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I. INTRODUCTION 

In these notes we describe some fundamental properties of the irreduc- 

ible representations of SUll, the special unitary group in n-dimensions. We 

use, as basis for these representations, tensors which satisfy certain sym- 

metry properties wit;, resect &.o r;eri.,utitio;,s of their indices, and discuss 

briefly in this connection the symmetric group. We also relate this global 

analysis of the representations to the method based on the infinitesmial 

transformations of continuous groups: the Lie algebra of SU,. 

The unitary groups are very important In physics. The best-known ex- 

ample is SU, which describes tne spin aild isospin of particles. Recently 

unitary groups in higher dimensions have been applied with success to study 

the properties of elementary particles. Although the mathematical theory 

of these groups and their representations has been developed for a long 

time, useful results are somewhat scattered in the literature. We therefoY5 

have attempted to collect here some formulas and tricks, and have computed 

several tables that are useful in the application of unitary groups to 

particle physics. 

Throughout the text we have tried to give some idea of how one derives 

the more important results; this should help the reader to remember them 

and also serve to explain our notation. Some topics which we have left out 

of our discussion include the construction of explicit basis in each repre- 

sentation space in terms of which to express the analogs of Clebsch-Gordan 

coefficients, and formulas for the elements of the representation matrices. 

There is no special reason for such omissions which are useful in practical 

applications. However, for low dimensional representations the tensor 
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methods which are described here can be successfully used. The discussion 

of sun can be. extended with minor modifications to the special linear 

groups SL(n,R) and SL(n,C), the groups of n X n matrices of determinant 

one with real and complex entries respectively. 

We have included a short list of books to which we refer.for omitted 

nroofs, and some recent articles 011 tht su;;;kcL. 

II. REVIEW OF UNITARY GROUPS 

When dealing with symmetries in particle physics, one is led to study 

the representations of some simple groups. Here we are concerned mainly 

with the special unitary groups in n Jimensions,denoted by Sun. To be 

precise, our group is the set of n X n matrices with complex entries 

which are unitary and of determinant equal to one. A typical such matrix 

will be denoted by g. By a unitary transformation (which can be chosen to 

be of determinant one) such a matrix can be diagonalized; hence, for a given 

g there always exists a g' in the group, such that 

E 
1 

. 
g'ggl-1 = 

. 

( 1 

. 

l E 

n 

(1) 

where the E are just the eigenvalues of g of modulus one, and 
1 

EE: . ..en=l. Any unitary matrix can be written 
12 

ih 
g=e (2) 

where h is a hermitian matrix. This is an immediate consequence of Eq. (1). 
\' 

j 

Moreover, for g to have determinant one, it is sufficient that h be trace- 

less. Now an arbitrary hermitian matrix is given in terms of the n diag- 

onal elements which are neaessarily real,and the 
n(n - 1) 

2 
complex elements 
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above the main diagonal; hence, this matrix depends on n2 real-parameters. 

If we impose the condition that the trace be zero, we are left with n2 - 1 

independent parameters. 

The group SU, has three fundamental properties: 

(1) It is compact. The precise meanirg of this word in this context is 

the following: If we are given s,l ir,fir,i+: 3eq2i3nca of elements g . . . 
1 

g 
i "" 

we can always extract a subsequence which converges to an element of the 

group. 

We shall not investigate further the topological properties, but mainly 

remark that the compactness property has the important consequence that the 

irreducible representations to be introduced below enjoy the following 

properties: (i) They are all finite dimensional. 

(ii) They are all equivalent to unitary representations. 

(iii) Any representation can be split in a direct sum of 

irreducible representations. 

(2) sun is a Lie group. This means that certain differentiability 

conditions (obvious in this case) are satisfied. This reduces the study of 

such a group to the study of the so-called infinitesimal elements, i.e., 

those close to unity. We discuss briefly this approach in Section IV; how- 

ever, we shall not emphasize this point of view. 

(3) Finally, Sun -is a simply connected group. Connected means that, 

given an arbitrary element g, one can find a continuous set of elements in 

the group g(t), where 0 5-t _< 1 such that. g(o) is the identity e, and 

go> = Q* In a simply connected group two such "paths" leading from e to 

g can be continuously transformed in one another. In summary: 

sun is a simply connected compact Lie group depending on n2 - 1 real 

parameters. 
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in view of what has been said we need only define representations in 

finite dimensional spaces. This is always understood here. By represen- 

tation of a group G one means a correspondence which assigns to every 

element g a linear operator A(g) (i.e., a matrix once a basis has been 

chosen) in some vector space, the carrier of representation, such that the 

imageof e is the identity oleratcr T, and the group, law is preserved; i.e., 

A(g) A(&) = Akg’) 

The carrier space is assumed to be a complex vector space, i.e., the matrices 

A(g) have complex entries. 

Two representations are equivalent if the carrier spaces can be put in a 

one-to-one linear correspondence x e-+x' with the property that 

A(g)x +-+A'(g)x'. In the following we shall be concerned with representa- 

tions up to equivalence; i.e., we shall identify equivalent representations. 

If a basis has been chosen in the two equivalent carrier spaces, and if A 

and A' denote the matrices of the representations, the statement of equiva- 

lence can be rephrased by saying that there exists a non-singular matrix B 

such that for every g in the group 

A'(g) = B A(g)B-L 

A subspace of the carrier space is said to be invariant if it is left un- 

changed by all operators A(g). The representation is said to be reducible 

if such a proper invariant subspace exists; otherwise, it is called irreduc- 

ible. In our case, [G = SU,] reducibility implies, in fact, a little more, 

namely, if there exists a proper invariant subspace, then one can find a 

complementary subspace which is also invariant. In other words, the repre- 

sentation splits. In pictures, if all the matrices A(g) 
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have the form 

X X 

0 > 

0 X 

there exists a basis in which A(g) takes the form 

X 

( I \ 
0 

-- - J 

’ I 

> 

‘0 , 2. 

we say that the representation is completely reducible. Given a represen- 

tation we can thus split it again and again until we reach irreducible parts. 

Given an irreducible representation A(g), the only linear operators C 

which commute with every A(g); i.e., CA(q) = A(g)C for all g, are multiples 

of the identity C = h1 (Schur's Lemma). !Fhe converse is also true. 

Our first task will be to describe all the irreducible representations 

of su 
n 

up to equivalence. This construction is entirely algebraic in 

nature, and is carried out in the next section. However, since the results 

are often given an interesting meaning using some analytic tools, we say a 

word on characters and integration on the group. 

Given a representation A(g), we can compute the trace x(g) E f Aii(g) 

which is basis independent. The (complex valued) function g -+x(g) is the 

character of the representation. Immediate properties are* 

2wgP) =a> 
(3,’ 

The second property stems from the fact that every representation of the 

compact group Sun is equivalent to a unitary representation. The importance 

of the characters lies in the fact that it determines the representation up 

* 
A bar over a number means complex conjugation 
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to equivalence: i.e., two representations with the same characters are equiva- 

lent. Using Eqs. (1) and (3), one obtains the result that x(g) is in fact 

a symmetric function of E . . . en where e . . . E 
1 a n 

are the eigenvalues 

of g. Stated in an equivalent manner; x(g) is a function of the coefficients 

(al- l l anI 
of the c?aracterj .tic ;>ol>nc,&i CT g: 

det(1 - hg) = En (-1)' apAp 
p=1 

a0 z 1 

(In fact an is also equal to one, since det g = 1.) Now it is possible to 

introduce an invariant integration on G z "'7,. By this we mean the following: 

parameterize in some way the group (in our case with n2 - 1 real parmckrs); 

then there exists a measure dp(g) on the group, such that if g' is a fixed 

element in the group, 

and 

Q&g’) = d&d 

Finally, dp is essentially unique up to scale factor. We use this freedom 

and the compactness of Sun to normalize p(g), 

s 
w(g) = 1 

G 

In the case of Sun it turns out that a particular choice of parameters is 

indicated. Let us go back to Eq. (1) and put ei = einJrT1. Then it is 

possible to make the parametrization in such a way that 

-6- 



- 
I 

where ‘dw 
& 

depends essentially on the matrix which diagonalizes g and need 

not be considered further here, and fi is a normalization constant. 

Note that 

with 

A(E) = II (E. - ej) 
i<j i 

We shall denote the invariant measure dp(e) 

with R determined by the condition 

s d/+) = 1 

og+ 1 

"sQ.5 1 
. . . . . . . 

The following important orthogonality relations hold. If Xi(E) is the 

character of an irreducible representation of SU n, then 

If n(e )andX'(e)correspond to inequivalent !.rreducible representations 

s gE)&)dLl(E) = 0 

(5) 

Applications of these formulas will be found in Section III. 
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III.. DESCRIPTION OF THE IRREDUCIBLE REPRE3ENTATIONS OF SU n 

We consider the set of tensors, Ti i where the indices i i i 
1 2”’ 

if' 1' 2’“’ I"' 

run from 1 to n. To each unitary matrix g, we associate a linear trans- 

formation A(g) in the space of tensors 

Ti 
-+ 'i' ! = 

. ..l 1 . . .1 Jkl i . ..i T 
1 ' f 1 'f 1 

f ; i,...Q! ii...ii 

where a sum over repeated indices is implied, and 

A( . ..i.;it...i~ ~ gi i’o~*Pifi;, . . . 
1 1 1 1 

In a more compact notation, 

A(g) =gxgx.. .xg 

(1) 

(2) 

which defines A(g) as the Kronecker or direct product of matrices g. 

The matrices A(g) build a unitary, but in general reducible represen- 

tation of SU,. They satisfy the important property that they are 

bisyrmnetric, that is, invariant under a permutation of the indices i . ..i 1 f 

and the same permutation on the indices i'...i' . f 
A permutation p on 

1 

f integers is denoted by 

where plpz...pf is a rearrangement of the ordered f integers, and the 

p permutation of the indices is indicated by 

p(il... if) = (i i . ..i ) 
P, P-9 pf 
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or more briefly p(i) = (ip) . The property of bisymmetry of A(g) is 

then expressed by the relation 

(3) 

- - It can be readily seen that if we t&-e a linear combination of tensors - 

satisfying some symmetry condition with respect to the permutation of their 

indices, this property is preserved under the transformations generated by 

A(g) l 
In general, these symmetrized tensors span a subspace of the tensor 

space which is then invariant under SU , 
3 

aad therefore gives a representa- 

tion of the group. The fundamental theorzm on representations of unitary 

groups states that there exists maximal symmetry conditions which can be 

imposed on the tensors, such that the resulting invariant subspaces generate 

all the irreducible representations of Sun.* 

We begin by giving a description of these maximal symmetry conditions -~- 

by means of Young tableaux. A Young tableau consists of an array of f 

boxes with f 
1 

boxes in the first row, f 
2 

boxes in the second row, and 

f boxes in the 
n-1 

n-l-th row, where the integers fL,f2...fn 1 satisfy 

the relations 

f1 > f2 2 f3 > . . . > f 
- n-1 

and 

f = fL + f2 + . . . .f,-r 

For convenience of notation we include in some formulas fn = 0. 

(4) 

* 
See Reference 1, Chapters III and IV for the full development of this 

duality between the linear groups and the symmetric groups. 
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In pictures, a tableau is usually drawn as follows: 

f 1 
1 

. 
. . 

. 
. . 
. . 

. . 

. 

f f 
n-1 

2 3 . . . . . . . f 
ZL f 1 +2 1 . . f 1 +f 2 

- 
I 

To this tableau corresponds the following symmetry operation on a 

tensor Ti . ..l 
1 'f 

(i) Symmetrize completely with respect to the first f indices i . ..i 
1 1 f' 

1 
the following f2 indices if + . ..if +f , and so on, thus getting 

l1 12 

a tensor 

(ii) Then antisymmetrize the tensor T' with respect to the indices 

i' * 
*'=fi+l' ifL+f2+$.* 

the indices i 
2’ 

if +f . . . . and so on. 
1 2 

The resulting set of tensors T' form the basis of an invariant 

subspace which generates an irreducibie representation of Sun. 

We can write in compact notation 

where 

T; 
. ..l 

'f 
=YTi . . . .1 

1 1 f 

Y = mq9p (5) 

is the Young symmetry operator associated with the Young tableau. The 
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sum in Y [Eq. (5) I, is carried over all permutations p of integers in the 

same row, and all permutations q of integers in the same column of the Young 

tableau, while 6 
9 

is the signature of the permutation q; 6 = +1(-l) for 
9 

q even (odd). The tableau has no more than n-l rows. This is a result of 

two facts: first, that it is impossible to antisymmetrize more .than n indices 

each running from 1 to n, and, second, that we restrict our attention to trans- 
' : 

formations of deterrinant l.* To di;f cr*n-: -La? ieaux correspond inequivalent 

representations. 

There is a one-to-one correspondence between the Young tableaux of no more 

than n-l rows and the irreducible representations of the group Sun. 

The tableau with zero box corresponds to the identity representation, i.e., 

to the representation which assigns to every element of the group the unit 

operator in a one dimensional space, and will be denoted by a dot. The tab- 

leau with one box corresponds to the representation by the group itself. 

Among other interesting representation, let us point out the following: 

(i> Representations with one row only, fL = f. They correspond, accord- 

ing to what we have seen, to a carrier space of totally symmetric tensors. 

The dimension of this representation is easily computed as the number of ways 

one can choose f objects among n objects allowing repetitions, namely 

(the familiar counting problem for an Einstein-Bose gas). 

(6) 

There is an infinite number of such representations. 

* 
It is convenient to use the following convention. In some cases we add 

to a Young tableau of no more than n-l rows, columns of n boxes on the left. 
These new tableaux will be considered as equivalent to those where these extra 
columns are dropped. The dimension formula (see Eq. 10) is invariant under 
that transformation. 
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(ii) Representations corresponding to rows of length 1 or 0. In other 

words, the-tableau is reduced to its first column. Excluding the identity 

representation, there are n-l such representations 

They correspond to carrier spaces built up of totally antisymmetric tensors. 

If A is the length of the column, the representation is of dimension 

N= (7) 

(the counting problem for a Fermi-Dirac gas). 

We shall give below a formula which gives the dimension of a general 

representation. 

(iii) me representation with fl = 2, f2 = 1, f = 1, . . . fn-i = 1. 
3 

This is called the adjoint representation and is very important, because its 

basis transforms like the generators of the group. Let us briefly outline 

how one gets this representation. Let h be an arbitrary, traceless, n X n 

hermitian matrix. The set of these matrices is closed with respect to ad- 

dition and multiplication by real numbers; hence, they build up a vector 

space whose dimension we have already computed to be n2 - 1. The trans- 

formation 

h-th'=ghg -1 

8 
where g is an element of Sun, is obviously a linear transformation of our ' 

set of hermitian matrices. We thus get a representation of Sun in this 

space which can be shown to be irreducible. This is the adjoint representation. 

- 12 - 
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Its dimension is 

N=n2 -1 (8) 

and with our choice of basis the representation consists of real matrices 

only. 

(iv) Finailg, let US d'scuF7 ccnt:ag-aZit?t representations. Given -- -----_ 

any representation of a group by the correspondence 

one can define the contragradient representation* 

One verifies that it is a representation, and also that it is reducible or 

not according to whether A is reducible or not. If the representation 

A is unitary, so is the contragradient representation which in fact is 

simply the complex conjugate of A, i.e., g +A(g) in that case. Note in ,' 

this connection that ?. . ..if. 
=1 

the complex conjugate of a tensor T. . ..if. 
l-1 

transforms according to the rule !!I= (g X g..Xg)T which is used to define 
i . ..i 1 

contravariant tensors by setting the indices as superscripts, T f 

The relation to covariant tensors is obtained through the Levi-Civita symbol 

E. 1 i . ..i ' which is totally antisymmetric in its n indices, and equals +l 
12 n 

of -1 according to whether ili2...in is an even (:r oa? permutation of the 

integers 1,2...n. It can readily be seen that it is invariant under any uni- 

modular transformations. For each contravariant index i, we multiply the 

contravariant tensor by E. . . 
'112' ' 'ln-;L 

i and sum over i giving rise to n-l 

Y 
The superscript T on A denotes the transpose of A. 
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covariant indices. For example, if T' is a contravariant 

then 

Til...in-l = eil...i i T1 
n-1 

.- 
I 

tensor, of rank 1, 

is a covariant antisyrmnetric tensor of rank n-l. Naturally,.we can equally 

well construct contravariant indices from any covariant tensor which contains 

n-l antisymmetric indices. Fos, example. if A, ~ is totally anti- 
-7 _ . -2. 

n-.i, 

symmetric in i . ..i 
1 n-1 ' 

Y==c~~...~ Ai i - 
1 n-1 1"' n-1 

is a contravariant tensor. The raising and lowering of tensor indices by 

E. . 
1. . . .I. makes it possible to contract tnese indizes, e.g., the sum C xiyl 

. i 
1 II 

is an invariant. 

If a representation is equivalent to a representation by real matrices, 

then it follows that it is equivalent to its contragradient. For a given 

tableau of Sun corresponding to a representation A, one obtains the 

contragradient representation by the following process: 

(i) Draw the initial Young tableau 

(ii) Complete the d rawing to obtain a rectangle of horizontal dimension 

f and vertical dimension n. 
1 

(iii) The complementary part is the desired Young tableau if one rotates 

it by JI. It is seen that the procedure is equivalent to saying that if 

f; > . . . 2 f',-= are the rows of the Young tableau corresponding to the 

contragradient representation, then 

f; = f, - f, = fl 

- 14 - 
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In particular, representations equivalent to their contragradient are such 

that 

f =f'=f -f 
P P 1 n-p+1 

or 

fn+f =f 
n-p+1 1 

As an example we see that the adjoint representation has this property. 

Obviously, a representation and its contragradient have the same dimensions; 

thence, the dimension formula has to be invariant with respect to the trans- 

formation f --f f' . 
P P 

Digressing, we note that all ihe finite dimensional irreducible repre- 

sentations of the special linear group on real nunibcrs SLhR) can similarly 

be described in terms of the tensor spaces used for Sun. The matrix elements 

of these representations are polynomials in the matrix elements of the element 

geSL(n,R). If we extend these polynomials to complex values, we get a repre- 

sentation of the special linear group on complex numbers SL(n,C). The most 

general finite dimensional irreducible representations of this group are 

obtained by forming Kronecker products D' Xi? where D' and D" are 

representations of the type just discussed, and 3' is the complex conjugate 

of D". 

As an example, the finite dimensional representations of SL(2,C) ,which 

is in two-to-one correspondence with the Iorentz group, can be labeled by 

two Young tableaux consisting of one row of 2j 
1 

and 2j 
2 

boxes respectively. 

It must be emphasized that SL(nR) and SL(nC) are not compact and that 

the finite dimensional representations are not unitary. In order to find 

unitary representations one has to introduce infinite dimensional Hilbert 

spaces, which we shall not discuss here. 
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We return to SU, and discuss the characters and dimensions of the 

representations. 

We have already quoted the fact that a representation is completely 

determined by its character. The following formula* gives the character for 

the representation belonging to the Young tabieau fl,f . . ..fn(=O) as a 
2 

,ymmetric f-nction of the eige :valL+s E ).- E_ of +te general element g 
L IL 

in Sun (Weyl's character formula) 

f +n-1 
El E 

f2+n-2 
0 . . . . . E 

1 1 1 

f +n-1 

E2l 

f2+n-2 
E 

2 
. . . . . 

. 

f,+n-1 i 
. 0 

E n . E 
n 

"fl,...fn = 
n-i n-2 0 

E E ..,.. E 
1 1 1 

n-1 n-2 0 
E 

E2 
. . . . . E 

2 2 

I n-i 
E n 

n-2 0 
E . . . . . ‘2 

n n 

(3) 

From thisformula one gets the dimension N by letting E~,...,E, go to 

one, i.e., N is the character of the identity. The calculation must be 

made carefullybecause the denominator and the numerator vanish in this limit. 

We set tl = fl + n - 1, t2 = f2 + n - 2, . . . . . In order to take a 

proper limit we first relax the tiondition s1 . . . en = 1 and choose 

n-1 
E =E 

1 

n-2 
E2=E *-* 

0 
E =E 
n 

* 
See for instance Reference 1, page 201. 
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With E + ei', and 0 + 0, we have 

N = iim 
Q-i 0 n-1 ( ) 

n-i 
E . . . . . . . . . . . . . . . . . .(Ey 

n-i c 1 n-2 

E 

c 1 

0 
n-1 E 

. 

. 

. 

kO) 

We now use the classical result that 

n-i n-r n-i 
xl x2 

. . . . . x 
n 

n(xl,..., Xn) = XT-' xn-2 n-2 
X 

2 n 
. 

0 

xl 
. 0 

X 
. n 

Hence, taking 

= (x1 - x2)(x1 - x3) 0.. .(x1 

fl (xi-xj) 
= i<j 

into account that (E 
'i 

Go iO(t. - 4. 
1 J 

N= 
A@, 4/ , . ‘. . , tn=ol 

2 

nb - 1, n - 2, . . . . 0) 

Note that A(n - 1, n - 2,. . . . . 0) = (n - l)!(n - 2) 

- x$(x2 - x3)... 

we obtain 

(10) 

I 
. . . . * , 1 
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We illustrate, as an example, the calculation of the dimension of the 

regular representation of SUs which we know already to be of dimension 

62 - 1 = 35. 

2.3.4.3.7)(1 2 3 5)(1.2.4)(1.3)(2) 
1 2 3 4 5)(1 2 3 '+)(1.2.3)(1.2)(l) 

It is sometimes convenient to label differently the representation. 

Let Al be the number of columns of length one, A2 of length two, etc., 

of a Young tableau. Then 

=Al+$+...+h t-n-1 
n-1 

and 

2 
= A2 + . . . + Anwl + n-2 

. 

. 

45' -+l 
n-1 = h, 1 

-e =o 
n- 

tl - 4 = Al + 1, 4!, - 4 = Al + A2 + 2, tl - tn = Al + . . . + Anml + n - 1 
2 1 3 

t12-L 
3 

=h2+1,& 
2 

-4ph 
2 

+h3+2 . . . . . . . . . . 

Hence 

N= 
(~l+l)(h2+1)....(A,~~+1)(~l+A2+2)....(A,~2+hn~,+2)...(h +A2...+hn- +n-1) 

1' 2!.....(n-L)! . . 
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Finally, if n is much larger than the number of rows r of a Young 

tableau, we write 

A(v,, V2, . . . Vr) (Vl + n - r)! (V2 + n - r)! . . . (V 
r 

+ n - r)! 
N= X 

v ! v ! . . . 1, ! 
12 r b - l)! (n - 2)! . . . (n - r)! 

where V 
i 

= fi + r - h and i runs from 1 to r only. Asymptotically 

Nz 
. . . Vr) 

nf , 
v ! v ’ .,. v ’ 

1 2' r' 

which gives a quick estimate of N. 

Iv. THE GENERATORS OF SU, 

We have already noted that any g belonging to Sun can be written 

in the form 

ih 
g=e (1) 

where h is a hermitian traceless n X n matrix. It will be convenient, 

in order to get a parametrization of the group, to choose a basis of n2 - 1 

linearly independent such matrices called the generators of the group. For 

s”2 these are the famous Pauli matrices corresponding to spin. Of funda- 

mental importance are the commutation relations satisfied by the generators; 

a matrix representation of the generators which satisfies these relations 

yields a representation of the unitary group. 

A convenient choice of basis introduces n2 traceless hermitian matrices 

with one constraint. We define first n diagonal matrices H1,H2...,Hn 

such that Hi has diagonal elements - i except'for the i-th element which 
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n-1 is equal to - 
n' 

Hi = 

with 

n-1 

r- . 
. 

. 

= 
i 

0 
‘0 . 

. 

I 
'1 

\ 

i :I 
-- .:I 

0 

(2) 

Next we introduce matrices -&l) 
jk 

and E\;?k) for all j < k, which 

are generalizations of the Pauli matrices CY = and 0 = 
1 2 

has zero entries except at the intersection of the j-th row 

and the k-th column where it is 1(-i), and the k-th row and the j-th column 

where it is l(+i) 
, -- 

The set of matrices Hi, E. 
Jk 

and Eiz) together with the constraint 

(3), form a basis in terms of which we can expand an arbitrary traceless 

hermitian matrix h. 

Let us compute the commutation relations of these matrices. For that 

purpose, we introduce column vectors e (1) Cd . . . e, such that the only non- 

vanishing component of e 
(i) 

is the i-th component equal to 1. 

-Xl- 
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Then one obtains 

-.-- 
I 

[H~,H~I = 0 

[H~,E~;)] = i(e(j) - e(k))i Eli:'= i(Eji - Ski)Eiz) 

[H~,E~~) 2 ] = - i(e(j) - eck')i E&' = -i(Sji - ski)Eik) 

(5) 

[E('),E(')] = - i(&kmE~~) - sjnEl(&) - SknEi&) + ?jjrnF,k)) 
jk mn 

[E(~),E(~)] = - i(EtiEjF) + Ejn Ek) - 6i;nEii) - SjmEk)) 
jk mn 

where for convenience of notation ‘.:q heve jet 

-&) f 2H , ES;) = 4,) and Eiz) = -42) for j > k 
jj j J J 

(6) 

This set of commutation rules constitutes the "Lie algebra" of the 

group SU,. The elements of this algebra are the generators of the group. 
--. 

Actually the relations (5) can be written in a simpler form due to Cartan. 

Introduce the non-hermitian matrices E for 
jk 

j { k with zeroes every- 

where except at the intersection of the j-th and the k-th column, 
k 

E =j ----- 
jk 

, (7) 

In terms of E 
jk' 

we have 

Ei;' = E jk'%j 

EC') = -i(Ejk - ~~~~ 
jk 

(8) 

Note that E 
jk 

is no longer hermitian. 
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Then the commutation relations take the canonical form 

[H~,H~I = 0 

[H~,E~~I = [e(j) - e(k)li ~~~ = (6ij - “ik)~jk 
(9) 

[kjk,Emn! - Ejn(ikm - EmkCjn qhf:e E ii 
=H 

i 

The vectors [e (0 - e(j)] are the roots of the algebra. If we denote 

in n dimensional space the components of a vector by x1, . . ., xn, the 

roots are seen to satisfy the equation x + x . . . + xn = 0. Hence the 
; 2 

2 
roots are n - n vectors in an n - 1 dimezional space. For n = 3 we 

get the following six roots f(e (1) - e(")), *(ec2) - ec3) ), &(ec3) _ e(l)). 

These are all of length A/: and they subtend among themselves angles which 

are multiples of n/3 since the cosine of this angle is +-1 or Q/2. The 

overall scale factor is irrelevant. The resulting diagram 

r-----, 

l’ 
p-Y 

i \ 

;t_/ 

\ 

\ 
\ 

‘- d 

I’ 
, 

\ / 
-- - __’ 

is well known from the eight-fold way of Gell-Mann and Ne'eman. Generally 

cosines of the angles between roots will take only the values +l, +1/2, 0. ' 

This is illustrated in the root diagram for Si7 which is drawn in the 
4 

J-dimensional hyperplane x + x + x + x = O- (the roots join the center 
1 2 3 4 

of a cube to the midpoints of its 12 edges in agreement with the fact that 

there are n2 - n = (4) 
2 

- 4 = 12 roots). 
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It is straightforward to show that the representations of the unitary 

group obtained from transformations in the terlsor space can also be expressed 

in terms of generators satisfying the commutation relations (5) and (9). We 

note simply that the reducible Kronecker product is given by 

ih ih ih 
e Xe X...Xe =e 

iH 

where 

H=hXlX.. x1@1xhx1x..x1@...~1xlx..xh 

An important point is that the representations of H obtained from the 

irreducible representations of the group are clearly irreducible representa- 

tions of the Lie algebra, and that the converse is true. This is the basis, 

for example, of the well-known method in quantum mechanics to obtain the irre- 

ducible representation of SU2 by constructing the representations of the 

spin operators satisfying the 'angular momentum commutation relations." 

The Hi commute among themselves; hence they can be simultaneously diagon- 

alized. The set of n eigenvalues Hiu = miu (with vanishing sum) is called 

a weight of the representation. The irreducible representations are uniquely 

characterized by their highest weight. The adjective highest refers to an 
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ordering of the weights in which (m 
1 

. . . mn) is said to be higher than 

(rni . . . . mn) if the first non-vanishing difference mi - rn; is greater 

than zero. To each weight we can associate a vector m e + . . . + m e in 
11 nn 

the n-l dimensional space which already was used for the roots. One can 

show that in our case, apart from the condition c" m = 0, we must also have 
1 i 

_ -ml-n 1- k 
= integer. Ir fat>, th7 m '5 87.1 it; mcst 

1 fractions with denominator 

n which differ by integers. The highest weight appears as a linear comibin- 

ation with non-negative integral coefficients of n - 1 fundamental ones* 

M(l) = =,II,. . . . . . . . . 
( 

-1 
n n n 1 

&) = n - 2, n - 2,2, . . . . . 
( n 

$ 
n n 

1 

,(3) = 
( 
n - 3 , n - 3 , n - 3 , -3 -3 . 

n " P 

n 

M(P) 

n n ' '*' n 1 

= ZE IL! 
. ( 

n , . . . . . . . , n , . . . n 

M(n-1) = 

1 

( 

-t(n-1) 
+, . , . . . . . . . . ;, -) 

n 

First we recognize in the weight M (1) the set of eigenvalues of the operators 
1 

H 
1'""' Hn 

corresponding to the eigenvector y 
1 

= 8 in the defining 

n-dimensional representation of the group. 
0 : 

(We define analogously the co- 

ordinate vectors y . . . 
2 

yn.) It is clearly the highest possible weight and 

corresponds to the Young tableau u . We shall use the compact notations' 

of exterior calculus to denote antisymmetric tensors. Then consider the 

second rank antisymmetric tensors and examine the result of H 
i 

acting on 

Y,&2 - 
If g acts as 

g(Y1M2) = kYl)bY2) 

* 
'See Reference 5. 
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then with g N 1 f i6H (E small) H acts as 

H(y14f2) = <Hy,,",v2 + Y M(Y > 1 2 

Using the explicit form of Hi given above, one finds 

Hi(y/y2) = + Y/y;? - $ Y/y2 = 5 y/y, > i>2 _ 

The weight just obtained is in fact thehighest weight of the representation. 

Hence the second weight M (2) corresponds to the representation previously 

described in terms of antisymmetric second rank tensors or . There is 

obviously no difficulty in using the previous technique to prove that Mb) 

corresponds to the representation in terms of antisymmetric tensors of -. 

rank p: 

El1 

p boxes. 

Accordingly, the n-l representations of SU, obtained in terms of 

antisymmetric tensors of rank 1, 2, 3, . . . n-l are the n-l fundamental 

representations of the group. Once these representations are known it is 

possible to form direct products of representations (see below) in such a 

way that at each step one gets only one new representation. 

We recall that to each Young tableau (that is, to each representation) 

we attached two series of n-l numbers, (i) f 
1' 

f f 
2 ’ ' ' n-1 

(fn is 

always identically zero), giving the number of boxes in each row 

f=/f...>f 
2 -, n-1 ' and (ii) Al, A2. . . An-l, AL being the number of 
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columns of length one, and so on . . . . . . This second set is in direct 

relation to the highest weight of the representation which is equal to 

M = h M(l)-+ h M(2) + ,... + h &-+ 
1 2 n-1 

Before leaving the subject of infinitesimal transformations, it is inter- 

esting to notice that among the special unitary groups, SU ,and SU 
4’ 

turn 
2 

out to be "isomorphic in the small" to the rotation groups in 3 and 6 dimen- 

sions. Tnis means they have the same Lie a&o.ra- The first fact is of 

constant use in the study of the j-dimensional rotation group. In terms 

of group theory, the second homomorphism SU +R can be understood as 
4 6 

follows: both SU and R 
4 6 

depend on 15 (real) parameters. If we look 

at the representation of SU 
4 

in terms of antisymmetric tensors of rank 

two, we find the representation to be cf dimension 6, equivalent to its 

complex conjugate (see above). A little algebra shows that indeed in that 

case one can find a basis in terms of which the representative matrices are 

real so that they correspond to rotations. It is then a simple matter to 

show that one gets all six dimensional rotations in that manner. 

More generally, it can be shown that all groups having the same Lie 

algebra as Sun are isomorphic to Sun divided by a subgroup of its center. 

The center of Sun is the discrete abelian group which consists of multiples 

of the identity with determinant one, u : u = e 2i& 

r I where r = 1,2...n. 

v. DECOMPOSITION OF THE PRODUCT OF TWO REPRESENTATIONS OF Sun 

In many applications one faces the followir~~ problem. Let v(l) and 

>E (2) be the carrier spaces of two irreducible represenations of a group G, 

A(%d and A(2)(g). Then the fionecker product??(l)@ v(") is the 

carrier space of the product A (1) (2) (g>@A (g) which is generally a reduc- 

ible representation of the group. Then the question arises to decompose 

A(l) @A(2) in its irreducible parts. 
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There exist various ways to solve this problem. We will concentrate here 

on the description of a particularly simple method adapted to the case of SU . 
n 

In this case the carrier spaces ?g (1) and&2) are composed of tensors with 

certain symmetry properties. Consider a typical element of the product 

S I T, . . i 
1 f Jl"'Jf 

1 2 

It may be considered as a tensor with fl + f indices. As such we have a 
2 

universal procedure to decompose it into parts of maximal symmetry (see Section II). 

If S and T were not satisfying certain symmetry conditions already, we would 

thus get each representation with a Young tacieau of fl + f boxes a certain 
2 

number of times (in fact, a number of times equal to the dimension of the re- 

presentation of the symmetric group in f1 + f2 objects which corresponds 

also to the same tableau). However, we must take into account the conditions 

imposed on S and T. It is clear that the following statement will be true --_ 

in any case. The only representations of SU, which appear in the decompo- 

sition of the product of two representations corresponding to Young tableaux 

with f and f 
1 2 

boxes are those corresponding to tableaux with f1 + f2, 

fl + f 
2 

-n, f + f - 2n, . . . . boxes. 
1 2 

The possibility of subtracting the columns of n boxes explains the state- 

ment of the previous proposition. We now give the recipe for solving the de- 

composition problem. (Th e reader might find it useful before using the 

general method to solve the problem for the simple case of the product of an 

arbitrary representation with 
cl 

and then compare.) 
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General Recipe 

W _ Let 

two representations. Choose one of those as the trunk on which the repre- 

sentations contained in the product t:ill b: b&l;. T&n label the boxes in 

the first row of the second tableau a, the boxes in the second line b, the 

boxes in the third line c, and so on. 

(ii) Add one box labeled a to the first tableau in all possible ways 

so that it remains a tableau, i.e., the first row of length greater than or 

equal to the second row, etc. Then add a second box labeled a (if any) 

always requiring that the resultant object be a tableau. -&en the "a's" 

are exhausted, use the lib's', then the 'c's', and so on. 

(iii) In the process described in (ii) never let two boxes with the 

same label stand in the same column. 

(iv) At the end of the process keep only those tableaux with no more 

than n rows.(Later on the columns of n boxes will be dropped; as we 

have already mentioned, for Sun the columns of n boxes are irrelevant 

and can be added or omitted without destroying the meaning of the tableau.) 

(v) Among the tab1 eau with no more than n rows, some will be dropped 

and some others will be kept. In order to decide which are the relevant 

cae s (which correspond to irreducible representa?ions rontained in the de- 

composition of the product), the following device is used. Take some re- 

sultant tableau. Reading from right to left and from the upper end to the 

lower, collect the labels of the boxes. In the process of recollecting, one 

should always find a number of "a's" greater or equal to the number of Irb's", 
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a number of "b's" greater or equal to the number of 'c s", and so on. Hence, 

only certain tableaux satisfying the previous criteria survive - they give 

the desired decomposition. 

It is worthwhile to note that at the end some of the tableaux obtained 

might be identical (i.e., the corresponding representation appears several 

times); hwever, w;th aLt;tcb?d l-bcis t~rnc idt;ltica?. tableaux must differ by 

the disposition of the letters. For instance, 

and not 

as one could at first have thought. For following the process described 

above, we label the tableau with two boxes 

18 

then attach an rlaU to n , thus obtaining 

II 
or 

El a 

then a second "a" 

is forbidden by the rules. 

However, the two tableaux a 

EP 

differ neither by the tableau nor by the labels 
a 

and therefore must be treated as a single tableau. This illustrates a second 
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point: that a check on the dimensions is generally useful. If NL and N 
2 

are the dimensions of A(l) and AC2' , and if N (A) denotes the dimension 

of the irreducible constituents of 
Ah) x AC2) , we must have 

A last comment before turning to an example - it concerns the case when 

a diagram contains two rows of the same length, then one must label the two 

rows differently and proceed as before As an example, consider the problem 

of decomposing the product of two adjoint representations of SU . 6 

We follow the rules, and label the boxes of one tableau, 

First Stage 

a 

r 
a 

Er 

III e 

i 

F a; 
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Second Stage 

aa 

r 
a 

a 

ET 
I -I 

Third Stage 

It is impossible to pu a "b" before all "a's" or "c" before "b" (see 

and we do not want columns longer than 6, SC the only possibilities are 

a 

r a 

; c 
I- :d 

This is the desired decomposition. The final seven representations (with their 

attached labels) satisfy all the desired criteria. Writing fx the symbol of 

a representation DN(A1, As, A 
3' 4' 

A h5), we have obtained the result: 

D35(1,0,0,0,1) x D3'(1,0,0,Q,l) = Dl(O,O,O,O,O) + g35(1,0,0,0,1) 

+ D=sg(O,l,O,l,O) + D2s0(2,0,0,1,0) 

+ D280(0,1,0,0,2) + D405(2,0,0,0,2) 
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Indeed, one verifies that 

35 x 35 = 1+ 35 + 35 +189 + 280 +m+ 405 

The bar recalls the fact that the two representations (2,0,0,1,0) and 

(0,1,0,0,2j are contragradient to each olher 

It is clear that in some sense one could have kept the tableaux with more 

than 6 rows if, instead of dealing with SU one were dealing with some 
6 

sun,n > 6. Part of the result previously obtained would still be valid. 

Hence, it seems desirable to tabulate once and for all the result of the 

operation relaxing the condition on the number of rows. When applying the 

result to a given SU n 
one should only keep the tableaux with no more than 

n rows. This corresponds in fact to solving a related problem for the sym- 

metric group on fi + f objects: namely, the decomposition of the product 
2 

of two tensors with given symmetries (described by Young tableaux of f1 and 

f2 
boxes) into tensors (of-rank fL + f2) of given symmetry (in terms of 

Young tableaux with fi + f2 boxes). This is the so-called decomposition of 

the llouter product" of two representations of the permutation groups on f 
1 

and f objects. Some tables are given in Section VII. 
2 

- 32 - 



- 
I 

VI. THJ3 (SUm,SUn) CONTENT OF IRREDUCIBLE 

OF Sum 
AND "(m+n) 

REPFESENTATIONS 

The direct product (SUm,SUn) of two unitary groups SU, and SU, is a 

subgroup of SUmr?(SU(ifi+rLj). Yhis can be seen by relating (SUm,SUn) to the 

correspLading likar transLorm~;icn 5 1 tne k?necker product (direct sum) of 

two vector spaces of dimension m and n. It is clear that an irreducible 

representation of any group is also a representation, in general reducible, 

of its subgroups. In this section we consider the problem of finding the 

irreducible representations of (Sum, SU,) which are contained in an irreducible 

representation of Sum of SUm+n, that is, its (SUm,SUn) content. This has 

become an important question in applications of groups to the study of elemen- 

tary particles; for example, we are interested in the (SV,,SUi) or isospin 

content of SU = SU and in the 
3 2+1 

(SV_,SU ) or spin-unitary spin content 
3 

of su = su We shall discuss these two decompositions separately. '-- 
6 2x3 ' 

To obtain the (SUm,SUn) content of an irreducible representation of SUmn 

we consider two vector spaces Jd and V(n) of dimensions m and n 

respectively, in which SU and SU 
m n 

operate. The group (SUm,SUn) corres- 

ponds to unitary transformations in the tensor product space &d x vy 

with the scalar product defined by 

(wCrn) x ,(n), Jm) x ,q = ;&Am), v(m)) (w(“), vq , 

which leave (wm,vm) and (w v-9 invariant, where w(~) and v(~) are 

vectors in V (i), i = m,n, and (w(~), v(~)) is the scalar product of 

wW and v(~). It is then clear that (SUm,SUn) is a subgroup of SUmn 

which operates in V b-d x VW 
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The components of a vector in V (4 x Jn) can be written in the form 

V(i,a), where i runs fromlto m and QI fromlto n. Hence a tensor 

of rank f has the form 

To obtain the carrier space -of an irreducible representation of SUmn we 

have to impose a WmaximaL symlietr, conkition" ;*I the indices of T (see Sec.111). 

In applying this symmetry condition to T we have to permute pairs of indices 

(ij,CXj) at the same time. On the other hand, the carrier space for the irre- 

ducible representations of (SU,,SU,) is obtained by imposing a maximal symmetry 

condition on the indices i and a separatpu. Hence to get the (SUm,SUn) 

content of an irreducible representation of SU we have to decompose the 

tensors which satisfy symmetry conditions with respect to the permutation of 

pairs of indices (i,a) into the sum of tensor which satisfy such conditions 

for separate permutation of the indices i and CX. 

Consider as an example the representation of SUmn, corresponding 

Young tableau: 

It is described in terms of tensors 

T iCX ,i QI = Ti a: 
11 22 

,i CX 
22 11 

One can obviously write 

T ilOll,i a = 2 1 Tia 
22 ( 11 

,i CX +Tia: ia: 
22 21'12 1 

to the 

,i CX 
11 22 
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The first parenthesis is symmetric in the interchange of il and i2; it is 

also invariant with respect to the interchange of ax,CXz. The second is anti- 

symmetric in the interchange of i ,i2, and separately in the interchange of 
1 

a ,a . 
1 2 

The symbolic notation for the decomposition is 

We can make a check on the dimensions. On the left we have a representation 

of LJ 
mn( 

and hence of (SUm,SUn)) of dimension 

mn+1 

( > = (ml + 1) ml 
2 

2 

On the right we have a representation of dimension 

/m+lj, n-l-1 

i2 2 -i ) 

= Cm + lb . (n + l>n 
2 2 

and another one of dimension 

m in 

00 _ m(m - 1) .n(n - 1) 
2 2 

2 2, 

Hence we should have 

which is indeed satisfied. Now it is apparent that the following general 

statement is true: "Given an irreducible representation of SUmn whose 
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Young tableau contains f boxes, the only irreducible representations of 

(SUm,SUn) it contains are those with f - Am and f - h'n boxes respec- 

tively, where A and A' are integers." Again this stems from the irrele- 

vdnce of columns with p boxes added to the Young tableaux of an irreducible 

representative of SU . 
P 

The decomposition of te:lsorz of high rank invA\res a considerable amount 

of iabor. If tie are msLnly intelesteu Lil LLnL4ng tie (SU ,SUn) content of 
m 

s"mn 
we can use a simpler method based on the observation that this decom- 

position is directly related to the reduction of the Kronecker product of 

two representations of the symmetric group 
c 

f. We note that for fixed 

values of the indices i and a, the tensors T(i,oll),(i2a)... with maximal 

symmetry conditions for permutations on i and cx separately, are also 

basis for the Kronecker product of two representations of 
c 

f . The decompo- 

sition of these tensors into tensors with maximal symmetry conditions under 

simultaneous permutations of i and a leads to the reduction of the cor- 

responding Kronecker product into irreducible parts according to 
c f' 

This 

leads to the following procedure: 

-_ 

Suppose we want to know whether a given representation (D, X Dn) is contained 

in a given representation D of su symbolized by a Young tableau with 

f boxes. First, as explained above, one can add to the Young tableau of 

Dm CD,) a certain number * of columns of length m (n) on the left in order 

to bring them to a form where it contains f boxes. The Young tableaux 

obtained in that fashion describe also two irreducible representations of the 

symmetric group 
I f' 

Then the given representation D of su contains 
Inn ml-l f 

the representation (Dm,Dn) of (SUm,SUn) as many times as the corresponding 

representation of 
c f 

appears in the decomposition of the product 

* 
This number can of course be zero. 
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of the representations of 
f 

corresponding to the Young tableaux of Dm 

and D n' 
In other words, what one has to do is to obtain the Clebsch-Gordan 

series of the corresponding representations of 
c f' 

An important advantage 

of this method is that it allows us to forget essentially the subscripts m 

and n. The tabulation of the Clebsch-Gordan series can in fact be made only 

.rith reference to the syriAeIric gr%". TJ ; se !Pe tables for specific m, n, 

one only has to disregard Young tableaux of more than m (n) rows, and columns 

of length m (n) (see Section VII). 

We now turn our attention to the problem of finding the (SUm,SUn) content 

of a representation of SUm+n. For this purpose we form the vector space sum 

Jd + vo in which the scalar pr2iuct is :iow defined by 

(w(m) + ,bd, Jm) f ,q = (w(m), ,(rn)) + (w(n), ,q 

The transformations (SUm,SUn) in this space form a subgroup of SUm+n which 

leaves (w("), v(~)) and (w("), v(~)) separately invariant. The components - 

of a vector in V(m) + V(n) are now written in the form V., where i runs 
1 

from 1 to m + n with the convention that for i = 1 . . . m(i = m+l . . . m+n) 

these components belong to P (V"). Then f or a tensor of rank f we write 

T. 
if 

. 
ll . . . 

Now if we want to build irreducible representations of (SUm,SUn) 

we need to consider only tensors in which the index i 
J 

runs either from 1 

to m or from m + 1 to m + n and impose maximal symmetry conditions among - 

indices of the same kind. These symmetrized tensors can also serve to induce 

a representation of SUm+n if we adopt the convention that they have zero 

components for the absent values of the indices. The representation obtained 

in this way is reducible and corresponds to the Kronecker product of the two 

representations of SUm+n labeled by the two Young tableaux which previously 
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referred to SU, and SU . 
n 

The decomposition problem has been solved in 

Section V. This is the basis for the method of obtaining the (SUm,sUn) 

content of SUm+n which we now describe. 

Given a representation of (SUm,SUn) we can associate with it two Young 

tableaux, one for SU and one for SU n, for instance 
m 

Then we know from Section V how to decompose the 'outer" product of the 

corresponding representations of the symmetric groups, namely 

We refer the tableaux of the right-hand side to representations of SUm+n . 

Then the given representation of (SUm,SUn) appears in the decomposition of 

the representations of SUm+n which appear on the right-hand side as many 

times as their multiplicity indicate (in our example 0 or 1). 

Note that to the Young tableaux for the given representation of (SUm,SUn) 

we can add CL columns of length m, and S columns of length n, respec- 

tively. In our example we have 

m 
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Hence this representation of (SUm,SV,) will also appear in the decomposition 

of representations of SUm+n with Ckm + Sn extra boxes. In general a given 

representation of SUm+n with a Young tableau of f boxes contains only those 

representations of (SUm,SUn) for which the number of boxes of the two Young 

tableaux, call them f and f are such that 
1 2’ 

fi i f2 + cm + Sn = f 

A special case of this decomposition is Weyl's branching law which gives 

the SU 
n-i 

content of a representation of SU . 
n Indeed, it corresponds to 

the (sUnel J SU,) content of SU, where SU 
1 

is a trivial group reduced to 

one element. Its representations are all the unity matrix, but my be repre- 

sented by arbitrary Young tableaux with one row. Suppose we are given a 

representation (fl,f:, . . . , fn-,) of Sun 1. First we allow for an arbitrary 

number of extra columns of length n - 1 by writing it 

(f; +cX, f; +cX, . . . f A-2 + a, a> 

Then consider a "representation" of SU 1 (I@ and decompose the outer product 

(f; + a, f’ + cl, . . . f 
2 

;-, + v) (B) 

according to the rules of Section V, a and S are chosen in order to find 

(fl, - -* > fnJ in the decomposition. Clearly a necessary condition is that 

r; + . . . + f A 2 + CX(n - 1) + f3 = fi + f2 + . . . + f 
n-1' 

Then we shall have in the pr.ocess of decomposition tableaux with rows of length 

a 

n - 1 

aaa f;+n+p 

f; + Q + B: 
l 

f' :+a+ 
n-2 

Cl+ 

B n-2 

B n-1 
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with ,6 4 . . . + S 
1 n-1 

= S and due to the process of construction ("two a's 

cannot be in the same column") 

f; NT+82 <f' +Q: 
- 1 

* cI' + CL + f! < f' -!- c 
3 -5-- 2 

a+p <f' +cX 
n-1 - n-2 

We also want 

f;+a:+B =f 
1 1 

f'+r+f% =f 
2 2 2 

f' 
n-2 

+a+@ =f 
n-2 n-2 

a+g =f 
n-i n-1 

so 

cX+f'=f -p <f 
1 1 1- 1 

f2 = f; + CX + S2 _< f; + CX 

and analogous inequalities for f', f' . . . . . . The result reads: 
3 4 

f2 5 CX + f[ < fl 
- - - - 

fQ+l Ia+f; Sfj, 
- - - - 

0 f fn,5a: <f - n-1. 

This set of inequalities is the content of Weyl's branching law: the represen-' 

tations (fJ. . . ..fAe2) of Sun 1 contained in a representation (f=... fnwl) 

of su n are those for which there exists a positive integer (or zero) Q: 
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such that the previous inequalities are satisfied. It appears as a special 

case of the general method outlined above. 

In practice it is better to tabulate the decomposition of "outer" pro- 

ducts of representations of the symmetric groups. We are thus able to use 

these tables to solve two different_ problems pertaining to the unitary groups. 

The details are dic?usszd ir the next +ec:.ion. 

VII. TABLES 

We give below tables which are useful for the various decomposition prob- 

lems of both the symmetric group 
c. 

f and the unitary group SU 
n ( 

see 

Sections V and VI). We shall next. discus: their use. 

A. Dimension of representations. 

From SU to su 
3 12 

we give the value of the dimension of the represen- 

tations up to Young tableaux with 8 boxes. The first column gives the di.- 

mension of the corresponding representation for the symmetric group 
c f l :-_ 

B. Decomposition of the "outer product" of two representations of 

c 
and with respect to and Clebsch-Gordan series 

fl 
c f2 c fl+f2 

for the product of two representations of SU, . 

The tables first refer to the decomposition of the "outer product" of 

two representations of 
1 fl 

and 
1 f2 

or, what is equivalent, to the 

decomposition of the product of two tensors with given "maximal" symmetries 

in the f and f 
1 2 

indices respectively, into tensors with "maximal" sym- 

metries in the fl + f indices. 
2 

In other-words, they also solve the problem 

of decomposing the product of two representations of Sun (see Section V). 

As an example, the following representations of 
c 

and induce the 2 
5 
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following representations of as read in the tables 
7 

Notice that reading from Table A the dimensions of the corresponding repre- 

sentations of the symmetric groups, one finds, 

The dimensions on both sides are net eq.ual, b:lf the left-hand side always 

divides the right-hand side.* 

When labeling the representations we have used f1 _> f2 2 . . . > fn 1; - - 

"f's" equal to zero ere omitted and vhen 

f 
P+l = l ** 

=f p+r = ' 

instead of repeating 's' r times, we have written sr. 

In using the tables to decompose the fionecker product of two representa- 

tions of Sun, it is necessary 

(i) to ignore Young tableaux with more than n rows 

(ii) to consider as equivalent two Young tableaux when they differ only 

in the fact that one has extra columns of I?, boxes. 

* 
This is due to the following fact. The representation of 

of dimension n n2 
1 

induces a representation of 

to nl n2 times the number of cosets of 

(q + f,)!/f I f ! . 
12 

In our example this 
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Example: Using the tables for SU one gets 
3 

(The dot indicates the one-dimensional representation.) This ,also reads in 

familiar language 

(8) x (8) = (27) + (10) + (10) + 2(8) + (1) 

The dimensions are equal on both sides. 

If we turn to SU the same decomposition problem now leads to 
6 

or in terms of the dimensions 

(70) x (70) = ( 1134) + (840) + (490) + 2(896) + (175) + (280) + (189) 

Finally, the tables are also used "vertically" to find the (SUm,SUn) con- 

tent of an irreducible representation SUm+n (Section VI). In order to do 

this, select the column of the given representation of SUm+n corresponding 

to a Young tableau with f boxes in the table f1 + f2 = f. 

Each entry in the column is equal to the -number of times the representation 

of (SV,,SU,) appearing on the left occurs in the given representation of SUm+n. 

The two partitions corresponding to the Young tableaux appearing on the side 

of the table correspond to representations of (SUm,SUn) in two ways: (i) the 
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first partition refers to SU, and the second to SU,, and, (ii) the first 

partition refers to SU, and the second partition refers to SU .* 
m 

The only 

exception to this rule is when the two partitions are identical in which case 

one reads them only once. The table for f1 + f 
2 

= f must be trivially com- 

pleted by extra rows ccrresl;ondir:g to 0 + P = f, that is, the outer products 

of the representations of 
1 

f by those of' a group.reduced to the identity 

thus inducing the same representation of 
c 

** 

f' As customary we disregard 

tableaux of more than m (n) rows for Sum (Sun) and columns of length 

m (n> - As an example, consider the representation 171 of su and let 
6 

us find its (SU-,SU )content. Using the table for q+-r = 3 we find*** 
2 z 4 

rrrl + u--l-l-l > + N-T-TJ,~) + Kl 9 117) + Kn, q ) 

(SU6) --i) @u2,su4) 

or 

(56) = (1,N + (4J) + 2m) + (3,4) 

* 
Even if m = n. 

** 
In the preceding problem of Clebsch-Gordan series for group Sun this 

corresponds to the trivial decomposition of the product of an identity repre- 

sentation (f' = . . . = f' 

ducing to (1, . . . . 

= 0) by a representation (fL, . . ..fnml) thus re- 

*** 
fn 1 -nji(O,...,~) = (fl, . . ..fnmL). 

Note that the two first terms correspond precisely to the extra rows 

to be added to the tables. 
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C. These give the Clebsch-Gordan series for the symmetric group, and the 

content of an irreducible representation of SU in terms of its 
mn 

(SUm,.SUn) subgroup (Section VI) up to Young tableaus with eight boxes. 

Reading "horizontally" one finds the Clebsch-Gordan series of the pro- 

duct of two representations 01' 
T 

-T-- 
kz;;.o.l_,3 Try 

if' - 
. 

4’ 

EP x a3 = 5 + ff 
3 2 = 3 3 

One can also read them "vertically" for a representation of SUmn, thus col- 

lecting on the sides of the table its content in terms of (SUm,SUn). To do 

this, first select in the upper part of the table the Young tableau of a 

given representation of SUmn. This same tableau reappears in the lower part 

of the table. Each entry is the number of times the representations of (SUn,SUm) 

appearing on the left (right) of a corresponding row occurs in the representa-' 
-- 

tion of SUnm indicated in the top (bottom) of the column. The tW0 partitions 

corresponding to the Young tableaux appearing on each side of the table, 

correspond to representations of (SUm,SUn) in two ways: (i) the first parti- 

tion refers to SU m and the second to SU,; (ii) the f irst partition refers 

to sun, the second to SU,. * However, as usual, Young tableaux with more than 

m (4 rows referring to Sum (Sun) are disregarded as well as columns of 

length m (n). 

Example for SU : 
6 

Reading the table one obtains the (SU2,SU3) content 

of the following representation (interesting in the case of baryon number 

* 
Except in the case when the two partitions are identical 
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two states), 

@Us) --f (sy,sv,) 

or, in terms of dimensions 

(4po) + (7,z) + (128) + (5,271 + (3,35) + (5,8) + (3,10) + (3,iQ + (1,27) + (3,8) + (1,1) 

Of course the sum of the dimensions on the right adds up to the dimension on 

the left. 

In general, when the two representations have the same Young tableau they 

should not be duplicated (as explained above). To illustrate this remark, 

considerfor instance the (SU3,SU4) content of the following representation 

of su 
12 ' 

(572) + (10,x)‘) + (8,x)) + (1,x)‘) + (8,4) + (8,x)‘) 
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Notice that the representation ( 

EPIF 

) 0f (su3,su4) appears OnW 

once. 

The tabulation of Table C requires long calculations.* For higher orders 

we have used a computer. 

We summarize the various +pplicat!-ocs nf the tables in the following diagram: 

Symmetric Group Unitary Group 

TABI ' 
1 f "n 

A Dimension Dimension 

Decomposition of outer product 
(cfl , Cf2) --j ~fl+f2 ' (sum'sun' content Of "m+n 

i Clebsch-Gordan series for SUI 

C 
Clebsch-Gordan series of 

c f 

(SU,,SU,) content of SU 

Some explicit formulas can be found, for instance, in Ref. 4. or can be 
computed using Frobenius' formula for the characters of the symmetric group. 
The most straightforward method uses the orthogonality of characters. 
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(1) 1 

(2) 1 

(17 1 

(3) 1 

!%l) 2 

(1') 1 

(4) 1 

(3,1) 3 

(2”) 2 

c%12) 3 

Cl41 1 

(5) 1 

(4J) 4 

(382) 5 

(3,12) 6 

Vl) 5 

(2,1’) 4 

(15) 1 

(6) 1 

(5,l) 5 

(4,2) 9 

(4,12) 10 

(32) 5 

(3,2,1) 16 

(3,l") 10 

(2’) 5 

(2212) 9 

@,14) 5 

(16) 1 

(7) 1 

(691) 6 

(532) 14 

(5,12) 15 

(4,3) 14 

(4,2,1) 35 

(4,l') 20 

WA 21 

(3,2? 21 

(3,2,1? 35 

(3,14) 15 

(23,l) 14 

(A') 14 

3 

6 

3 

10 

9 

1 

15 

15 

6 

3 

* 

21 

24 

15 

6 

3 

* 

x 

28 

35 

27 

10 

10 

8 

l 

1 

* 

* 

l 

36 

40 

k 

15 

24 

15 

* 

6 

3 

* 

* 

* 

11 

4 5 6 7 8 9 10 11 

10 15 21 20 36 45 55 66 

6 10 15 21 28 56 45 55 

20 35 $6 04 120 165 220 286 

20 40 70 i.2 223 1’9 'jo 440 

i 1c L; 32 56 94 KO 165 

35 70 126 210 330 495 715 1001 

45 lo5 210 378 630 990 1485 2145 

20 50 105 1% 3% 540 825 I210 

15 45 105 210 378 630 990 1485 

1 5 15 35 70 1.26 210 330 

56 1.26 252 462 792 1287 2002 3003 

a4 224 504 looa ma 3=3 5148 8008 

60 175 420 a&? 16ao i;g7q 4950 7865 

36 1.26 336 756 15= 2-m 4752 Tr22 

20 75 210 490 1008 l?W 3300 5445 

4 24 a4 224 504 1008 1848 3168 

* 1 6 21 56 1.26 252 462 

84 210 462 924 1n6 3003 5005 8008 

140 420 1050 a.0 4620 e5& 15015 25025 

126 420 ll34 2646 5544 1069 19305 33033 

70 280 ho 2200 4620 9240 17160 30030 

50 l-75 490 U-6 2520 4950 9075 15730 

64 280 896 2352 5376 11088 2l.l.20 37752 

10 70 280 840 2100 4620 9240 17160 

3.0 50 175 490 1176 2520 4950 9075 

6 45 189 588 15l-2 3Ja? 6930 13068 

* 5 35 140 420 1050 2310 4620 

* I 1 7 28 a4 210 462 

l-20 330 792 1716 34% 6435 114.40 19448 

216 720 1980 4752 102% 2592 38610 68640 

224 840 2520 6468 14784 30888 6oc60 UOllO 

120 540 18oQ 4950 llaeo 2574'~ 5lG30 96525 

140 560 1764 4704 llOa8 23760 47190 aecea 

140 700 2520 7350 18480 415&l a5800 165165 

20 160 720 2400 6600 15840 34320 68640 

60 315 1176 3528 9072 20790 43560 84942 

36 210 a40 2646 7056 1632 35640 70785 

20 175 040 2940 a400 20790 46200 94380 

x 15 l20 540 1800 4950 11880 25740 

4 40 210 784 2352 6048 13860 2gob 

* 10 84 392 1344 3-m 9240 20328 

12 

78 

66 

364 

572 

220 

1365 

3003 

1716 

2145 

495 

4368 

I.2012 

I.2012 

I.2012 

8580 

5148 

792 

12376, 

40040 

54054 

50050 

26026 

64064 

30030 

15730 

23166 

a580 

924 

31824 

116688 

19219'2 

17l600 

156156 

300300 

128700 

156156 

132132 

l&180 

51480 

56628 

41x&4 

- 

-4a- 



- TABLE A (Continued) 

- 
I 

(2,l’) 6 l I * 

(17 1 * * I 

(8) 1 45 i65 495 

(791) 7 63 315 1155 

(6,~) 20 60 360 1500 

(t&12) 21 21 109 94 

(5,3) 28 42 280 1.260 

(5,221) 64 24 256 1440 

(591') 35 * 35 315 

(42) 14 15 lo5 490 

(4,3,l) 70 15 175 1050 

(4~2) 56 6 84 560 

(4,2,12) 90 * 45 450 

(4,lY 35 * t 35 

(3%') 42 3 45 315 

(3212) 56 I 20 210 

(3,2% 70 * 15 175 

(1,2,1') 64 * * 40 

(3,15) 21 * * t 

(24) 14 I 1 15 

(2?') 28 x * 10 

(221') 20 * l l 

(2J6) 7 x * * 

(19 1 * * * 

6 

* 

~-287 

3465 

4;jO 

3465 

4410 

5760 

1575 

1764 

4.410 

2520 

2430 

315 

1470 

1176 

1050 

384 

21 

lo5 

105 

15 

I 

* 

48 216 720 1980 4752 102% 

1 8 36 1.20 330 792 

3a3 6435 12870 24310 43758 75582 

go09 21021 45045 go090 170170 306306 

l>esO j!:,'0 T/S:, 163875 314600 583440 

LOjy > 2 ,.I27 6063 135135 270270 510510 

12936 33264 77220 165165 3P330 624624 

lwo 506a 123552 274560 566280 log&O 

5775 17325 45045 105105 225225 450450 

5292 13860 32670 70785 143143 27973 

14700 41580 lo3950 235950 k&+95 975975 

8820 25872 66528 154440 330330 660660 

9450 23730 @.x90 193050 424710 868725 

1575 5775 17325 45045 105105 2-25225 

5292 15876 41580 g&lo 212355 429429 

4704 15120 41580 101640 226512 k-68468 

4410 14700 41580 103950 235950 495495 

2016 76m 23760 6336~ 151oca 329472 

l&3 945 3465 10395 27027 63063 

490 1764 5292 13860 32670 70785 

598 2352 7560 207% 50820 1x256 

140 720 2700 8250 21780 51480 

7 63 315 1155 3465 9009 

* 1 9 45 165 495 
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TABLEiB 

- 
I 

fl + f, = 3 (3) @A (I31 

(1) (2) 1 1 

(1) (I21 1 1 



- 

TABLl3 B 

(Jontinued) 

--- 
(4,.1) 1 :3,9 i (3::‘) (22) (v3) (15> 

- - I -- - 

(1) (4) 1 1 

(1) (3A 1 1 1 

I 1 I I 1 I I I 
(1) (w2> l 1 1 

-. 1 1 

1 1 

(2) @A 1 1 1 1 

(2) Cl31 1 1 
--. 

Cl21 (3) 1 1 

cl*> (2,1) 1 1 1 1 

Cl21 (13) 1 I 1 I 1 
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T&GE B (continued) 

- 
f 

n 
f 
4 

f 
f 
cu 
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TABLE B (continued) 

7 

+ 
PC, 

fl+f2 = 6 (6) (5,l) (4,2) (4,12) (32> (3,&l) (z3> (3,13> (22,12)(2,14)(16: fl+f2 = 6 (6) (5,l) (4,2) (4,12) (32> (3,&l) (z3> (3,13> (22,12)(2,14)(16: 

(3)(3) (3)(3) 1 1 i i 1 1 1 1 

(3)(2,1) (3)(2,1) i i 1 1 1 1 2 2 / / 1 1 i i __ __ 
I I 

(3)03> (3)03> 1 1 1' 1' 

(2,1)(2,C (2,1)(2,C 1 1 1 1 1 1 2 2 1 1 1 1 1 1 

(2,1)(133) (2,1)(133) 1 1 1 1 1 1 1 1 

(1') (13) (1') (13) 1 1 1 1 1 1 
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TABLE B (Continued) 

t- 

+ 

r! 

- 

\D 

+ 

ol 

- 

(1)(5,2) I I 111 
(1) (5,12) I I I II 
(1)(4,3) I III 
(1)(4,2,1) I III 

zf--tHt 

0>(2,15> I III 

(2)(4,12) 1 I I 1 
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TABLE B (Continued) 

0 

f 

u 

- 

I 

(12) (42) I I I I 1 111 I I 1 
I I I I 

(1”) (4,1”) 11 11 1 

02?> (32) 11 1 

(12) (3,W) 111111 1 

(I21 e3) I I I I I I I I I I I 111 Ill I I Ill I I I I 

(x2> (3rlT) 1 1 11 1 

(12> P2J2) 111 11 1 

(12) (2,1.*) 1 IIIIIIIIIIIIIII111~1~1~11I I 

Cl21 (16) I I I I I- I I I I I I I I I I r-n 1 I 111 I 
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I 

,TABLE B (Continued1 

I 

f +f2=8 
1 

I (3) (5) 1 i 1 I 1 1 1 1 , i-, r- _ 

(3j (4,1) 1 '1 1 '1 1 ' 11 i !-. I 

(3) (7,2) 1 11 11 1 

1 1 1 1 I 

I I I I I I I I 

03’) (5) 1 1 

(13.3> (4,l) 11 1 1 

(13) (3,2) 1 1 1 1 

(13) (3,12) 11 1 11 1 

(1') e2,0 111 11 1 

(13) (w3’) - 11 11111 

(133) (x5> 11 1 11: 
.I 
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TABLE B (Continued) 

+f =8 
1 2 

s 

r (4) (4) 1 

(4) (3,1) 

(4) (9) 

(4) (v2> 

(4) cl*> 

(3,1) (3,1) 

(3,1) e2> 
. 

(3,1> (2,12) 

(3,1) (I*) 

e2> e2> 

11 I' 
I 

1111 la 

'I l, +l+i 

-es- --. 

1 1 1 

1 11 1 

1 1 

11121121111 

11 1111, 1, 

11 112 I 1 Ii 11 

1 11 1 

111 111 

(p2) cw2) 1 1111 11 

e2> cl*) 1 1 1 

(w2> @J2> 11112112111 

(2,12> b-*1 1 11111 

(I41 (14) I I I I I I I I I I 11 l I I Ii I 11 Ii Ii , 
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1 

TABLE: c 

c 
I 3 

(3)@ (3) 1(13)8 (I31 

1 (3)@ (2,1) (13)@ (2,l) I 

(2,1) @ (2,1) 

12 1 

(3) (2,1) (13> 

-,- 'I- 
(3)@> (I31 

1 

1 1 1 

(13) (2,1) (3) 

-- 3 2 3 1 

/'.L 4 (4; (3,1)(22) (2,121 (14) 
-- 

(4) ,.& (41 w:g, (1") 1 w504) 

(4) x (3,l) (14) x @,l") 1 (I")!% (3,l) (4) :&x2) 

(q+J(22) (1*):,x (22> 1 

(3,1).5 (?,1>(2,12> &l") 1 1 1 1 (3rl) $;(2,12> 

(3,1) x b2) (2,12) x.Ef2) 1 1 

(z2) x,: (2’) 1 1 1 

(14> k12)(22> (3,1) (4) 
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TABLE C (Continued) 
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APPENDIX 

,THE SYMMETRIC GROUP AID PROPERTIES OF THE YOUNG SYMMETRY OPERATORS 

The theory of linear groups is intimately linked with the study of the 

symmetric group F df' 
the permutation group of f objects. We have given 

in Section III rules f?r obtaining *he il re.dl-:ible representations of SU, by 

imposing certain maximal symmetry conditions on the indices of tensors. These 

symmetry conditions are completely described by the Young tableau. We want 

to discuss now the fundamental properties of the corresponding Young symmetry 

c 

* 
operators of the symmetric group f' 

A useful technique for obtai&.ng the irreducible representations of dis- 

crete groups is based on the construction of a finite vector space in which 

the group elements can be chosen as a basis. Such a vector space, in which 

there exists a natural law of vector multiplication, has the properties of a 

ring; it is called the group ring. The subspaces of the ring which are left-. 

invariant under this multiplication are called left ideals, and provide repre- 

sentations of the group. 

Let pLp2 .a. P 
g 

be the elements of a discrete group of g elements. 

The group ring R is defined by the set of vectors 

x=xp 
11 

+xp + 
22 

. . . +xp 
gg' 

where (x x . . . x 
12 g 

) is a g-uple of complex number, which 

(1) 

satisfies the 

following law of multiplication based on the group multiplication law: 

xy 2 
c 

X.Y 1 j (Pipj) = c (xY)k Pk 

i,j h 

(2) 

* 
See References 1 to 4. 
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where 

by), = 1 xiyj (3) 

and the sum is carried over all i,j for which p.p. = pk. A left (right) 
iJ 

ideal I is then defined by the condition that if x C I, then 

v F I (xy EL I), for evey y.C R. 'Iwo tri_viah. examples of an ideal 

are the ring R, and multiples of the identity. 

Due tothe associativity of the group multiplication law, it is clear 

that a left ideal gives rise to a representation of the group. To obtain the 

irreducible representations we require the minimal ideals, which are those -_- 

ideals which contain no proper invariant subsPac-2s. A very important element 

of an ideal I is its idempotent element e, which has the property that 

2 
e = e, l.e., it is a projection of the ring on the ideal. Suppose that 

x C R; then xe GE I, and if x /= I, then xe = x. For the permutation 

group, we want to show that the idempotents of its minimal ideals can be chosen - 

to be precisely the Young syrmnetry operators Y described earlier in Section III 

(apart from normalization). The two crucial properties which we have to demon- 

strate are: 

(1) Ys = pY where p is a constant; 

(2) If Y = p(el. + e2), where ez = el, ez = e2 and ele2 = 0, then either 

e or e 
3. 2 

= 0; in other words, the corresponding ideal is minimal. 

First we show that if an element x of the permutation ring has the property 

xP =x and qx.= 6s" 

where p and q are elements of the Young symmetry operator Y (seesection III, 

formula (5)),then x = cY, where c is a constant. Any element YzY where 
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z belongs to the ring R, naturally has this property. Hence Ys must be 

a multiple of Y. To prove property (1) we also have to show that the propor- 

tionality constant does not vanish. Finally, the minimal property (2) follows 

immediately since it also implies that 

YeiY = e. 
1 

Hence, by (l), either we1 = Y, e2 = 0 or e = 0 and pe = Y. 
1 2 

Expanding x = Cx(t)t,we find that the conditions xp-' =x and 

q-lx = Sqx imply that x(tp) = x(t) and x(qt) = sqx(t), respectively. In 

particular, substituting for t the identity t = 1, we obtain x(p) = x(l) 

and x(qp) = Eqx(l). These are precisely the expansion coefficients of Y 

(apart from the constant x(l) >. It remains to demonstrate that x(t) = 0 

when t is not a permutation element contained in Y. A bit of reflection 

will show that all permutations which do not belong to Y are characterized 

by the property that,if they are applied to the integers 1 to f occupying" 

the boxes of a Young tableau at least two integers in the same row, end up 

in the same column. It follows that if u is the transposition of these 

integers in the initial row and v is the corresponding transposition in 

the final column, 

vt = tu 

But we have the property that 

x(tu) = x(t) and x(vt> = -x(t) 

which implies 

x(t) = 0 



_ --. -- 

Finally, we evaluate the coefficient p, Eq. (1). For this purpose we intro- 

duce a reducible representation for the group generated by the linear trans- 

formations induced by the group elements when they act on R, the so-called 

regular representation. The only property of the regular representation which 

we reollire here is that t'le tlzace If a_'l. m;tr iCFs <:crrespcnding to elements . 

other than the identity vanish, hence trace Y = f! (recall that f! is the 

dimension of the regular representation, i.e., the order of the symmetric 

group 
c 

f ). On th e other hand if we introduce as basis a set of vectors 

belonging to the ideal generated by Y of dimensio:1 &, Y must be a multiple 

of the 4 X 4 unit matrix in the corresponding representation. Hence , 

trace Y = p-t, and p = f!/-e. 

We have shown that the Young symmetry operator Y is an idempotent or 

projection in the ring of the symmetric group 
c 

f . It generates a minimal 

ideal, that is, an invariant subspace under group multiplication which does 

not contain any smaller invariant subspaces. Hence, it gives an irreducible 

representation of f . 
c 

In fact, all the irreducible representations of 
c 

f 

are given by the possible Young tableaux of f boxes. The proof is quite 

simple and will not be given here. In conclusion, we note that the ideals 

corresponding to different Young tableaux are carrier spaces for unequivalent 

representations. 
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