoffrey. Lecture 6.5-

rmsprop: Divide the gradient by a running average of

its recent magnitude. Coursera: Neural Networks for

Machine Learning, 2012.

Yang, Zichao, Moczulski, Marcin, Denil, Misha, de Fre-

itas, Nando, Smola, Alex, Song, Le, and Wang, Ziyu.

Deep fried convnets. International Conference on Com-

puter Vision (ICCV), 2015.

Zimmermann, Hans-Georg, Minin, Alexey, and

Kusherbaeva, Victoria. Comparison of the com-

plex valued and real valued neural networks trained

with gradient descent and random search algorithms. In

ESANN, 2011.

