Unitary Hyperperfect Numbers

By Peter Hagis, Jr.

Abstract. Unitary hyperperfect numbers are generalized unitary perfect numbers. In this paper a list of such numbers is given, and some results concerning them are proved.

1. Introduction. In this paper, lower-case letters denote positive integers, with p and q always representing primes. If $d \mid n$ and (d, n/d) = 1, d is said to be a unitary divisor of n. If $\sigma^*(n)$ denotes the sum of the unitary divisors of n, then $\sigma^*(1) = 1$ while

(1)
$$\sigma^*(n) = (1 + p_1^{a_1})(1 + p_2^{a_2}) \cdots (1 + p_s^{a_s})$$

if $n = p_1^{a_1} p_2^{a_2} \cdots p_s^{a_s}$. It is easy to see that $\sigma^*(n) = \sigma(n)$ (where $\sigma(n)$ denotes the sum of *all* the positive divisors of *n*) if and only if *n* is square-free.

Subbarao and Warren [2] have defined n to be a unitary perfect number if $\sigma^*(n) = 2n$. Minoli [1] has defined m to be a hyperperfect number if $m = 1 + t[\sigma(m) - m - 1]$. We shall say that m is a unitary hyperperfect number if

(2)
$$m = 1 + t [\sigma^*(m) - m - 1].$$

When t = 1, m is a unitary perfect number. A square-free number is hyperperfect if and only if it is unitary hyperperfect.

2. Some Elementary Results. Suppose that *m* is a unitary hyperperfect number. From (2) it is immediate that (m, t) = 1. Therefore, if 3 | t, then $3 \nmid m$. If $t \equiv -1, 1$ (mod 3), then, from (2), $\sigma^*(m) \equiv 2$, $2m \pmod{3}$. Now, assume that $m = \prod_{j=1}^r p_j^{q}$ where $p_j \neq 3$. From (1), $\sigma^*(m) \equiv \prod_{j=1}^r (1 + p_j^{q})$ and since $\sigma^*(m) \neq 0 \pmod{3}$ it follows that $2 \mid a_j$ if $p_j \equiv -1 \pmod{3}$ and that $\sigma^*(m) \equiv 2^r \pmod{3}$. Therefore, $m \equiv 1 \pmod{3}$ and *r* is odd. We have proved:

FACT 1. If m is a unitary hyperperfect number and $3 \nmid m$, then $m \equiv 1 \pmod{3}$. Also, if $3 \nmid mt$, then m has an odd number of distinct prime factors.

Since $\sigma^*(p^a) = p^a + 1$, we have immediately from (2):

FACT 2. If m is a unitary hyperperfect number, then $m \neq p^a$.

Now, suppose that $m = p^a q^b$ is a unitary t hyperperfect number. Since $\sigma^*(m) = m + p^a + q^b + 1$, it follows easily from (2) that

(3)
$$q^b = (tp^a + 1)/(p^a - t),$$

and we see immediately that $p^a > t$. If $p^a - t = 1$, then

(4)
$$q^b = p^{2a} - p^a + 1.$$

Received June 27, 1980.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 10A20.

^{© 1981} American Mathematical Society 0025-5718/81/0000-0030/\$01.75

A search was made for all solutions of (4) with $2 \le p^a < 10^5$. There were 720. In 695 solutions, a = b = 1. Eighteen solutions were of the form p^2q . The "exceptional" cases were $2^4 \cdot 241$, $3^4 \cdot 6481$, $3^6 \cdot 530713$, $5^4 \cdot 390061$, $7^3 \cdot 117307$, $13^4 \cdot 815702161$, and $19 \cdot 7^3$.

If, in (3), $p^{a} - t = 2$, then

(5)
$$2q^b = (p^a - 1)^2$$

so that $p^a = 2^k + 1$. If a = 1, then p is a Fermat prime; if a > 1, then a = 2, p = 3, k = 3. Therefore, the only known unitary t hyperperfect numbers of the form $p^a q^b$ with $p^a - t = 2$ are $3 \cdot 2$, $5 \cdot 2^3$, $17 \cdot 2^7$, $257 \cdot 2^{15}$, $65537 \cdot 2^{31}$ and $3^2 \cdot 2^5$.

If $p^a - t = g$ in (3), then it is easy to see that $p^{2a} \equiv -1 \pmod{g}$. It follows that $4 \nmid g$ and that g has no prime factors of the form 4j + 3 since -1 is a quadratic nonresidue of all such primes. We have established:

FACT 3. If *m* is a unitary *t* hyperperfect number of the form $p^{a}q^{b}$, then $p^{a} - t = 1, 2, 5, 10, 13, 17, 25, 26, 29, 34, \cdots$.

If $m = p^a q^{b_r c}$ is a unitary t hyperperfect number, then it follows from (2) (see also [3]) that

(6)
$$[(p^{a} - t)q^{b} - t(p^{a} + 1)][(p^{a} - t)r^{c} - t(p^{a} + 1)]$$
$$= (p^{a} - t)(1 + tp^{a}) + t^{2}(p^{a} + 1)^{2}.$$

If AB, where A < B, is a factorization into positive integers of the right-hand member of (6), then it follows that

(7)
$$q^{b} = [t(p^{a}+1) + A]/(p^{a}-t), \quad r^{c} = [t(p^{a}+1) + B]/(p^{a}-t)$$

if the right-hand members of (7) are powers of distinct primes. Now suppose that $p^{a} - t = 1$. Then

(8)
$$q^b = p^{2a} - 1 + A$$
, $r^c = p^{2a} - 1 + B$, $AB = p^{4a} - p^{2a} - p^a + 2$.

If A = 1, then $q^b = p^{2a}$ which is impossible. A search was made for all solutions of (8) with $2 \le p^a \le 313$. Eight were found. For five of these a = b = c = 1 so that *m* is square-free and therefore hyperperfect (as well as unitary hyperperfect). These hyperperfect numbers were found earlier by te Riele and are given in [3]. The other three solutions yielded the unitary hyperperfect numbers $2 \cdot 5 \cdot 3^2$, $5 \cdot 3^3 \cdot 223$ and $11^2 \cdot 14683 \cdot 4999387$.

3. The Unitary Hyperperfect Numbers Less Than 10⁶. Using the CDC Cyber 174 at the Temple University Computing Center, a search was made for all unitary hyperperfect numbers m such that $m \le 10^6$. The search required about one hour and fifteen minutes of computer time, and 36 numbers were found. Four were unitary perfect numbers and were found by Subbarao and Warren [2]. Twenty of the others were square-free and appear in the list of hyperperfect numbers given by

Minoli [1]. The twelve new ones are: $2^3 \cdot 5$ (t = 3); $2^2 \cdot 13$ (t = 3); $2^5 \cdot 3^2$ (t = 7); $3^2 \cdot 73$ (t = 8); $2^7 \cdot 17$ (t = 15); $2^4 \cdot 241$ (t = 15); $2^5 \cdot 173$ (t = 27); $7^3 \cdot 19$ (t = 18); $5^2 \cdot 601$ (t = 24); $3^3 \cdot 5 \cdot 223$ (t = 4); $7^3 \cdot 307$ (t = 162); $3^4 \cdot 6481$ (t = 80).

Department of Mathematics Temple University Philadelphia, Pennsylvania 19122

1. D. MINOLI, "Issues in nonlinear hyperperfect numbers," Math. Comp., v. 34, 1980, pp. 639-645.

2. M. V. SUBBARAO & L. J. WARREN, "Unitary perfect numbers," Canad. Math. Bull., v. 9, 1966, pp. 147-153.

3. H. J. J. TE RIELE, "Hyperperfect numbers with three different prime factors," Math. Comp., v. 36, 1981, pp. 297-298.