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UNITARY FORMS FOR HOLOMORPHIC VERTEX OPERATOR

ALGEBRAS OF CENTRAL CHARGE 24

CHING HUNG LAM

Abstract. We prove that all holomorphic vertex operator algebras of central charge

24 with non-trivial weight one subspaces are unitary. The main method is to use the

orbifold construction of a holomorphic VOA V of central charge 24 directly from a

Niemeier lattice VOA VN . We show that it is possible to extend the unitary form for

the lattice VOA VN to the holomorphic VOA V by using the orbifold construction and

some information of the automorphism group Aut(V ).

1. Introduction

The classification of strongly regular holomorphic vertex operator algebras (abbrevi-

ated as VOA) of central charge 24 with non-trivial weight one space has recently been

completed (see [ELMS21, LS20b, MS] and the references given there). Except for the

uniqueness of holomorphic VOAs of moonshine type (i.e, with V1 = 0), it was proved

that there are exactly 70 strongly regular holomorphic VOAs with central charge 24 and

non-zero weight one space; moreover, their VOA structures are uniquely determined by

the Lie algebra structures of their weight one spaces. The possible Lie algebra structures

for their weight one subspaces are exactly those given in Schellekens’ list [Sc93]. It is

commonly believed that all holomorphic VOAs of central charge 24 are unitary (i.e., they

have some positive definite invariant Hermitian forms). In this article, we show that all

holomorphic vertex operator algebras of central charge 24 with non-trivial weight one

subspaces are unitary.

It is well known [Bo86, DLin14, FLM88] that lattice VOAs are unitary. It turns out that

many automorphisms of finite order will preserve the unitary form. Our main method is

to use the orbifold construction of holomorphic VOAs of central charge 24 directly from

Niemeier lattice VOAs (cf. [HM]). In [ELMS21], it is proved that any holomorphic VOA of

central charge 24 with a semisimple weight one Lie algebra can be constructed by a single

orbifold construction from the Leech lattice VOA VΛ. It is well known [Bo86, DN99] that
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2 CHING HUNG LAM

any automorphism g̃ ∈ Aut(VΛ) can be written as g̃ = τ̂ exp(2πiβ(0)) where τ ∈ Co.0 =

O(Λ), β ∈ RΛτ and τ̂ denotes a standard lift of τ in O(Λ̂). It was first observed by G. Höhn

[Hö2] that the isometry τ belongs to only 11 special conjugacy classes in Co.0 = O(Λ).

All these isometries have positive frame shape and their fixed point sublattices satisfy

some duality properties [LM, MS].

In [HM], other orbifold constructions for holomorphic VOAs of central charge 24 are

discussed. In particular, it was proved that for any holomorphic VOA V of central charge

24 with V1 6= 0, there exist a Niemeier lattice N and an automorphism g ∈ Aut(VN)

of finite order such that the VOA ṼN (g) obtained by an orbifold construction from VN

and g is isomorphic to V . Therefore, V contains a subVOA V g
N , which is also unitary.

In addition, we verify that the irreducible gi-twisted modules of VN are unitary twisted

VN -modules for all i ∈ Z. By using some information about the automorphism group of

V , we will show that the unitary form on V g
N can be extended to V and V itself is also

unitary (cf. Theorem 5.3). An advantage of using Niemeier lattice VOA is that the order

of g can be chosen to be relatively small and (V g
N)1 is a relatively large Lie subalgebra of

V1. Up to conjugation by an inner automorphism, any automorphism g ∈ Aut(VN) can

be written as g = σ̂ exp(2πiγ(0)), where σ ∈ O(N), γ ∈ Q ⊗Z N
σ and Nσ denotes the

sublattice of N fixed by σ. It turns out that σ can be chosen such that it has the same

frame shape as one of the 11 conjugacy classes of Co0 discussed above. Moreover, the

order of g is the same as the order of σ.

The organization of this article is as follows. In Section 2, we review some basic notions

about unitary VOAs and their unitary modules from [DLin14] and [CKLW]. In Section

3, we recall some facts about lattice VOAs and their unitary structures. We also show

that any irreducible g-twisted module V χ
L (g) for a lattice VOA VL for a finite order au-

tomorphism g is a unitary g-twisted module for VL. In Section 4, we first review several

facts about the automorphism groups of holomorphic VOAs of central charge 24 with

non-trivial weight one spaces. We then discuss the orbifold constructions of holomorphic

VOAs of central charge 24 directly from Niemeier lattice VOAs. Some explicit choices

for the Niemeier lattice N and the automorphism g are also discussed. In Section 5, we

study the unitary form for holomorphic VOAs of central charge 24 with non-trivial weight

one spaces. The main theorem is Theorem 5.3. We show that a VOA V is unitary if it

contains a pair of commuting automorphisms (f, h) satisfying some conditions. Finally

we discuss a method to define the pair (f, g) for each holomorphic VOA of central charge

24 with non-trivial weight one space.
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Acknowledgment. After this work has been completed, we noticed the preprint by Carpi

et. al. [CGGH], in which the unitary of strongly rational holomorphic vertex operator

algebras with central charge 24 and non-zero weight one subspace is proved; nevertheless,

their method uses the theory of tensor category and is quite different from our approach.

2. Unitary VOA and unitary modules

We first recall the notion of unitary VOAs and unitary modules from [DLin14] (see also

[CKLW]).

Definition 2.1 ([DLin14]). Let (V, Y,1, ω) be a vertex operator algebra and let φ :

V → V be an anti-linear involution of V (i.e, φ(λu) = λ̄φ(u), φ(1) = 1, φ(ω) = ω,

φ(unv) = φ(u)nφ(v) for any u, v ∈ V , n ∈ Z, and φ has order 2). Then (V, φ) is said to

be unitary if there exists a positive-definite Hermitian form ( , )V : V × V → C, which is

C-linear on the first vector and anti-C-linear on the second vector, such that the following

invariant property holds for any a, u, v ∈ V :

(Y (ezL(1)(−z−2)L(0)a, z−1)u, v)V = (u, Y (φ(a), z)v)V ,

where L(n) is defined by Y (ω, z) =
∑

n∈Z L(n)z
−n−2.

Remark 2.2. By [CKLW, Proposition 5.3], V is self-dual and of CFT-type if (V, φ) is a

simple unitary VOA with an invariant Hermitian form (·, ·)V . In this case, V has a unique

invariant symmetric bilinear form 〈·, ·〉, up to scalar ([Li94]). Normalizing (1,1)V =

〈1,1〉 = 1, we obtain (u, v)V = 〈u, φ(v)〉 for all u, v ∈ V . Note that (φ(u), φ(v))V =

(u, v)V = (v, u)V for u, v ∈ V .

Definition 2.3 ([DLin14]). Let (V, φ) be a unitary VOA and g a finite order automor-

phism of V . An (ordinary) g-twisted V -module (M,YM) is called a unitary g-twisted

V -module if there exists a positive-definite Hermitian form ( , )M : M ×M → C such

that the following invariant property holds for a ∈ V and w1, w2 ∈ M :

(YM(ezL(1)(−z−2)L(0)a, z−1)w1, w2)M = (w1, YM(φ(a), z)w2)M . (2-1)

We call such a form a positive-definite invariant Hermitian form.

The following lemma follows from the similar argument as in [FHL93, Remark 5.3.3].

Lemma 2.4 (cf. [FHL93, Remark 5.3.3]). Let (V, φ) be a unitary VOA. Let M be a V -

module and let M ′ be the contragredient module of M with a natural pairing 〈·, ·〉 between
M and M ′.
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(1) If M has a non-degenerate invariant sesquilinear form (·, ·), which is linear on

the first vector and anti-C-linear on the second vector and satisfies the invariant

property (2-1), then the map Φ :M →M ′ defined by (u, v) = 〈u,Φ(v)〉, u, v ∈M ,

is an anti-linear bijective map and Φ(anu) = φ(a)nΦ(u) for a ∈ V and u ∈ M .

(2) If there exists an anti-linear bijective map Φ : M → M ′ such that Φ(anu) =

φ(a)nΦ(u) for a ∈ V and u ∈ M , then (u, v) = 〈u,Φ(v)〉, u, v ∈ M , is a non-

degenerate invariant sesquilinear form on M .

The proof of the following lemma can be found in [CLS18]. The main point is that

the product of two anti-automorphisms is an automorphism and it acts on an irreducible

V -module as a scalar.

Lemma 2.5. Let (V, φ) be a unitary VOA. Let M be an irreducible V -module. Then there

exists at most one non-degenerate invariant sesquilinear form on M (up to scalar).

2.1. Unitary automorphisms and orbifold subVOAs. Let (V, φ) be a unitary VOA

and ( , ) the corresponding positive definite invariant Hermitian form. We use Aut( , )(V )

to denote the subgroup of Aut(V ) which preserves the Hermitian form, i.e,

Aut( , )(V ) = {g ∈ Aut(V ) | (gx, gy) = (x, y) for all x, y ∈ V }.

Next lemma follows immediately from the definition (see [CKLW]).

Lemma 2.6. Let (V, φ) be a unitary VOA. Then

(1) g ∈ Aut( , )(V ) if and only if g−1φg = φ.

(2) For any H < Aut( , )(V ), (V H , φ) is also a unitary VOA.

3. Lattice VOA

Next we review some facts about lattice VOAs and their unitary structures. Let L be

a positive-definite even lattice. Let VL = M(1) ⊗C C{L} be the lattice VOA as defined

in [FLM88]. Let L∗ be the dual lattice of L. Then VL∗ = M(1) ⊗C C{L∗} is a VL-

module and for any coset λ + L ∈ L∗/L, Vλ+L = M(1) ⊗C C{λ + L} is an irreducible

VL-module. It is proved in [KRR13] that there is a positive-definite Hermitian form

on M(1) = SpanC{α1(−n1) . . . αk(−nk)1 | αi ∈ L, ni ∈ Z>0} such that (1,1) = 1,

(α(n)u, v) = (u, α(−n)v) for α ∈ L and for any u, v ∈M(1). There also exists a positive-

definite Hermitian form on C{L∗} = SpanC{eα | α ∈ L∗} determined by (eα, eβ) = δα,β.

Then a positive-definite Hermitian form on VL∗ can be defined by

(u⊗ eα, v ⊗ eβ) = (u, v) · (eα, eβ),
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where u, v ∈ M(1) and α, β ∈ L.

Let φ : VL∗ → VL∗ be an anti-linear map determined by:

α1(−n1) · · ·αk(−nk)⊗ eα 7→ (−1)kα1(−n1) · · ·αk(−nk)⊗ e−α,

where α1, . . . , αk ∈ L, α ∈ L∗.

Theorem 3.1. ([DLin14, Theorem 4.12]) Let L be a positive-definite even lattice and let

φ be the anti-linear map of VL defined as above. Then the lattice vertex operator algebra

(VL, φ) is a unitary vertex operator algebra. Moreover, Vλ+L is a unitary module of VL for

each λ+ L ∈ L∗/L.

3.1. Aut( , )(VL). Next we consider some automorphisms of VL which preserves the in-

variant Hermitian form. First we recall some facts about the automorphism group of

VL. Let L be an even lattice with the (positive-definite) bilinear form 〈·|·〉. Denote by

L̂ = {±eα | α ∈ L} a central extension of L by ±1 such that eαeβ = (−1)(α|β)eβeα. Let

Aut(L̂) be the automorphism group of L̂ as a group. We also assume that eα · e−α =

(−1)〈α|α〉/2e0. For g ∈ Aut(L̂), let ḡ be the map L → L defined by g(eα) ∈ {±eḡ(α)}. Let
O(L̂) = {g ∈ Aut(L̂) | ḡ ∈ O(L)}. Then by [FLM88, Proposition 5.4.1], we have an exact

sequence

1 → Hom(L,Z/2Z) → O(L̂)
ι−→ O(L) → 1. (3-1)

It is known that O(L̂) is a subgroup of Aut(VL) (cf. loc. cit.). Let

Inn (VL) =
〈
exp(a(0)) | a ∈ (VL)1

〉

be the normal subgroup of Aut(VL) generated by the inner automorphisms exp(a(0)).

Theorem 3.2 ([DN99]). Let L be a positive definite even lattice. Then

Aut(VL) = Inn (VL)O(L̂)

Moreover, the intersection Inn (VL) ∩ O(L̂) contains a subgroup hom(L,Z/2Z) and the

quotient Aut(VL)/Inn (VL) is isomorphic to a quotient group of O(L).

The following lemmas can be proved easily from the definition.

Lemma 3.3. Let g ∈ O(L̂). Then g ∈ Aut( , )(VL).

Proof. Let g ∈ O(L̂). Set g(eα) = aαe
ḡα and g(e−α) = bαe

−ḡα for some roots of unity

aα, bα ∈ C. Recall that e0 is the identity of L̂ and eα · e−α = (−1)〈α,α〉/2e0. Then

(−1)〈α,α〉/2e0 = g(eα · e−α) = aαbαe
ḡα · e−ḡα = aαbα(−1)〈ḡα,ḡα〉/2e0
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and we have aαbα = 1. Then

gφ(α1(−n1) · · ·αk(−nk)⊗ eα) = (−1)kbαḡα1(−n1) · · · ḡαk(−nk)⊗ e−ḡα

and

φg(α1(−n1) · · ·αk(−nk)⊗ eα) = (−1)kaαḡα1(−n1) · · · ḡαk(−nk)⊗ e−ḡα.

Since bα = aα, we have gφ = φg as desired. �

Lemma 3.4. Let β ∈ L∗ and n a positive integer. Then h = exp(2πiβ(0)
n
) ∈ Aut( , )(VL).

Proof. Let h = exp(2πiβ(0)
n
). Then

hφ(α1(−n1) · · ·αk(−nk)⊗ eα) =(−1)kh(α1(−n1) · · ·αk(−nk)⊗ e−α)

=(−1)k exp(−2πi〈β|α〉/n)α1(−n1) · · ·αk(−nk)⊗ e−α

=φ(exp(2πi〈β|α〉/n)α1(−n1) · · ·αk(−nk)⊗ eα)

=φh(α1(−n1) · · ·αk(−nk)⊗ eα)

as desired. Note that φ is an anti-linear map. �

3.2. Unitary form on twisted modules. Next we discuss a unitary form on a twisted

module. The main idea is similar to that in [CLS18, DLin14]. First we review the

construction of twisted VL-modules from [DL96] and [Le85].

Let L be an even positive-definite lattice with a Z-bilinear form 〈·|·〉. Let τ be an

isometry of L. Let p be a positive integer such that τ p = 1 but p may not be the order of

τ . Define h = C⊗Z L and extend the Z-form 〈·|·〉 C-linearly to h. Denote

h(n) = {α ∈ h | τα = ξnα} for n ∈ Z,

where ξ = exp(2π
√
−1/p). In particular, h(0) = hτ is the fixed point subspace of τ on h.

Let ĥ[τ ] =
∐

n∈Z h(n) ⊗ tn/p ⊕ Cc be the τ -twisted affine Lie algebra of h. Denote

ĥ[τ ]+ =
∐

n>0

h(n) ⊗ tn/p, ĥ[τ ]− =
∐

n<0

h(n) ⊗ tn/p, and ĥ[τ ]0 = h(0) ⊗ t0 ⊕ Cc,

and form an induced module

S[τ ] = U(ĥ[τ ])⊗U(ĥ[τ ]+⊕ĥ[τ ]0) C
∼= S(ĥ[τ ]−) (linearly),

where
∐

n>0 h(n) ⊗ tn/p acts trivially on C and c acts as 1, and U(·) and S(·) denote the

universal enveloping algebra and symmetric algebra, respectively. For any α ∈ L and

n ∈ 1
p
Z, let α(pn) be the natural projection of α in h(pn) and we denote α(n) = α(pn) ⊗ tn.
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Set s = p if p is even and s = 2p if p is odd. Following [DL96, Remark 2.2], we define

a τ -invariant alternating Z-bilinear map cτ from L× L to Zs by

cτ (α, β) =

p−1∑

i=0

(s/2 + si/p)〈τ i(α)|β〉+ sZ. (3-2)

For any positive integer n, let 〈κn〉 be a cyclic group of order n and consider the central

extension

1 −→ 〈κs〉 −→ L̂τ ¯−→ L −→ 1

such that aba−1b−1 = κ
cτ (ā,b̄)
s for a, b ∈ L̂τ . Recall that there is a set-theoretic identification

between the central extensions L̂ and L̂τ such that the respective group multiplications

× and ×τ are related by

a× b = κε0(ā,b̄)s a×τ b, (3-3)

where ε0(α, β) =
∑

0<r<p/2

(s/2 + rs/p)〈τ−rα|β〉 (see [DL96, Remark 2.1]).

Now let τ̂ be a standard lift of τ in O(L̂), i.e., τ̂(eα) = eα for any α ∈ Lτ . Then τ̂ is

also an automorphism of L̂τ by the identification given in (3-3).

Next we recall a construction of an irreducible L̂τ -module on which K = {a−1τ̂ (a) |
a ∈ L̂τ} acts trivially and κs acts as multiplication by ξ = exp(2π

√
−1/s) (cf. [Le85,

Proposition 6.1] ). Let P0 : h → h(0) be the natural projection. Set

N = (1− P0)h ∩ L = {α ∈ L | 〈α|h(0)〉 = 0},

R = {α ∈ N | cτ(α, β) = 0 for β ∈ N} and M = (1−P0)L. Denoting by Q̂τ the subgroup

of L̂τ obtained by pulling back a subgroup Q of L. Then R̂τ is the center of N̂τ and that

M̂τ ⊂ R̂τ . Note also that K = {a−1τ̂(a) | a ∈ L̂τ} < M̂τ < R̂τ .

Let A > R̂τ > K be a maximal abelian subgroup of N̂τ . Let χ : A/K → C be a linear

character of A/K. Let Cχ be the 1-dimensional module of A affording χ. Then we obtain

an irreducible N̂τ -module Tχ and an irreducible L̂τ -module Uχ as follows:

Tχ = C[N̂τ ]⊗C[A] Cχ and Uχ = C[L̂τ ]⊗C[A] Cχ = C[P0(L)]⊗ Tχ.

The twisted space V χ
L (τ) = S[τ ]⊗ Uχ forms an irreducible τ̂ -twisted VL-module with the

vertex operator Y τ (·, z) : VL → End(V T
L )[[z, z−1]] on V T

L defined as follows (cf. [DL96]):

For a ∈ L̂, define

W τ (a, z) = p−〈ā|ā〉/2σ(ā)E−(−ā, z)E+(−ā, z)az−〈ā|ā〉/2, (3-4)
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where

E±(α, z) = exp



∑

n∈ 1

p
Z±

α(n)

n
z−n




and

σ(α) =





∏

0<r<p/2

(1− ξ−r)〈τ
rα|α〉2〈τ

p/2α|α〉 if p ∈ 2Z,

∏

0<r<p/2

(1− ξ−r)〈τ
rα|α〉 if p ∈ 2Z+ 1.

(3-5)

Note that a ∈ L̂ acts on Uχ as an element of L̂τ via the identification given in (3-3).

For α1, . . . , αk ∈ h, n1, . . . , nk > 0, and v = α1(−n1) · · ·αk(−nk) · ι(a) ∈ VL, set

W (v, z) = ◦
◦

(
1

(n1 − 1)!

(
d

dz

)n1−1

α1(z)

)
· · ·
(

1

(nk − 1)!

(
d

dz

)nk−1

αk(z)

)
W τ (a, z)◦

◦
,

where α(z) =
∑

n∈Z/p α(n)z
−n−1 and ◦

◦
· · · ◦

◦
denotes the normal ordered product.

Define constants cimn ∈ C for m,n ≥ 0 and i = 0, · · · , p− 1 by the formulas

∑

m,n≥0

c0mnx
myn = −1

2

p−1∑

r=1

log

(
(1 + x)1/p − ξ−r(1 + y)1/p

1− ξ−r

)
, (3-6)

∑

m,n≥0

cimnx
myn =

1

2
log

(
(1 + x)1/p − ξ−i(1 + y)1/p

1− ξ−i

)
for i 6= 0. (3-7)

Let {β1, · · ·, βd} be an orthonormal basis of h and set

∆z =
∑

m,n≥0

p−1∑

i=0

d∑

j=1

cimn(τ
−iβj)(m)βj(n)z

−m−n. (3-8)

Then e∆z is well-defined on VL since ci00 = 0 for all i, and for v ∈ VL, e
∆zv ∈ VL[z

−1].

Note that ∆z is independent of the choice of orthonormal basis and

τ̂∆z = ∆z τ̂ and τ̂ e∆z = e∆z τ̂ on VL.

For v ∈ VL, the vertex operator Y τ (v, z) is defined by

Y τ (v, z) = W (e∆zv, z). (3-9)

Let β ∈ Q ⊗ Lτ such that p〈β|L〉 ∈ Z. Then g = τ̂ exp(2πiβ(0)) also defines an

automorphism of VL and gp = 1. An irreducible g-twisted module is then given by

V χ
L (g) = S[τ ]⊗ e−β ⊗ Uχ ∼= S[τ ]⊗ C[P τ

0 (L)− β]⊗ Tχ,
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as a vector space. The vertex operator is still given by Y τ (v, z) but the action of a ∈ L̂

on Uχ is twisted by e−β. Note that the alternating map cτ (·, ·) is still well-defined on

L̃ = SpanZ{L, β} and a · (e−β ⊗ u) = ξ−〈ā|β〉e−β ⊗ a · u for any a ∈ L̂ and u ∈ Uχ.

Next we define a Hermitian form on V χ
L (g) as follows. For any a, b ∈ e−βL̂τ , define

(t(a), t(b)) =




0 if b−1a 6∈ A,
χ(b−1a) if b−1a ∈ A,

(3-10)

where t(a) = a⊗1 ∈ e−β⊗Uχ. Using the similar arguments as in [FLM88, KRR13], there

is a positive-definite Hermitian form ( , ) on S[τ ] such that

(1, 1) = 1,

(α(n) · u, v) = (u, α(−n) · v),

for any u, v ∈ S[τ ] and α ∈ L. Then one can define a positive-definite Hermitian form on

V χ
L (g) by

(u⊗ r, v ⊗ s) = (u, v) · (r, s), where u, v ∈ S[τ ], r, s ∈ e−β ⊗ Uχ.

Lemma 3.5. For any u, v ∈ V χ
L (g) and a ∈ L̂, we have (a · u, a · v) = (u, v).

Proof. It suffices to consider the case for

u = v1 ⊗ t(b1) and v = v2 ⊗ t(b2),

where v1, v2 ∈ S[τ ] and b1, b2 ∈ e−βL̂τ . By definition, we have

(a · u, a · v) = (v1 ⊗ t(ab1), v2 ⊗ t(ab2)) = (v1, v2) · (t(ab1), t(ab2)).

Moreover, (ab2)
−1ab1 = b−1

2 a−1ab1 = b−1
2 b1. Therefore, we have χ((ab2)

−1ab1) = χ(b−1
2 b1)

if b−1
2 b1 ∈ A. Hence, we have (a · u, a · v) = (u, v) as desired. �

Lemma 3.6. For any α ∈ L and u, v ∈ V χ
L (g), we have

(eα · u, v) = (u, µe−α · v)

where

µ =




ξ−

∑
0<r<p/2 r〈τ

rα,α〉 if p is odd,

ξ−
∑

0<r<p/2 r〈τ
rα,α〉(−1)

1

2
〈τp/2α,α〉 if p is even,
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Proof. Recall the set-theoretic identification between L̂ and L̂τ given in (3-3). It follows

from eα × e−α = κ
〈α|α〉/2
2 e0 that

eα ×τ e
−α = κε0(α,α)s κ

〈α|α〉/2
2 e0,

=




κ
∑

0<r<p/2 r〈τ
rα|α〉

p e0 if p is odd,

κ
∑

0<r<p/2 r〈τ
rα|α〉

p κ
1

2
〈τp/2α|α〉

2 e0 if p is even.

Now by Lemma 3.5, we have

(u, µe−αv) = (eα · u, eα · (µe−αv)) = (eα · u, v)

as desired. �

Lemma 3.7. For α ∈ L, σ(α)µ = (−1)〈α|α〉/2σ(α).

Proof. By definition (see (3-5)), we have

σ(α)µ =
∏

0<r<p/2

(1− ξ−r)〈τrα|α〉 · ξ−
∑

0<r<p/2 r〈τ
rα,α〉

=(−1)〈α,α〉/2
∏

0<r<p/2

(1− ξ−r)〈τ
rα|α〉 = (−1)〈α|α〉/2σ(α)

if p is odd and

σ(α)µ =
∏

0<r<p/2

(1− ξ−r)〈τrα|α〉2〈τp/2α|α〉 · ξ−
∑

0<r<p/2 r〈τ
rα,α〉 · (−1)〈τ

p/2α|α〉/2

=(−1)〈α|α〉/2
∏

0<r<p/2

(1− ξ−r)〈τ
rα|α〉2〈τ

p/2α|α〉 = (−1)〈α|α〉/2σ(α)

if p is even. �

The proof of the following lemma is very similar to that in [DLin14, Theorem 4.14] and

[CLS18, Lemma 5.6].

Lemma 3.8. For any χ, V χ
L (g) is a unitary g-twisted module of (VL, φ).

Proof. We only need to verify the invariant property. Since the VOA VL is generated by

{α(−1) · 1 | α ∈ L} ∪ {eα | α ∈ L}, it is sufficient to check

(Y τ (ezL(1)(−z−2)L(0)x, z−1)u, v) = (u, Y τ (φ(x), z)v)

for x ∈ {α(−1) · 1 | α ∈ L} ∪ {eα | α ∈ L} and u, v ∈ V χ
L (g) (cf. [DLin14, Proposition

2.12]).
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Let u = v1 ⊗ t(a) and v = v2 ⊗ t(b) for some v1, v2 ∈ S[τ ], a, b ∈ e−βL̂τ . Then

(α(n)u, v) = (u, α(−n)v)

for any α ∈ L and n ∈ 1
p
Z. Thus for x = α(−1) · 1, we have

(Y τ (ezL(1)(−z−2)L(0)α(−1) · 1, z−1)u, v)

=− z−2(Y τ (α(−1) · 1, z−1)v1 ⊗ t(a), v2 ⊗ t(b))

=− z−2
∑

n∈ 1

p
Z

(α(n)v1, v2)(t(a), t(b))z
n+1

=−
∑

n∈ 1

p
Z

(v1, α(−n)v2)(t(a), t(b))zn−1

=(u, Y τ (φ(α(−1) · 1), z)v).

Notice that e∆z(α(−1) · 1) = α(−1) · 1.
Now take x = eα with 〈α|α〉 = 2k. Then we have

(Y τ (ezL(1)(−z−2)L(0)eα, z−1)u, v)

=(Y τ (ezL(1)(−z−2)L(0)eα, z−1)v1 ⊗ t(a), v2 ⊗ t(b))

=(−z−2)k(p−kσ(α)E−(−α, z−1)E+(−α, z−1)eαzkv1 ⊗ t(a), v2 ⊗ t(b))

=(−z−2)k(v1 ⊗ t(a), p−kσ(α)E−(α, z)E+(α, z)µe−αzkv2 ⊗ t(b))

=(v1 ⊗ t(a), p−kσ(α)E−(α, z)E+(α, z)e−αz−kv2 ⊗ t(b))

=(v1 ⊗ t(a), Y τ (φ(eα), z)v2 ⊗ t(b))

as desired. �

4. Holomorphic VOAs of central charge 24

In this section, we review a construction of holomorphic vertex operator algebras of

central charge 24 using certain simple current extensions of lattice vertex operator algebras

and some orbifold vertex operator subalgebras in the Leech lattice vertex operator algebra

[Hö2, La20, BLS].

Assume that V1 is semisimple and let h be a Cartan subalgebra of V1. Let M(h) be the

subVOA generated by h and denote

W = CommV (M(h)) and X = CommV (W ).

Then X is isomorphic to a lattice VOA VL and W is isomorphic to an orbifold VOA V τ̂
Λτ
,

where Λτ is the coinvariant sublattice of the Leech lattice Λ associated with an isometry
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τ ∈ O(Λ) (see [Hö2] and [La20]). The possible isometry τ ∈ O(Λ) has been described in

[Hö2]. It is also proved in [La20] that all irreducible modules for the fixed point subVOA

V τ̂
Λτ

are simple current modules. Therefore, the VOA V can be viewed as a simple current

extension of VL ⊗ V τ̂
Λτ
.

4.1. Automorphism groups and StabAut(V )(VL⊗V τ̂
Λτ
). Next we describe the subgroup

StabAut(V )(VL ⊗ V τ̂
Λτ
) for each case by using the methods in [Sh07]. Note that the au-

tomorphism groups for all holomorphic VOAs of central charge 24 with V1 6= 0 and

StabAut(V )(VL ⊗ V τ̂
Λτ
) have already been computed in [BLS].

Notation 4.1. For any VOA U , Aut(U) acts on Irr(U) by module conjugations: for a

V -module (M,YM) and g ∈ Aut(V ), the g-conjugate module (g ◦M,Yg◦M) of (M,YM) is

defined by g ◦M = M as a vector space and Yg◦M (v, z) = YM (g−1v, z) for v ∈ V . This

action preserves the conformal weights. Thus, we have a canonical group homomorphism

µU : Aut(U) → O(Irr(U), qU), (4-1)

where O(Irr(U), qU) = {h ∈ Aut(Irr(U)) | qU(M) = qU (h(M)) for all M ∈ Irr(U)} is the

orthogonal group of the quadratic space (Irr(U), qU ). We use Aut(U) and Aut0(U) to

denote ImµU and KerµU , respectively.

Recall that the irreducible modules for the lattice VOA VL are parametrized by its

discriminant group D(L) = L∗/L and the fusion rules are given by Vλ+L×Vη+L = Vλ+η+L

for λ, η ∈ L∗. Since O(L) acts naturally on D(L), we also have a canonical group ho-

momorphism µL : O(L) → O(D(L), qL). We use O(L) to denote the image of µL on

O(D(L), qL).

Set W = V τ̂
Λτ

and let ϕ be a bijection from D(L) to Irr(W ) such that

V ∼=
⊕

λ+L∈D(L)

Vλ+L ⊗ ϕ(λ+ L).

For simplicity, we often denote ϕ(λ+ L) by Wλ.

Set Sϕ = {(Vλ+L, ϕ(λ + L)) | λ + L ∈ D(L)} ⊂ Irr(VL) × Irr(W ). The dual group

S∗
ϕ = Hom(Sϕ,C

×) acts faithfully on V with the action given by

S∗
ϕ = {exp(2π

√
−1v(0)) | v + L ∈ D(L)}. (4-2)

By [Sh07, Theorem 3.3], we know that

S∗
ϕ = {σ ∈ Aut(V ) | σ = id on VL ⊗W}. (4-3)
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and

NAut(V )(S
∗
ϕ)/S

∗
ϕ
∼= StabAut(VL⊗W )(Sϕ) = {σ ∈ Aut(VL ⊗W ) | σ ◦ Sϕ = Sϕ}. (4-4)

Note that

NAut(V )(S
∗
ϕ) = {σ ∈ Aut(V ) | σ(VL ⊗W ) = VL ⊗W} = StabAut(V )(VL ⊗W ). (4-5)

Set StabAut(V )(h) = {σ ∈ Aut(V ) | σ(h) = h} and StabInn (V )(h) = StabAut(V )(h)∩Inn (V ),
where h is the chosen Cartan subalgebra of V1. By [BLS, Lemma 3.14],

Aut(V ) = Inn (V )StabAut(V )(h) and NAut(V )(S
∗
ϕ) = Inn (VL)StabAut(V )(h).

Moreover, StabAut(V )(h)/S
∗
ϕ
∼= StabAut(VL⊗W )(Sϕ)∩ StabAut(VL⊗W )(h) [BLS, Lemma 3.15].

Recall from [BLS, Theorem 3.4] that µW is injective and Aut(W ) ∼= Aut(W ). Therefore,

the kernel of the group homomorphism

Aut(VL ⊗W ) → O(Irr(VL), qVL)×O(Irr(W ),−qW ), σ 7→ (µVL(σ|VL), µW (σ|W ))

is Aut0(VL) × 1. It turns out that StabAut(VL⊗W )(Sϕ) may be viewed as a subgroup of

Aut(VL) by considering the restriction of StabAut(VL⊗W )(Sϕ) to VL. We also have

StabAut(VL⊗W )(Sϕ) ∼= Aut0(VL).(O(L) ∩ ϕ∗(Aut(W ))) < Aut(VL), (4-6)

where ϕ∗(Aut(W )) = ϕ−1(Aut(W ))ϕ ⊂ O(D(L), qL) and

StabAut(VL⊗W )(Sϕ) ∩ StabAut(VL⊗W )(h)

∼={exp(a(0)) | a ∈ h}ι−1(O0(L).(O(L) ∩ ϕ∗(Aut(W )))).

LetW (V1) be the Weyl group of the semisimple Lie algebra V1. Since V1 is a semisimple,

StabInn (V )(h) acts on h as W (V1).

Lemma 4.2 ([BLS, Lemma 3.16]). (1) StabInn (V )(h)/{exp(a(0)) | a ∈ h} ∼= W (V1).

(2) StabAut(V )(h)/{exp(a(0)) | a ∈ h} ∼= µ−1
L (Ō(L) ∩ ϕ∗(Aut(W )).

Therefore, we may regard W (V1) as a subgroup of O(L).

4.2. Orbifold construction from Niemeier lattice VOAs. It is known that all holo-

morphic VOA of central charge 24 can be constructed from a single orbifold construction

from a lattice VOA. The constructions from Leech lattice VOA have been discussed in

[ELMS21] (see also [CLM22]). The constructions from Niemeier lattice VOAs are also

discussed in [HM]. In particular, the following has been proved.
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Theorem 4.3 (cf. [HM, Proposition 5.7 and Remark 5.8]). Let V be a holomorphic VOA

of central charge 24 with V1 6= 0. Then there exist a Niemeier N and an automorphism

g = τ̂ exp(2πiβ(0)) ∈ Aut(VN) such that V ∼= ṼN(g). Moreover,

(1) τ has the same frame shape as one of the 11 conjugacy classes of Co0 as discussed

in [Hö2] and |g| = |τ |.
(2) L ∼= N τ

β and V τ̂
Nτ

∼= V τ̂
Λτ
, where N τ

β = {x ∈ N τ | 〈x, β〉 ∈ Z}; in particular,

V g
N > VL ⊗ V τ̂

Λτ
.

(3) (V g
N)1 is non-abelian and has the same Lie rank as V1.

We note that the choices for N and g are not unique. It turns out that it is possible to

choose (N, g) so that (V g
N)1 contains a simple Lie ideal which is a proper Lie subalgebra

of a simple ideal of V1.

Proposition 4.4. Let V be a holomorphic VOA of central charge 24 with V1 6= 0 and

rankV1 < 24. Then there exist a Niemeier N and an automorphism g = τ̂ exp(2πiβ(0)) ∈
Aut(VN) such that V ∼= ṼN(g) and Conditions (1), (2), (3) in Theorem 4.3 are satisfied.

Moreover, (V g
N)1 contains a simple Lie ideal which is a proper Lie subalgebra of a simple

ideal of V1.

Next we will describe N and g explicitly for the cases that |g| > 2.

4.2.1. Z3 orbifold construction from Niemeier lattice VOA. First we consider the VOAs

that can be obtained by a Z3 orbifold construction from Niemeier lattice VOA.

Let N be a Niemeier lattice. Then for any automorphism g ∈ Aut(VN) of finite order,

g = τ̂ exp(2πiβ(0)) for some τ̂ ∈ O(N̂) and β ∈ Q⊗Z N
τ with |g| · β ∈ (N τ )∗.

Case: V1 ∼= A6
2,3.

In this case, V ∼= ṼN(g), where N = N(A24
1 ), τ acts a permutation of the 24 copies

of A1’s with the cycle shape 1636 and β = 1
6
(012, α12), where Zα ∼= A1, i.e, 〈α, α〉 = 2.

In this case, (V g
N)1

∼= A6
1,3U(1)

6 and U =
√
3L∗ ∼= SpanZ{A6

2, (111111)}. In particular,

O(L) = (W (A2) ≀ Sym6).Z2.

Case: V1 ∼= A5,3D4,3A
3
1,1.

In this case, N = N(A4
5D4), τ acts on A4

5 as a 3-cycle and as a diagram automorphism ϕ

of order 3 on D4. The vector β = 1
3
(0, 0, 0, λ, u), where λ = (1100−1−1) and u = (1001).

In this case, (V g
N )1

∼= A5,3A2,3A
3
1,1U(1)

2 and U =
√
3L∗ is an index 8 overlattice of

A5D4(
√
3A1)

3. Note W (D4) can be viewed as a subgroup of StabAut(V )(h).

Case: V1 ∼= A8,3A
2
2,1.
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In this case, N = N(A4
6), τ acts on A4

6 as a 3-cycle and β = 1
3
(0, 0, 0, (13,−13, 0)). In

this case, (V g
N)1

∼= A6,3A
2
2,1U(1)

2 and U =
√
3L∗ is an index 9 overlattice of A8(

√
3A2)

2.

Case: V1 ∼= E6,3G2,1
3.

In this case, N = N(D6
4), τ acts a diagram automorphism of order 3 on each D4

summand and β = 1
3
(u, u, u, 0, 0, 0), where u = (1, 2,−1, 0) ∈ D4. In this case, (V g

N)1
∼=

A3
2,3G

3
2,1 and U =

√
3L∗ is an index 33 overlattice of E6(

√
3A2)

3. Note that W (E6) can

be viewed as a subgroup of StabAut(V )(h).

Case: V1 ∼= D7,3A3,1G2,1.

In this case, N = N(D6
4), τ acts as a 3-cycle on three copies of D4 and as a diagram

automorphism of order 3 on 2 copies of D4; β = 1
3
(04, u, (1111)), where u = (1, 2,−1, 0) ∈

D4. In this case, (V g
N)1

∼= D4,3G2,1A2,3A3,1U(1) and U =
√
3L∗ is an index 12 overlattice

of D7

√
3A3

√
3A2.

Case: V1 ∼= E7,3A5,1.

In this case, N = N(E4
6), τ acts as a 3-cycle on three copies of E6 and β = 1

3
(Λ1 +Λ2),

where Λ1,Λ2 are fundamental weights. In this case, (V g
N)1

∼= E6,3A5,1U(1) and U =
√
3L∗

is an index 6 overlattice of E7

√
3A5.

Table 1: Orbifold construction associated with 3B

No. g = V1 Niemeier lattice N τ β (V g
N)1

6 A6
2,3 N(A24

1 ) 1636 1

6
(α12, 012) A6

1,3U(1)6

17 A5,3D4,3A
3
1,1 N(A4

5D4) 3-cycle×ϕ 1/3(0, 0, 0, λ, u) A5,3A2,3A
3
1,1U(1)2

27 A8,3A
2
2,1 N(A4

6) 3-cycle 1

3
(0, 0, 0, (13,−13, 0)) A6,3A

2
2,1U(1)2

32 E6,3G2,1
3 N(D6

4) ϕ⊗6 1

3
(u, u, u, 0, 0, 0) A3

2,3G
3
2,1

34 D7,3A3,1G2,1 N(D6
4) 3-cycle×ϕ2 1

3
(04, u, (1111)) D4,3G2,1A2,3A3,1U(1)

45 E7,3A5,1 N(E4
6) 3-cycle 1

3
(Λ1 + Λ2) E6,3A5,1U(1)

4.2.2. Z5 orbifold construction from Niemeier lattice VOA. Next we consider the VOAs

that can be obtained by a Z5 orbifold construction from Niemeier lattice VOA.

Case: V1 ∼= A2
4,5.

In this case, V ∼= ṼN(g), where N = N(A24
1 ), τ acts a permutation of the 24 copies of

A1’s with the cycle shape 1454 and β = 1
6
(020, α2, (2α)2), where Zα ∼= A1. In this case,

(VN(A
24
1 )g)1 ∼= A4

1,5U(1)
4 and U =

√
5L∗ ∼= A2

4.

Case: V1 ∼= D6,5A
2
1,1.
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In this case, V ∼= ṼN(g), where N = N(A24
1 ), τ acts a permutation of the 24 copies

of A1’s with the cycle shape 1454 and β = 1
5
(022, α, 2α). In this case, (VN(A

24
1 )g)1 ∼=

A4
1,5A

2
1,1U(1)

2 and U =
√
5L∗ is an index 4 overlattice of D6(

√
5A1)

2.

Table 2: Orbifold construction associated with 5B

No. g = V1 Niemeier lattice N τ β (V g
N)1

9 A2
4,5 N(A24

1 ) 1454 1
10
(010, α12, (2α)2) A4

1,5U(1)
4

20 D6,5A
2
1,1 N(A24

1 ) 1454 1
5
(022, α, 2α) A4

1,5A
2
1,1U(1)

2

4.2.3. Z7 orbifold construction from Niemeier lattice VOA. When τ has order 7, there is

only possible Lie algebra structure for V1.

Case: V1 ∼= A6,7.

In this case, we choose N = N(A8
3) and τ acts a 7-cycle on the 8 copies of A3’s

and β = 1
7
(07, (3,−2,−1, 0)). In this case, V ∼= ṼN (g), (VN(A

24
1 )g)1 ∼= A3,7U(1)

3 and

U =
√
7L∗ ∼= A6.

Table 3: Orbifold construction associated with 7B

No. g = V1 Niemeier lattice N τ β (V g
N)1

11 A6,7 N(A8
3) 7-cycle 1

7
(07, (3,−2,−1, 0)) A3,7U(1)

3

4.2.4. Remaining cases. For the remaining case, the order of τ is not a prime.

First we consider the cases where τ has the same frame shape as a 4C element in Co0.

Case: V1 ∼= C7,2A3,1. In this case, we choose N = N(A2
9D6). τ acts on A2

9 as a

transposition and acts as a diagram automorphism on D6. The vector β is given by

β = (0, 0, 1
2
(211110)). Moreover, (V g

N)1
∼= A3,1C5,2A1,2U(1).

Case: V1 ∼= E6,4A2,1B2,1.

In this case, we choose N = N(A2
9D6). τ acts on A2

9 as a transposition and acts as a dia-

gram automorphism on D6. The vector β is given by β = 1
8
( (15,−15), (15,−15), (22200)).

Moreover, (V g
N)1

∼= D5,4A2,1B2,1U(1).

Case: V1 ∼= A7,4A
3
1,1.

In this case, we choose N = N(A4
5D4). τ acts as a product of two 2-cycles on A4

5 times

the diagram automorphism of A5 on two copies of A5 such that τ has order 4. The vector

β is given by β = (1
8
(13,−13)4, 1

4
(1100)). Moreover, (V g

N)1
∼= A3

1,1A
2
3,4U(1).
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Case: V1 ∼= A7,4A
3
1,1.

In this case, we choose N = N(A4
5D4). τ acts as a product of two 2-cycles on A4

5 times

the diagram automorphism of A5 on two copies of A5 such that τ has order 4. The vector

β is given by β = 1
8
((13,−13)2, 02, (3311)). Moreover, (V g

N)1
∼= A2

1,1C3,2A3,4U(1)
2.

Case: V1 ∼= A3
3,4A1,2.

In this case, we choose N = N(A24
1 ). τ acts as a permutation with the frame shape

142244. The vector β is given by β = 1
8
(18, 22, 014)α, where 〈α|α〉 = 2. Moreover, (V g

N)1
∼=

A2
1,2A

4
1,4U(1)

5.

Table 4: Orbifold construction associated with 4C

No. g = V1 Niemeier N τ β (V g
N )1

35 C7,2A3,1 N(A2
9D6) 2-cycle×(1, δA9

)× δD6
(0, 0, 1

2
(2, 1, 1, 1, 1, 0)) A3,1C5,2A1,2U(1)

28 E6,4A2,1B2,1 N(A2
9D6) 2-cycle×(1, δA9

)× δD6

1

8
((15,−15), (15,−15)) D5,4A2,1B2,1U(1)

+ 1

4
(111000)

18 A7,4A
3
1,1 N(A4

5D4) (2-cycle×(1, δA5
))2 ( 1

8
(13,−13)4, 1

4
(1100)) A3

1,1A
2
3,4U(1)

19 D5,4C3,2A
2
1,1 N(A4

5D4) (2-cycle×(1, δA5
))2 1

8
((13,−13)2, 02, (3311)) A2

1,1C3,2A3,4U(1)2

7 A3
3,4A1,2 N(A24

1 ) 142244 1

8
(18, 22, 014)α A1,2A

4
1,4U(1)5

For isometries with the same frame shape as a 8E element, there is only possible case.

Case: V1 ∼= D3
5,8A1,2.

In this case, we choose N = N(A24
1 ). τ acts as a permutation with the frame shape

122 482; that means τ has the same frame shape as a 8E-element in Co0. The vector β is

given by β = 1
18
(33, 15, 016)α, where 〈α|α〉 = 2. Moreover, (V g

N)1
∼= A2

1,8U(1)
4.

Table 5: Orbifold construction associated with 8E

No. g = V1 Niemeier N τ β (V g
N )1

10 D5,8A1,2 N(A24
1 ) 12 · 2 · 4 · 82 1

16(3
3, 15, 016)α A2

1,8U(1)4

For isometries with the same frame shape as a 6E element, there are two cases.

Case: V1 ∼= A5,6B2,3A1,2.

In this case, we choose N = N(A8
3) and τ acts as a product of two 3-cycles times

the diagram automorphism of A3 on all copies of A3 on A8
3. The vector β is given

by β = 1
6
(γ31 , (2γ1)

3,−γ1, 0), where γ1 = 1
4
(3,−1,−1,−1) ∈ A∗

3. Moreover, (V g
N)1

∼=
A2

1,2A
2
1,6B2,3U(1)

3.

Case: V1 ∼= C5,3G2,2A1,1.
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In this case, we choose N = N(D6
4). τ acts as a product of two 2-cycles times the

diagram automorphism of D4 on all copies of D4 on D6
4. The vector β is given by β =

1
6
((1100)3, (1, 2,−1, 0), 0, 0). Moreover, (V g

N)1
∼= A1,1A

2
1,3A1,6G2,2U(1)

2.

Table 6: Orbifold construction associated with 6E

No. g = V1 Niemeier lattice N τ β (V g
N )1

8 A5,6B2,3A1,2 N(A8
3
) δ8A3

×3-cycle2 1

6
(γ3

1
, (2γ1)3,−γ1, 0) A1,2A2

1,6B2,3U(1)3

21 C5,3G2,2A1,1 N(D6
4
) δ6D4

× 2-cycle2 1

6
((1100)3 , (12 − 10), 0, 0) A1,1A2

1,3A1,6G2,2U(1)2

For isometries with the same frame shape as a 6G element, there are also two cases.

Case: V1 ∼= D4,12A2,6.

In this case, we choose N = N(A12
2 ). τ acts as a product of a 3-cycle, a 6-cycle times

the diagram automorphism of A2 on 6 copies of A2 on A
6
2, on which the 6-cycle acts. The

vector β is given by β = 1
6
(09, (10− 1)3). Moreover, (V g

N)1
∼= A2,6A1,12.

Case: V1 ∼= F4,6A2,2.

In this case, we choose N = N(A4
6). τ acts as a product of a 3-cycle times the diagram

automorphism of A6 on all 4 copies of A6. The vector β is given by β = 1
6
(03, (13, 0,−13)).

Moreover, (V g
N)1

∼= B3,6A2,2U(1).

Table 7: Orbifold construction associated with 6G

No. g = V1 Niemeier lattice N τ β (V g
N)1

3 D4,12A2,6 N(A12
2 ) 3-cycle· 6-cycle×δ6A2

1

6
(09, (10− 1)3) A2,6A1,12U(1)3

14 F4,6A2,2 N(A4
6) 3-cycle×δ4A6

1

6
(03, (13, 0,−13)) B3,6A2,2U(1)

For isometries with the frame shape of 10F , there is only one possible Lie algebra.

Case: V1 ∼= F4,6A2,2.

In this case, we choose N = N(A6
4) and τ acts as a product of a 5-cycle times

the diagram automorphism of A4 on all 6 copies of A4. The vector β is given by

β = 1
10
(05, (2, 1, 0,−1,−2)). Moreover, (V g

N)1
∼= C2,10U(1)

2.

Table 8: Orbifold construction associated with 10F

No. g = V1 Niemeier lattice N τ β (V g
N )1

4 C4,10 N(A6
4) 5-cycle×δ6A4

1
10 (0

5, (2, 1, 0,−1,−2)) C2,10U(1)2

Remark 4.5. For a root α of V1, let sα be the corresponding reflection in W (V1). We use

ψα to denote a lift of sα in StabAut(V )(h). Then ψ2
α = exp(2π

√
−1γ(0)) for some γ ∈ h.
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Up to conjugation by an element in {exp(a(0) | a ∈ h}, we may assume γ is fixed by sα

(cf. [LS20a, Lemma 4.5]). Set u = −γ/2. Then u is also fixed by sα and

(exp(2π
√
−1u(0))ψα)

2 =exp(2π
√
−1u(0))ψα exp(2π

√
−1u(0))ψα

=exp(2π
√
−1u(0))ψα exp(2π

√
−1u(0))ψ

−1
α ψ2

α

=exp(2π
√
−1u(0)) exp(2π

√
−1sαu(0)) exp(2π

√
−1γ(0)) = 1.

Therefore, we may choose a lift such that ψα is an involution. For our choices of (N, g),

there is always a root α such that ψα((V
g
N)1) 6= (V g

N )1.

5. Unitary form

In this section, we will study the unitary form for holomorphic VOAs of central charge

24. First we recall a theorem from [DLin14], which is about the unitary form for Z2 simple

current extensions of unitary VOAs .

Theorem 5.1 ([DLin14, Theorem 3.3]). Let (V, ϕ) be a rational and C2-cofinite unitary

self-dual vertex operator algebra and M a simple current irreducible V -module having

integral weights. Assume that M has an anti-linear map ψ such that ψ(vnw) = ϕ(v)nψ(w)

and ψ2 = id, (ψ(w1), ψ(w2))M = (w1, w2)M and the Hermitian form ( , )V on V has

the property that (ϕ(v1), ϕ(v2))V = (v1, v2)V . Then (U, ϕU) has a unique unitary vertex

operator algebra structure, where ϕU : U → U is the anti-linear involution defined by

ϕU(v, w) = (ϕ(v), ψ(w)), for v ∈ V, w ∈M . Furthermore, U is rational and C2-cofinite.

By Theorem 5.1, all holomorphic VOAs which can be constructed by a Z2-orbifold

construction from a lattice VOA are unitary. As a consequences, we have the following

result.

Theorem 5.2. Let V be a holomorphic VOA of central charge 24 with the weight one Lie

algebra isomorphic to one of the Lie algebras in Table 9. Then V is unitary.

Table 9: Weight one Lie algebras of holomorphic VOAs

of central charge 24 associated with Z2 orbifolds

Class # of V Weight one Lie algebra structures

2A 17 A16
1,2, A

4
3,2A

4
1,1, D

2
4,2B

4
2,1, A

2
5,2C2,1A

2
2,1, D

2
5,2C2,1A

2
2,1, A7,2C

2
3,1A3,1,

C4
4,1, D6,2C4,1B

2
3,1, A9,2A4,1B3,1, E6,2C5,1A5,1, D8,2B

2
4,1, C

2
6,1B4,1,

D9,2A7,1, C8,1F
2
4,1, E7,2B5,1F4,1, C10,1B6,1, B8,1E8,2

2C 9 A12
1,4, B

6
2,2, B

4
3,2, B

3
4,2, B

2
6,2, B12,2, D4,4A

4
2,2, C4,2A

2
4,2, A8,2F4,2



20 CHING HUNG LAM

5.1. Other orbifold constructions. Next we consider other orbifold constructions. The

proof of the following theorem is essentially the same as [CLS18, Theorem 4.8] with some

necessary modifications. For completeness, we include the proof here.

Theorem 5.3. Let V be a self-dual, simple VOA of CFT-type. Assume that V has two

commuting automorphisms f and h of order p. For i, j ∈ Z, set V i,j = {v ∈ V | f(v) =
ξiv, h(v) = ξjv}, where ξ = exp(2π

√
−1/p). Set V i =

⊕p−1
j=0 V

i,j. Assume the following:

(A) There exists an anti-linear involution φ of V 0 such that (V 0, φ) is a unitary VOA;

(B) For i ∈ {1, . . . , p− 1}, V i is a unitary (V 0, φ)-module;

(C) There exists an automorphism ψ ∈ Aut(V ) such that ψ−1fψ = h;

(D) ψ(V 0,0) = V 0,0 and ψφψ−1 = φ on V 0,0;

Then there exist an anti-linear involution Φ of V such that (V,Φ) is a unitary VOA.

Remark 5.4. Let i, j, k, ℓ ∈ Z. Then SpanC{unv | u ∈ V i,j, v ∈ V k,ℓ, n ∈ Z} = V i+k,j+ℓ.

Note also that V i,j = V i+pk,j+pℓ and V =
⊕

0≤i,j≤p−1 V
i,j is Z2

p-graded.

Let V be a VOA satisfying the assumptions of Theorem 5.3. Let (·, ·)V 0 be the positive-

definite invariant Hermitian form on V 0 normalized so that (1,1)V 0 = 1. Let 〈·, ·〉 be the
normalized symmetric invariant bilinear form on V such that 〈1,1〉 = 1. Note that

(u, v)V 0 = 〈u, φ(v)〉 for u, v ∈ V 0 (cf. Remark 2.2). By the assumption (C), ψ(V 0) =

V 0,0⊕V 1,0⊕· · ·⊕V p−1,0 is also a unitary VOA with the anti-linear automorphism ψφψ−1

and a positive-definite invariant Hermitian form defined by

(a, b)ψ(V 0) = (ψ−1(a), ψ−1(b))V 0 for a, b ∈ ψ(V 0). (5-1)

Note that ψφψ−1 = φ on V 0,0 by Assumption (D).

By Lemma 2.5, a positive-definite invariant Hermitian form on the unitary (V 0,0, φ)-

module V i,0 is unique up to scalar for each i = 1, . . . , p − 1. We may choose a positive-

definite invariant Hermitian form (·, ·)V i on V i so that

(u, v)V i = (u, v)ψ(V 0) for u, v ∈ V i,0. (5-2)

By Lemma 2.4, there exists an anti-linear bijective map Φi : V i → V p−i such that

Φi(anv) = φ(a)nΦ
i(v) for a ∈ V 0 and v ∈ V i and

(u, v)V i = 〈u,Φi(v)〉 for u, v ∈ V i. (5-3)

By (5-1), (5-2) and (5-3), for any u, v ∈ V i,0, we have

〈u,Φi(v)〉 = (u, v)V i = (ψ−1(u), ψ−1(v))V 0 = 〈ψ−1(u), φψ−1(v)〉 = 〈u, ψφψ−1(v)〉.
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Hence

ψφψ−1 = Φi on V i,0. (5-4)

Since the order of φ is 2, both the composition maps Φp−i ◦ Φi and Φi ◦ Φp−i are the

identity map on V i,0 by (5-4). Viewing V p−i as an irreducible unitary (V 0, φ)-module, we

have Φp−i = (Φi)−1 on V p−i by the same argument as in the proof of Lemma 2.5.

Now, we define the anti-linear map Φ : V → V so that

Φ(u) =




φ(u) for u ∈ V 0,

Φi(u) for u ∈ V i, i = 1, . . . , p− 1,

and the positive-definite Hermitian form (·, ·) on V by

(u, v) =




(u, v)V i if u, v ∈ V i, i = 0, 1, . . . , p− 1,

0 if u ∈ V i, v ∈ V j , i 6= j.

Clearly, Φ is bijective and Φ ◦Φ is the identity of V . We will show that (V,Φ) is unitary.

Lemma 5.5. (1) For i, j ∈ {0, 1, . . . , p− 1}, Φ(V i,j) = V p−i,p−j.

(2) For u, v ∈ V , (u, v) = 〈u,Φ(v)〉.

Proof. Clearly, (V 0,0, φ) is a simple unitary VOA and V i,j is an irreducible unitary (V 0,0, φ)-

module. Hence by Lemma 2.4 (2) and Lemma 2.5, the map Φ sends V i,j to the submodule

of V p−i,p−j isomorphic to the contragredient module of V i,j, which is V p−i,p−j by Remark

5.4 (4). Hence we obtain (1).

Let u ∈ V i, v ∈ V j with i 6= j. Clearly i− j 6= 0 mod p. By (1), we have Φ(v) ∈ V p−j.

Since the contragredient module of V i is not isomorphic to V p−j, we have 〈u,Φ(v)〉 = 0.

By (5-3) and the definition of the form (·, ·), we obtain (2). �

Proposition 5.6. The anti-linear map Φ is an anti-linear involution of V .

Proof. Since φ is an anti-linear automorphism of V 0, Φ fixes the vacuum vector and the

conformal vector of V . Since (V 0, φ) is unitary, the equation

Φ(unv) = Φ(u)nΦ(v) (5-5)

holds for u, v ∈ V 0 and n ∈ Z. By the definition of Φi for i = 1, 2, (5-5) holds for u ∈ V 0

and v ∈ V i. By the skew symmetry, we have

unv = (−1)n+1vnu+
∑

i≥1

(−1)n+i+1

i!
L(−1)i(vn+1u)

for u, v ∈ V and n ∈ Z. Hence the equation (5-5) also holds for u ∈ V i and v ∈ V 0.
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Let x ∈ V 0,j , y ∈ V i,0 and u ∈ V k,ℓ. By Borcherds’ identity, for r, q ∈ Z,

(xry)qu =
∞∑

i=0

(−1)i
(
r

i

)
(xr−i(yq+iu)− (−1)ryq+r−i(xiu)) .

By the assumptions on x and y and the identity above, we have

Φ((xry)qu) = (Φ(x)rΦ(y))qΦ(u) = Φ(xry)qΦ(u).

By Remark 5.4 (2), we obtain Φ(unv) = Φ(u)nΦ(v) for all x, y ∈ V and n ∈ Z. �

By Lemma 5.5 (2), the invariant property of 〈·, ·〉 and Proposition 5.6, we obtain the

following proposition:

Proposition 5.7. The positive-definite Hermitian form ( , ) on V satisfies the invariant

property for (V,Φ).

Combining Propositions 5.6 and 5.7, we have proved Theorem 5.3.

5.2. Unitary forms for holomorphic VOAs of central charge 24. As we discussed

in Section 4.2, every holomorphic VOA of central charge 24 with V1 6= 0 can be constructed

by a single orbifold construction from a Niemeier lattice VOA.

Let (N, g) be pair of a Niemeier lattice and an automorphism of VN as described in

Section 4.2 such that V ∼= ṼN(g). Then

V = V g
N ⊕ VN [g]0 ⊕ · · · ⊕ VN [g

p−1]0,

where VN [g
i] denotes the irreducible gi-twisted module of VN .

Let L be the even lattice such that VL ∼= ComV (ComV (M(h))), where h is a Cartan

subalgebra of V1 and suppose g = τ̂ exp(2πiβ(0)) ∈ Aut(VN). Then L ∼= N τ
β and V g

N >

VL ⊗ V τ̂
Λτ
.

Set

VN =
⊕

λ+Nτ∈(Nτ )∗/Nτ

Vλ+Nτ ⊗ Vλ′+Nτ .

Then

V g
N =

⊕

λ+Nτ∈(Nτ )∗/Nτ

(Vλ+Nτ ⊗ Vλ′+Nτ )
g =

⊕

λ+L∈(Nτ )∗/L

Vλ+L ⊗Wλ < V,

where Wλ, λ+L ∈ (N τ )∗/L, are irreducible V τ̂
Nτ
-modules and eigenspaces of τ̂ on Vλ′+Nτ .

Define f ∈ Aut(V ) so that f acts on VN [g
i]0 as a multiplication of the scalar ξi. Then

V f = V g
N and there is a γ ∈ Q⊗Z N

τ such that 〈γ|β〉 /∈ Z and f = exp(2πiγ(0)). As we

discussed in Section 4.2, the Lie subalgebra (V g
N)1 is proper subalgebra of V1 and (V g

N)1

is non-abelian. By Lemma 4.2, Proposition 4.4 and Remark 4.5, there is a root of V1 and
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a lift ψα ∈ StabAut(V )(VL ⊗W ) of a reflection sα ∈ W (V1) such that ψα((V
g
N)1) 6= (V g

N)1

and ψ2
α = 1. For simplicity, we use w and ψ to denote sα and ψα, respectively.

Define h = ψfψ−1. Then h = exp(2πiw(γ)(0)) and it is clear that both f and h

fix VL ⊗ V τ̂
Λτ

point-wisely. Since all irreducible modules for VL ⊗ V τ̂
Λτ

are simple current

modules, the subgroup of Aut(V ) that fixes VL⊗V τ̂
Λτ

point-wisely is a finite abelian group.

In particular, [f, h] = 1. Moreover, we have

V 0,0 = V <f,h> =
⊕

λ+L∈J/L

Vλ+L ⊗Wλ,

where J = {λ ∈ L∗ | 〈λ, γ〉 ∈ Z, 〈λ, w(γ)〉 ∈ Z}.

Lemma 5.8. We have w(J) = J and ψ(V 0,0) = V 0,0.

Proof. Let λ ∈ J . Then 〈w(λ)|w(γ)〉 = 〈λ|γ〉 ∈ Z and 〈w(λ)|γ〉 = 〈w2(λ)|w(γ)〉 =

〈λ|w(γ)〉 ∈ Z. Thus w(λ) ∈ J for any λ ∈ J and we have the desired result. �

Lemma 5.9. Let X be a sublattice of N such that P0(X) = J . Then V 0,0 < VX and

ψ can be considered as a lift of an isometry of X in Aut(VX). In particular, we have

ψφψ−1 = φ on V 0,0 < VX .

Proof. We first note that J = (N τ )∗ ∩ w((N τ )∗) > L. Then

VX =
⊕

λ+L∈J/L

Vλ+L ⊗ Vλ′+Nτ .

Since Wλ < Vλ′+Nτ , we have V 0,0 < VX . Since w(X) < X , w defines an isometry of X

and thus ψφψ−1 = φ on VX . We have ψφψ−1 = φ on V 0,0 as desired. �

Therefore, V ,f and h satisfy the conditions in Theorem 5.3 and the main theorem

follows.

Theorem 5.10. Any (strongly regular) holomorphic vertex operator algebra of central

charge 24 and with non-trivial weight one subspace is unitary.

References

[BLS] K. Betsumiya, C.H. Lam and H. Shimakura, Automorphism groups and uniqueness of holo-

morphic vertex operator algebras of central charge 24, to appear in Comm. Math. Phys.;

arXiv:2203.15992

[Bo86] R.E. Borcherds, Vertex algebras, Kac-Moody algebras, and the Monster, Proc. Nat’l. Acad.

Sci. U.S.A. 83 (1986), 3068–3071.

[CGGH] S. Carpi, T. Guadio, L. Giorgetti, and R. Hillier, Haploid Algebras in C∗-tensor categories

and the Schellekens list; arXiv:2211.12790.

http://arxiv.org/abs/2203.15992
http://arxiv.org/abs/2211.12790


24 CHING HUNG LAM

[CKLW] S. Carpi, Y. Kawahigashi, R. Longo and M. Weiner, From vertex operator algebras to confor-

mal nets and back, Mem. Amer. Math. Soc., 254 (2018), no. 1213, vi+85 pp.

[CCN+85] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson, Atlas of finite

groups, Oxford University Press, Eynsham, 1985, Maximal subgroups and ordinary characters

for simple groups, With computational assistance from J. G. Thackray.

[CLS18] H.Y. Chen, C.H. Lam and H. Shimakura, On Z3-orbifold construction of the Moonshine vertex

operator algebra, Math. Z. 288 (2018), 75–100.

[CLM22] N. Chigira, C.H. Lam, M. Miyamoto, Orbifold construction and Lorentzian construction of

Leech lattice vertex operator algebra, J. Algebra 593 (2022), 26–71; arXiv:2104.03098.

[CS83] J. H. Conway and N. J. A. Sloane, The Coxeter-Todd lattice, the Mitchell group, and related

sphere packings, Math. Proc. Cambridge Philos. Soc. 93 (1983), 421–440.

[DG02] C. Dong, R.L. Griess, Jr., Automorphism groups and derivation algebras of finitely generated

vertex operator algebras, Michigan Math. J. 50 (2002), 227–239.

[DGL07] C. Dong, R.L. Griess and C.H. Lam, Uniqueness results for the moonshine vertex operator

algebra, Amer. J. Math. 129 (2007), 583–609.

[DL96] C. Dong and J. Lepowsky, The algebraic structure of relative twisted vertex operators, J.

Pure Appl. Algebra 110 (1996), 259–295.

[DLM00] C. Dong, H. Li, and G. Mason, Modular-invariance of trace functions in orbifold theory and

generalized Moonshine, Comm. Math. Phys. 214 (2000), 1–56.

[DLin14] C. Dong and X.J. Lin, Unitary vertex operator algebras, J. Algebra 397 (2014), 252–277.

[DN99] C. Dong and K. Nagatomo, Automorphism groups and twisted modules for lattice vertex oper-

ator algebras, in Recent developments in quantum affine algebras and related topics (Raleigh,

NC, 1998), 117–133, Contemp. Math., 248, Amer. Math. Soc., Providence, RI, 1999.

[ELMS21] J. van Ekeren, C.H. Lam, S. Moller and H. Shimakura, Schellekens’ List and the Very Strange

Formula, Adv. Math., 380 (2021), 107567.

[FHL93] I.B. Frenkel, Y. Huang and J. Lepowsky, On axiomatic approaches to vertex operator algebras

and modules, Mem. Amer. Math. Soc. 104 (1993), viii+64 pp.

[FLM88] I.B. Frenkel, J. Lepowsky, and A. Meurman, Vertex operator algebras and the monster, Pure

and Appl. Math., vol. 134, Academic Press, Boston, 1988.
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