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UNITARY HARMONIC NUMBERS

PETER HAGIS, JR. AND GRAHAM LORD

ABSTRACT.   If  d (n) and  cr (n) denote the number and sum, respec-

tively, of the unitary divisors of the natural number  n then the harmonic

mean of the unitary divisors of  n is given by H (n) =  nd (n)/cr  (n).  Here

we investigate the properties of H (ra), and, in particular, study those num-

bers  n for which  H (n) is an integer.

1.   Introduction.   Let  d{n) and o(n) denote, respectively, the number

and sum of the positive divisors of the natural number n.  Ore  [6]  showed

that the harmonic mean of the positive divisors of n is given by  H{n) =

nd{n)/a{n), and several papers  (see  [l], [5J> [6], L7]) have been devoted to

the study of  H{n).  In particular the set of numbers S for which  H(n) is an

integer has attracted the attention of number theorists, since the set of per-

fect numbers is a subset of 5,   The elements of S are called harmonic num-

bers by Pomerance  [7j.  This paper is devoted to a study of the unitary

analogue of H(n). We recall that the positive integer d is said to be a uni-

tary divisor of n if d\n and  {d, n/d) = 1.   It is easy to verify that if the

canonical prime  decomposition of n is given by

al   «2 .ak

(1) » = PlPl'-'Pk

and  d  (n)  and   o   {n) denote the number and sum, respectively, of the uni-

tary divisors of n then

(2) d*(n) = 2k;       o*{n) = (p"1 + l){pa22 +!)■■■ {p¡k + 1).

It is also easy to show that the unitary harmonic mean (the harmonic mean

of the unitary divisors) of n is given by

(3) //*(«) = nd*(n)/a*(n) = U 2p?Ap? + 1).

We shall say that n is a unitary harmonic number if H   (n)  is an integer,
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and shall denote by  UH the set of these numbers.  A computer search (which

required approximately 2.5 hours of CDC 6400 time at the Temple University

Computer Center) was made for the elements of  UH in the interval  [l, 10 ],

and 45 such numbers were found.  These are given in Table I at the end of

this paper.

Subbarao and Warren [10] have defined n to be a unitary perfect number

if a  in) = 2n.   Five such numbers are presently known [9],  Since  d (n) is

even the following result is immediate from (3).

Proposition 1.   The set of unitary perfect numbers is a subset of UH.

2.   Some elementary results concerning H   (n)  and   UH.    We now estab-

lish some facts which will be of use in the sequel and which, in certain

cases, are of some interest in themselves,  n will always denote a natural

number with prime decomposition as given in (1); p, q, r with or without

subscripts will always denote primes.

Lemma 1.   2k+1/{k + 2) < H*(n) < 2k with equality on the left if and

only if n = 2 or 6.

Proof.   Since  x /(x + l)  is monotonie increasing and bounded by  1  for

positive x, it follows from (3) that

2k > H*(n) > 2fe(2/3)(3/4)(4/5) •••((*+ l)/(k + 2)) = 2k+ l/(k + 2).

Lemma 2.   // pa\\n, then pa > H*(n)/(2k - H*(n))  with equality if and

only if k = 1.

Proof.   From (3),  H*(n) < 2kpa/{pa + l).

Lemma 3.   // pa \rc\  is the minimum {maximum] prime power divisor of

n  in (1) then

pa < kH*{n)/{2k - H*(n)) \rc > ((* - l)2fe + H*(n))/(2k - H*(n))\

with equality if and only if k = 1   or n = paq rc  where  q   = pa + 1  (so that

2\n)  and rc = pa + 2  or c = 0 {where  qh = rc - 1  (so that  2\n)  and pa =

rc - 2  or a= 0\.

Proof.

H*(n)>2k{pa/(pa+ D\{(pa+ D/(pa+ 2)\---{(pa + k-l)/(pa + k)\

= 2kpa/(pa + k),
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and

H*{n) < 2k{(rc - k + l)/(rc -k+ 2)\{(rc - k + 2)/(rc - k + 3)1 • • • {rc/(rc + l)j

= 2k(rc -k+ l)/(rc + 1)

with equality only in the specified "exceptional" cases.

We turn now to some results concerning UH. The following proposition

was proved by Ore [6, p. 617] for harmonic numbers and holds for elements

of  UH since  H(n) = H   (n)  if and only if n  is square-free.

Proposition 2.   // n is square-free and n 4 6, then n is not a unitary

harmonic number.

Since  2\(pa + l)  if p is odd, and since 4\(pa + l) if p = 4/ + 3 and  a

is odd, our next two results follow immediately from (3).

Proposition 3.   // n is odd and n e UH, then H  (n)  is odd.

Proposition 4.   // n is odd,  n e UH,  pa\\n, and p = 4/ + 3 then  a

is even.

From  (2) and (3) it is immediate that  H   (n)  is a multiplicative func-

tion. Therefore, if (n, m) = 1 then H   (nm) = H   (n) • md (m)/o  (m) from

which we easily deduce the following result.

Proposition 5.   If n e UH,  (p, n) = 1, and (pa + l)|2/i*(«), then

pan e UH.

For example, since 40950 e UH and  30 = 2tf*(40950) we see that

29 ■ 40950 e UH also.

3.   Two cardinality theorems.

Theorem 1. // S is the set of natural numbers n such that H (n) - c,

then S    is finite (or empty) for every real number c.

Proof.   Our proof is based on an idea due to Shapiro L8j. Since

2k + l/(k + 2) > k we note first that if H   (n) = c then Lemma 1 implies that

the number of prime factors of n is bounded (by c). Now assume that S^

is infinite.  Then S    must contain an infinite subset, say Scm, each of

whose elements has exactly m prime factors.  It is not difficult to see that

an infinite sequence n ., rc,, • • •   of distinct integers exists with the follow-

ing properties:
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(i)  n. e S       so that //*(«.) - c for i = 1. 2, • • r :
Z Cm Z 7 11

m

(a)     n.=a*1 • • • Pa>- va¿* • • • Pa™ = p n pa'j
i      rl rs-l   ris rzm xx   rIJ

where

ô"1 < • • • < ó*5" l < pais <■•• <p°:im    for i = 1, 2, • •. .
r 1 r s- 1        r is r im

(P  may be empty, but s — 1 ^ m.)
a.- -

(iii)   p.1' —» °°   as  z —> oo  for ; = s, ■ • • , m.

(That is, each n. is composed of a fixed, constant block of prime

powers and a variable block of prime powers arranged monotonically within

the block and such that each component of this variable block goes to in-

finity with  i. )

From  (i) and  (ii) we see that

m

n H*(Py)<2m+i-s
H*{P)     ,VS        'z>

so that there exists a fixed positive number v such that IT72     H*(p.1') =

5 - v   for   i =   1,   2,   3, • • • .    But from   (iii)   it follows  that

H   (p{'') —>  2   as   i —*  ~   for   s  < j < m.    Therefore,  for  "large"   z',

IF?     f/   (p.!1) > 2m       s - v.   This contradiction completes the proof.

Since there are only finitely many integers between 2k + 1/(k + 2) and

2    the following theorem follows from Lemma 1 and Theorem 1.

Theorem 2.   There exist at most finitely many unitary harmonic num-

bers with a specified number of distinct prime [actors.

From Proposition 1 we have the following corollary which was first

proved by Subbarao and Warren  LlO].

Corollary 2.1.   There are at most a finite number of unitary perfect

numbers with a specified number of prime factors.

4.   Elements of UH with a specified number of prime factors.   Let  T,

denote the set of unitary harmonic numbers which have exactly k prime

factors. In connection with Theorem 2 it is perhaps of some interest to

identify the elements of  T,   for a few selected values of k.

Proposition 6.   T.   is empty.

Proof.   H*(pa) = 2pa/{pa + 1), and it is easy to see that (pa + l)¡2pa.

Proposition 7.   T2 = ¡6, 45!•
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Proof.   If n e T2  then, from Lemma l, H   (n) = 2 or 3. If H   (n) = 2

then from Lemma 3,   2||« and consequently  n = 6.   If  H   (n) = 3  then from

(3)  and Lemma 2,   3   ||rc where  è > 1.   From Lemmas 2 and 3 either  2   ||rc or

51|«.  If n = 223è then 5(3fc + 1) = 16 • 3è_1  which is impossible.  If rc =

5 • 3fe then 3 = H*(n) > H*(5 • 32) = 3  so that « = 45.

Proposition 8.   T3 = {60, 90, 1512, 15925, 55125!.

Proof.   From Lemma 1  H   (n) = 4, 5, 6 or 7 if n e T,.  We consider

these possibilities separately.   pa  will always denote the minimal prime

power in (1).  It can be bounded by using Lemmas 2 and 3.  We shall also

rely heavily on the fact that x/(x + l)  is monotonie increasing.

Case I.   H   (n) = 4.   Then pa = 2  or 3, and from Proposition 3  n is

even.  If pa = 2, then, since « is not square-free, 4 = H   (rc) > H   (2 • 3    -5)

= 4. If pa = 3 then 4 = //*(«) >H*(22 • 3 • 5) = 4.  Therefore,  n = 60 or 90.

Case II.   //*(«) = 5.  pa = 2, 3 or 4, and from (3) 5|rc.  If pa = 2 then

» = 2 • 3fe5c, and from (3): (3b~ 1 - 5)(5C_ X - 3) = 16 which is impossible.

If pa = 3  then from Proposition 4  « is even and  « = 2   3 • 5C.  It follows that

(2b - 5)(5C_1 - 1) = 6 which is impossible.  If pa = 4 then « = 4 • 5 V and

5 = //*(«) >H*(20qc) = 16<7C/3(?C + 1) which implies that  qc = 7, 9, 11   or

13.  Each of these possibilities leads to a contradiction.

Case III.   H   (n) = 6.  Then « is even,  3|rc, and pa = 4, 5, 7 or 8.  If

pa = 4 then rc = 4 • 3& • 5C;  if pfl = 5 then « = 2fe3ir5;  if pa = 8 then rc =

8 • 3fc • qc where  ?c > 11.   From (3):  (3fe_1 - 5)(5C_1 - 3) = 16;  or

(2b -9)(3C~2 - 1) = 10;  or (5 • 3fe~3 - D(5?c -27) = 32. None of these is

possible. If pa = 7 then rc = 263c7, and (2b~l - 3)(3C~ l - 2) = 7. There-

fore,   & = c = 3  and  « = 1512.

Case IV.   H*(n) = 7.  Then 7|rc and pa = 8, 9, 11, 13, 16, 17 or 19.

Assume first that  2|rc.   Then, if pa = 9, 11, 17 or  19,  « has  four prime fac-

tors (from (3)).  If p" = 13  then  H*(n) > f/*(257313) > 7;   if pa = 16 then

H*(n) > f/*(l6 • 7317) > 7;  if pa = 8 then rc = 8 • 3fe7c, and (3fe_2 - 7) •

(7C~    — 9) = 64 which is impossible.  Now assume that  rc  is odd.  Then,

using Proposition 4,  72|rc;  and  p" = 9, 13  or  17.  If pa - 17  then  tf*(rc) >

//*(17 • 34 • 72)>7.  If pa = 9 then rc = 9 • 5è7c, and (5fe_1 -7x7e"1 -5) =

36. Therefore,  b = 3, c = 2 and rc = 55125. If pa = 13 then rc = 13 • 7bqc.

If & > 4 then, from (3), 72|(oc + l)  so that oc > 97.  But H*(13 • 7497) > 7.

Therefore,  b = 2 and it then follows that  rc = 13 • 72 • 52 = 15925.

5.   The distribution of the unitary harmonic numbers.   For each positive

real number x we shall denote by  A(x) the number of integers  rc  such thatLicense or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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n < x and n e  UH.   This section is devoted to a proof of

Theorem 3.    For any e > 0, A(x) < 2.2x'/2 2(1 +€)hg x/h& log x ¡or "large" x.

Proof.   We use an argument of Kanold [51.  A powerful number is a

positive integer  m with the property that if p\m then p \m.   It is obvious

that every positive integer can be written uniquely in the form N „Np where

(Np, NF) = 1,   Np  is powerful (or  1)  and  Np  is square-free.   If  P{x) is the

number of powerful numbers not exceeding  x it is proved in  [2]  that  P{x) ~

cxH where  c = Ç{3/2)/((3) = 2.173 ••• .  It follows that  P(x) < 2.2xH for

large x.

If Np is a (fixed) powerful number let g(Np, x) denote the number of

square-free numbers Np such that {Np, N p) = 1, NpNp <x, and NpNp e

UH.  If G{x) = max \g(N p, x)\ for Np < x it follows that

(4) A(x) < 2.2x1/2G(x)    for large x.

We now investigate the magnitude of G\x). Let  Np be a powerful num-

ber for which square-free numbers  m,, m^, '" , mc,  ■. exist such that

(Np, m) m 1,  Npm. < x and Npm. e UH tor i = 1, 2, • • • , G{x). Then

H  [Npm) = H   (Np)H   (m) = Z . where Z . is an integer for  z = 1, • • • , G{x).

If Z. = Z. where  i ¿ /', and (m., m) = d then, of course,   H   (M.) = H   (M.)i        j i      j i j

where  M . = m Jd and M . = m ./d.  If M . = p, • • • p    (or  1) and M . =

1\ ' ' ' 1t (where  pl < • • • < ps, q^< '" < qt and p    £ q ) then from (3):

(5) 2sPl ■ ■ ■ ps(l +ql)---{l + q) = 2tql---  qt(l + p ¿ • ■ ■ (l + Ps).

It is not difficult to see that p    < 3 and  q   < 3  so that (assuming  M.< M)

M. = 6,   M. = 1;   M. = 3,   M. = 1   or  2;  M . = 2,   M. = 1   are the only logical

possibilities.  Since none of these satisfies  (5) we conclude that  Z. ¿ Z.

unless   i = /.   Therefore, without loss of generality,   Z. < Z, < • • • < Zc.  .

so that G(x) < ZG(  . = H  (NPmGix\> < 2  , where  ¿ is the number of prime

factors in NpmGixy  K  N = 2 • 3 • 5 • • • pK  is the "longest prime product"

not exceeding x then k < K.  Since  K ~ log iV/log log N (see [4, §22.10])

it follows that if e > 0  then

(6) Gix) < 2(1 +e) b* x/1°e be x    for large x.

Our theorem follows from  (4)  and (6).

Remark.   It follows easily from Theorem 3 that   UH has zero density.

That the set of unitary perfect numbers has density zero was first shown by

Subbarao [3, p. 1117].
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Table 1.  The unitary harmonic numbers in  [l, 10  ].

H%) H*M H%)

1

6

45

60

90

420

630

1512

3780

5460

7560

8190

9100

15925

16632

1

2

3

4

4

7

7

6

9

13

10

13

10

7

11

27300

31500

40950

46494

51408

55125

64260

66528

81900

87360

95550

143640

163800

172900

185976

15

10

15

9

12

7

17

12

18

16

14

19

20

19

12

232470

257040

330750

332640

464940

S65488

598500

646425

661500

716625

790398

791700

859950

900900

929880

15

20

10

20

18

22

19

13

12

13

17

29

18

33

20
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