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Abstract. A non-singular cosmological bounce in the Einstein frame can only take
place if the Null Energy Condition (NEC) is violated. We explore situations where
a single scalar field drives the NEC violation and derive the constraints imposed by
demanding tree level unitarity on a cosmological background. We then focus on the
explicit constraints that arise in P (X) theories and show that constraints from pertur-
bative unitarity make it impossible for the NEC violation to occur within the region
of validity of the effective field theory without also involving irrelevant operators that
arise at a higher scale that would enter from integrating out more massive degrees of
freedom. Within the context of P (X) theories we show that including such operators
allows for a bounce that does not manifestly violate tree level unitarity, but at the price
of either imposing a shift symmetry or involving technically unnatural small operator
coefficients within the low-energy effective field theory.
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1 Introduction

Describing the earliest moments of our Universe remains one of the greatest challenges
of physics. The singularity theorem states that if the Universe is described by General
Relativity (GR) with an FLRW metric and matter that respects the null energy con-
dition, then extrapolating backwards in time, our present understanding must break
down and ‘new physics’ has to become important. This can happen in one of two
ways: (i) Either the Hubble parameter reaches Planckian values at very early times,
and the effects of quantum gravity become important (‘Big Bang singularity’), (ii) or
the Null Energy Condition (NEC) is violated and the Universe underwent a cosmolog-
ical bounce. While theories of quantum gravity are still in development, scenario (ii)
may be amenable to current QFT techniques. A great deal of recent work has focused
on constructing an early Universe cosmology which takes advantage of (ii) in order to
have a non-singular bounce, some of which can even provide an alternative to inflation
(see for instance [1–17]).

In addition to modeling the very early Universe, violating the NEC in a stable,
unitary way can be useful in other contexts [18]. It has been proposed as a mechanism
for quintessence [19], solving the cosmological constant problem [6, 20, 21], and is also
required in theories with traversable wormholes [22–24].
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Whether NEC violation can ever be stable (free of ghosts and gradient instabili-
ties) has been the subject of much discussion [25–28]. In [29], it was for instance shown
that within the context of ‘Kinetic Gravity Braiding,’ (see also [30]) one can reach a
NEC violating phase while remaining free of ghosts and gradient instabilities. In the
context of the most general single scalar degree of freedom coupled to gravity (so-called
‘Horndeski gravity’ [31] or ‘Generalized Galileons’ [32]), it is known that there is always
a ghost or gradient instability in any bouncing solution as was first pointed out in [33]
and further in [34–37]. However this instability can be made to occur long before or
after the NEC violation as was already constructed in the context of G-bounces in [33]
and more recently in a cubic Galileon bounce in [38], or in some cases removed by
imposing particular asymptotic conditions [39].

Within the context of single scalar field P (Φ, X) theories (denoted as simply
P (X) in this work unless we wish to emphasize the distinction), it is well-known that
the bounce, or the onset of the NEC violation, is necessarily linked with a vanishing
speed of sound, and potentially classical instabilities. A way out is to include higher
derivative operators in the effective field theory (EFT) which may naturally capture
the effect of high energy degrees of freedom without needing to commit to a particular
UV completion of the scalar effective field theory considered. Such additional higher
derivative operators were previously used in an attempt to regulate the sound speed
in the simplest scalar field P (X) theories [6], for example by adding higher spatial
derivatives and arranging for the instability to be much slower than the Hubble rate
[28].

In addition to potential classical stability issues linked with a vanishing speed of
sound in a relativistic field theory, we emphasize here that there are strong coupling
issues associated with it which signal the breakdown of the quantum effective field the-
ory. This can be seen intuitively by noting that the non-gaussianities typically scale
as fNL ∼ c−2

s . A vanishing of the sound speed therefore directly implies that the effect
from the higher order operators dominates and hence a breakdown of perturbative
unitarity. To make this statement more concrete and quantify it, we consider the scat-
tering amplitude of high frequency fluctuations on a given bouncing background and
determine the energy scale at which perturbative unitarity is violated. Strong coupling
effects from cubic operators in P (X) cosmological bounces were previously discussed
in [40]. Here we explore all the operators that enter the EFT (cubic and beyond) and
fully investigate the effect that a small sound speed has on the validity of the EFT. In
particular we show that a vanishing sound speed inexorably leads to a vanishing of the
strong coupling scale, which would be unacceptable, which agrees with the well-known
results of [41, 42]. Our conclusion on the fate of the strong coupling issue in any pure1

P (X) cosmological bounce (including a P (Φ, X) bounce) therefore departs from some
other previous analysis, but agrees with [41, 42].

1Here by pure we mean without the inclusion of high energy irrelevant operators.
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However, by including irrelevant operators that enter from high energy effects,
we show that it is possible to restore perturbative unitarity throughout the bounce in
P (X) theories. This was for instance proposed in [9, 28] to avoid any gradient instabil-
ities. We show explicitly here how these operators affect the strong coupling scale. In
particular we show that for these high energy irrelevant operators to ‘save’ perturbative
unitarity their associated scale needs to be chosen carefully: It must be low enough
to restore unitarity, but high enough so as to decouple the low-energy effective field
theory from specific high-energy completions.

In what follows we shall focus our attention on the requirements set by pertur-
bative unitarity (and particularly tree-level unitarity) within the vicinity of a NEC
violating region, so as to determine whether a classical NEC violation can be trusted.
We will provide an example where this NEC violation leads to a cosmological bounce,
but do not incorporate this bounce within a full cosmological scenario. The model con-
sidered here does not attempt to circumvent the no-go mentioned in [34–37]. Rather,
the approach of this manuscript is that our P (X) theory ought to successfully capture
the duration of the bounce, but that this low energy effective field theory will likely
break down (and new physics ought to be included) if followed sufficiently far in the
past (well before the bounce or the start of the NEC violating region).

With this approach in mind, we will begin with a general discussion of EFT
consistency conditions in section 2, which makes few assumptions on the details of the
scalar field theory considered. This involves considering a precisely defined decoupling
limit of the gravity/scalar effective field theory, and establishing the constraints arising
from the requirement of a (at least perturbatively) unitary S matrix. We then turn
our attention in section 3 to the high energy effects that can help regulate the classical
gradient instabilities as well as the violation of unitarity at the onset of a NEC violation.
Keeping track of those effects, we derive the full bound, bearing in mind that the high
energy effects have to occur at a sufficiently low scale to restore unitarity, but at a
sufficiently large scale to decouple the high energy states from the low energy effective
field theory. This provides a restricted window of possibility. After having derived the
formal requirements set by perturbative unitarity, we focus our attention in section 4 to
P (X) models that violate the NEC. We show that a level of tuning is required for those
models which may call into question their naturalness, but show that in principle a
violation of the NEC could occur while maintaining classical stability and perturbative
unitarity once a particular (albeit technically unnatural) tuning is chosen. We illustrate
this result by providing an explicit covariant example of a P (Φ, X) model that can allow
for a bouncing solution while preserving perturbative unitarity. Our results are then
summarized in section 5. In Appendix A we analyze the well-known ghost-condensate
model and show that NEC violation in this model cannot preserve unitarity unless the
irrelevant operators coming from high energy effects take a particular form that breaks
the shift symmetry.
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2 Single Scalar EFT

To set the stage, we start by considering the theory of a single scalar field Φ coupled
to a metric gµν , with no mention of any additional high derivative operators. The
consistency of this EFT requires absence of gradient and ghost instabilities as well as
unitarity (in the sense that any n-point scattering amplitude should satisfy the optical
theorem).

2.1 Decoupling Limit

Throughout this manuscript we will focus on a decoupling limit of the full theory, which
is designed to focus on the leading interactions which determine the strong coupling
scale of the theory, i.e. the scale at which perturbative unitarity is broken. The ex-
istence of this decoupling limit comes from the assumption of a hierarchy of scales
Λ�MPl where Λ is the typical interaction scale for the scalar field. Any stability and
unitarity bounds determined in that limit represent necessary conditions which must
be satisfied by the full theory. In other words, it is sufficient to use the decoupling
limit to infer the strong coupling physics, even if not the full cosmological predictions
(e.g. power spectrum, bi-spectrum etc.). Crucially, this limit will continue to allow for
bouncing solutions which temporarily violate the null energy condition.

To derive the decoupling limit, we will begin with an action of the form

S[gµν ,Φ] =

∫
d4x
√
−g
(
M2

Pl

2
R + L(g,Φ)

)
. (2.1)

We then expand this action around the cosmological background describing the bounc-
ing solution (γ̄µν and φ), defining the perturbations in an arbitrary gauge (hµν and ϕ)
via

gµν = γ̄µν + hµν and Φ = φ+ ϕ . (2.2)

The physical action for the perturbations is (schematically)

S[hµν , ϕ] =

∫
d4x
√
−γ̄

(
−M2

Pl B̄(γ̄)(∂h)2 − R̄(γ̄)h2 +M2
Plf1(γ̄)h(∂h)2 + · · · (2.3)

−Z(γ̄, φ)(∂ϕ)2 −m2(γ̄, φ)ϕ2 + f2(γ̄, φ)ϕ(∂ϕ)2 + f3(γ̄, φ)ϕ3 + · · ·

+f4(γ̄, φ)h∂2ϕ+ f5(γ̄, φ)hϕ+ f6(γ̄, φ)h2∂2ϕ+ · · ·

)
,

where the last line represents all the potential mixing between h and ϕ. All the func-
tions B̄, R̄, Z and fi depend on the background (and of course carry indices), however
their exact expressions are irrelevant for the rest of the scaling argument. The scale
of the background naturally enters all these functions—for instance, R̄(γ̄) is related
to the background curvature. In principle, the linear kinetic mixing between h and ϕ
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could be taken care of by performing an appropriate field redefinition and absorbing
the function f3/M

2
Pl in the expression of Z. In practice however such a shift is irrele-

vant in the decoupling limit we will consider below as it is suppressed by the Planck
scale.

Our working assumption, will be that the scalar field contains interactions at the
scale Λ, such that L(g,Φ) ∼ Λ4, and that there is a large hierarchy Λ � MPl. If this
is the case then we typically expect Ḣ ∼ Λ4/M2

Pl. The leading interactions which de-
termine the strong coupling physics will be determined principally by the scalar field,
with those that arise from the mixing with gravity being MPl suppressed. As such
we may take a decoupling limit MPl → ∞, keeping Λ fixed. In the explicit bouncing
solutions we construct in section 4.3, the time scale for the null energy violation is set
by the scale of the scalar interactions ∆t ∼ Λ−1. This in turn implies an even stronger
suppression for the Hubble rate H ∼ Λ3/M2

Pl, since H ∼ ḢΛ−1. This is borne out by
the explicit solutions 4.3.

The first step in dealing with this effective field theory of hµν and ϕ is to properly
canonically normalize the fields. In this case, the appropriate canonical normalization
of the field is2

h̃µν ∼
1√
B̄MPl

hµν and ϕ̃ ∼ 1√
Z
ϕ . (2.4)

and the action is (again symbolically)

S[h̃µν , ϕ̃] =

∫
d4x
√
−γ̄

(
− (∂h̃)2 − R̄

B̄
h̃2 − (∂ϕ̃)2 − m2

Z
ϕ̃2 +

f2

Z3/2
ϕ̃(∂ϕ̃)2 +

f3

Z3/2
ϕ̃3 + · · ·(2.5)

+
1

MPl

f1

B̄3/2
h̃(∂h̃)2 +

f4

MPl

√
B̄Z

h̃∂2ϕ̃+
f5

MPl

√
B̄Z

h̃ϕ̃+
f6

M2
PlB̄
√
Z
h̃2∂2ϕ̃+ · · ·

)
.

Then taking a limit where MPl →∞, while maintaining the scales that enter the scalar
field background fixed, we see that all of the whole second line becomes unimportant,
and the scalar field fluctuations ϕ̃ entirely decouple from the metric fluctuations (which
becomes a trivial free theory). A significant virtue of this decoupling limit, is that the
gauge degrees of freedom remain in h and decouple. This procedure is thus insensitive
to any gauge issues. For this reason it will be unnecessary to work with the comoving
curvature perturbation ζ, or similar gauge invariant variables (this point is discussed
in more detail at the end of this subsection).

The relevant effective action in this limit is hence solely that of the scalar field
fluctuations

Sdec =

∫
d4x
√
−γ̄
(
−(∂ϕ̃)2 − m2

Z
ϕ̃2 +

f2

Z3/2
ϕ̃(∂ϕ̃)2 +

f3

Z3/2
ϕ̃3 + · · ·

)
, (2.6)

2In practice the tensors B̄ and Z are usually not conformal with respect to the background metric
and the rescaling should be taken with slightly more care as will be performed in section 2.2, however
those subtleties do not affect the essence of the decoupling limit.

– 5 –



where the ellipses carry operators to all orders in ϕ (and potentially ∂ϕ and even ∂2ϕ
and higher order in derivatives). Although gravity has decoupled, this is not the same
as the scalar theory on Minkowski spacetime. Information about the background is
carried through the process, and we are effectively looking at a scalar field on curved
background. In the explicit solutions given in section 4.3, φ(t) remains finite in the
limit MPl → ∞, with a time dependence at the scale ∆t ∼ 1/Λ. In other words the
scalar field is varying at a time scale 1/Λ which is much faster than naive background
scale 1/H, similarly Ḣ/H ∼ Λ� H.

Before proceeding, it is worth noting that a decoupling limit of this form is not
always appropriate, for example in slow roll inflation, the flatness of the potential means
that the interactions coming from the mixing with gravity are actually the dominant
ones, and it would be incorrect to perform the above limit. Another example would
be if the interactions with the metric were made artificially large, for instance in the
following example,

S =

∫
d4x
√
−g
(
M2

PlR +
MPl

Λ
RΦ2 − 1

2
(∂Φ)2 +

1

Λ4
Φ4

)
, (2.7)

where Λ� MPl. In this case the mixing term between the metric and the scalar field
fluctuations ought to be taken into account for background configurations with φ ∼ Λ.
Of course in this case, we can simply remedy this issue by first going to Einstein frame,
which automatically accounts for the scalar/gravity mixing. When dealing with generic
scalar-tensor theories there is not necessarily a covariant definition of Einstein frame,
however the appropriate procedure would simply be to first go to the relevant Einstein
frame at the perturbed level about the cosmological background and then perform the
appropriate decoupling limit. In the present case, the decoupling limit we have defined
is justified by the existence of a large class of explicit solutions, which we discuss in
section 4.3, which have the property that H ∼ Λ3/M2

Pl and Ḣ ∼ Λ4/M2
Pl.

We emphasize that our concern here is about the consistency of the effective ac-
tion, and the scale at which perturbative unitarity breaks down. This is a very different
question than that of say, the precise form of the power spectrum or bispectrum. For
precise questions of this sort, performing a decoupling limit and focusing on the scalar
field effective action would not provide an accurate answer, however for the question
of perturbative unitarity we wish to address in this manuscript, focusing on the scalar
field decoupling limit on the appropriate background gives necessary conditions which
must be satisfied.

Gauge issues: Before analyzing this decoupling limit we briefly comment on the
gauge issues that have been highlighted in the literature (see for instance Ref. [40] for
a recent discussion). In particular if we first chose a gauge where the scalar part of hij
vanishes we would find that the constraints for the shift and the lapse would impose
them to scale as (M2

PlH)−1. The resulting Lagrangian (before taking any decoupling
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limit) would then involve inverse powers of M2
PlH. Since in the explicit solution we

provide in section 4.3 H ∼ Λ3/M2
Pl, such a behaviour, if generic, would invalidate the

decoupling limit arguments. Moreover there would seem to be an ‘apparent’ singu-
larity at the bounce itself (i.e. when H = 0). This should come as no surprise since
it is impossible to fix the gauge hscalar

ij = 0 when H = 0, so the previous apparent
singularity is simply a gauge artefact and so is the scaling found in that gauge.

Switching to comoving gauge however does not help with the previous issue either
since in that gauge the kinetic coefficient of the curvature perturbation does itself then
scale as H−1 which makes it impossible to properly normalize the field. Rather than
focusing on any of these two gauges (or any standard ‘local’ gauges), the problem at
hand can be entirely dealt with by going for instance to de Donder gauge or any other
gauge of that form (or at leading order by going to harmonic gauge as performed in
[43]). The appropriate way to perform this is to consider the action (2.1) and add the
appropriate Fadeev-Popov gauge fixing terms so that they combine with the Einstein
curvature term to give kinetic terms for the metric fluctuation that take the remark-
ably simple form M2

Plh
µν�̄

(
hµν − 1

2
hγ̄µν

)
in addition to higher order fluctuations, (and

where �̄ is the d’Alembertian with respect to the background metric γ̄µν). In this lan-
guage there is no constraint to solve for since the gauge fixing terms are precisely
there to break gauge invariance. The absence of constraints ensures that at no point
one would need to perform an inversion of the Hubble parameter and the appropriate
canonical normalization follows the same behaviour as in (2.4) (where B is manifestly
finite and is trivial in the flat space limit). The breaking of gauge invariance from the
gauge fixing terms comes at the price of including other spurious degrees of freedom
but it is well understood how to introduce the Fadeev-Popov ghosts to deal with those
and they only contribute to loops. All the tree-level amplitudes computed with these
de Donder gauge fixing terms are therefore the same as that of the original theory. In
this formulation the decoupling limit can therefore be taken precisely as discussed pre-
viously. For the questions we are interested in (namely the size of the strong coupling
scale, whether or not the theory preserves tree-level unitarity, etc...), we can therefore
safely perform this decoupling limit and work with the low-energy effective field theory
for the scalar field ϕ on the cosmological background.

In the case of the specific example that will be provided in section 4.3, we can
compute (at least to a given order) the corrections that arise beyond the decoupling
limit. By performing a complementary analysis to that described above, and keeping
track of the corrections that arise due to the mixing with the metric, we have checked
that we obtain a correction to the effective mass for the scalar field which is suppressed
by six orders of magnitude, which is precisely what one would have expected in our
example.

2.2 Scalar on FLRW

Since the main interest of this manuscript is cosmology (and the potential description
of cosmological bounces), the following analysis will take place on a flat FLRW back-
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ground with scale factor a(t). The effective metric for the scalar field fluctuations then
takes the form

Zµν∂µϕ∂νϕ = −A(t)ϕ̇2 +
B(t)

a2
(∂iϕ)2 , (2.8)

where A and B depend on the background behaviour (here and in what follows dots
represent the physical time derivatives and ∂i designate spatial gradients). The corre-
sponding sound speed is c2

s = B
A

. The absence of a ghost (in the scalar sector) then
implies A > 0, while the absence of gradient instabilities implies B > 0.

For the rest of the analysis we will assume that we are within the WKB regime,
meaning that we consider frequencies well above the scale set by the background time
variation, Eback with

Eback = Max
(
H,
√
Ḣ,m, φ̇/φ, φ̈/φ̇, · · ·

)
. (2.9)

Indeed to probe unitarity violation we are interested in analyzing the interactions of
modes close to the strong coupling scale, which should be much larger than the back-
ground scale for the effective field theory to make sense. In the explicit models given
later, the scale of variation of the background solution will be 1/Λ, i.e. Eback ∼ Λ, and
so to ensure the validity of the WKB regime we require ω � Λ.

Canonical normalization: Before going through the formal unitarity bounds aris-
ing from the optical theorem, it is useful to first estimate the strong coupling scale by
simply analyzing the scale of the operators present in the scalar field theory (on the
FLRW background). Since Lorentz invariance is spontaneously broken by the FLRW
background, the effective metric Zµν is not conformally flat, so before canonically
normalizing the field, it is useful to perform the following coordinate rescaling3

t̃ =

∫
cs(t)dt and x̃i = xi (2.10)

so that in this system of coordinates the effective metric is conformally flat,∫
dtd3x a3

(
−1

2
Zµν∂µϕ∂νϕ

)
=

∫
dt̃d3x̃ a3 B

2cs

((
∂ϕ

∂t̃

)2

− 1

a2

(
∂ϕ

∂x̃i

)2
)
, (2.11)

and we can simply canonically normalize the field by setting

ϕ =

√
cs
B
ϕ̃ = (AB)−1/4 ϕ̃ , (2.12)

(the derivatives of AB are then simply absorbed into the mass term).

3As we shall see, as soon as B, or the speed of sound approaches small enough (positive) values,
the whole EFT runs out of control and the classical background is not to be trusted, therefore there
is no sense in which B or the speed of sound actually ever vanishes, much less became negative in the
first place. The rescaling performed in this section is thus well defined.
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Irrelevant Operators: Now consider an EFT on the FLRW background that con-
tains an irrelevant operator of the form

SNML =

∫
dtd3x

a3−2L

ΛN+2M+4L−4
NML

ϕN ϕ̇M(∂iϕ)2L , (2.13)

where N , M and L are arbitrary positive integers with N +2M +4L > 4 and the scale
ΛNML depends on the background and the particular theory one is dealing with. Then
in terms of the rescaled coordinates and the properly canonically normalized field, this
interaction is

SNML =

∫
dt̃d3x̃

a3−2L

µ̃N+2M+4L−4
NML

(∂̃iϕ̃)2L

M∑
j=0

(
∂t(AB)

csAB

)j
ϕ̃N+j (∂t̃ϕ̃)M−j , (2.14)

where we have ignored signs and other order one and combinatory numbers. The scale
µ̃ is given by

µ̃NML = A
N+3M+2L−2

4(N+2M+4L−4)B
N−M+2L+2

4(N+2M+4L−4) ΛNML . (2.15)

Now when rescaling back to the original coordinates, as an energy scale we have

µNML =
∂t̃

∂t
µ̃NML = cs µ̃NML , (2.16)

and so the scale that enters these interactions is

µNML = AnABnBΛNML , (2.17)

with

nA = − N +M + 6L− 6

4(N + 2M + 4L− 4)
and nB =

3N + 3M + 10L− 6

4(N + 2M + 4L− 4)
. (2.18)

We therefore see that in a situation where A becomes parametrically large or B is
parametrically small, for a fixed scale ΛNML there are typically operators that enter
at a parametrically small scale µNML � ΛNML and therefore spoil the validity of the
effective field theory at a low scale.

For these arguments to be valid one should have ∂t(AB)
AB

∼ Eback . Min(µNML),
(where Min(µNML) is the lowest of all the possible scales derived in (2.17) for any
non-negative integers N,M,L with N + 2M + 4L > 4). This allows us to ignore the

contributions from ∂t(AB)
csAB

in (2.14). If ∂t(AB)
AB

∼ Eback was larger than any of those
scales µNML, then by definition the background would be varying faster than the time
scale set by the strong coupling scale of the effective theory and it would no longer be
possible to trust the validity of the background solution.
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Marginal and Relevant Operators: For the relevant Λ300/3!ϕ3 and marginal
λ/4!ϕ4 operators, the previous rescaling can also be performed and leads to

µ300 =
Λ300

(AB)3/4
(2.19)

µ400 =
λ

(AB3)1/2
, (2.20)

where of course µ400 does not represent an actual scale but rather a dimensionless
coupling constant. Remaining in the perturbative regime requires the dimensionless
coupling constant to be µ400 � O(16π) and the scale of the marginal operator to be
µ300 . Eback. However since these operators are renormalizable, we can deal with them
in the strong coupling regime and we therefore do not necessarily need to impose that
these couplings are small to preserve unitarity.

2.3 Optical theorem

The previous section provided a generic scaling argument to determine the typical
interaction scale of an operator on a FLRW background. We now provide more sub-
stance to this argument by showing how it relates to the optical theorem by computing
a precise scattering amplitude.

Going back to the effective metric (2.8) in its original formulation on FLRW
(before any canonical normalization), in the WKB regime the quantized modes can be
decomposed in the following way

ϕ̂(t, xi) =

∫
d3ki

(2π)3a3

1√
N (k)

(
â†(ki)e

i(k
∫ cs(t)

a(t)
dt−kixi) + â(ki)e

−i(k
∫ cs(t)

a(t)
dt−kixi)

)
.(2.21)

To derive the normalization N (k) we go back to the well-known definition of the
Klein-Gordon norm along a three-dimensional surface Σ with unit normal vector nµ

and induced metric γµν ,

|ϕ̂|2 = −i
∫

Σ

d3x
√
γ nµ

(
ϕ̂
←→
∂µ ϕ̂

†
)
. (2.22)

Choosing a spacelike surface t = const, the unit normal vector is nµ =
√
Aδµ0 and the

induced volume element is
√
γ = B−3/2, leading to the Klein-Gordon norm,

|ϕ̂|2 = −i
√
A

B3/2

∫
d3xa3

(
ϕ̂
←→
∂t ϕ̂

†
)
. (2.23)

We can therefore infer the field normalization,

N (k) =
∂F

∂ω
= 2Aω = 2(AB)1/2k

a
, (2.24)
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where we evaluated the mode on-shell, ω = csk/a, and where the function F determines
the dispersion relation,

F = Aω2 −Bk
2

a2
= 0 . (2.25)

In other words the speed of sound is given by c2
s = B/A. The operators â and â† that

appear in (2.21) are the creation and annihilation operators for one-particle states of
definite momentum which obey the usual commutation relations.

In the high energy WKB regime, it is meaningful to talk about an approximate
S-matrix for scattering of quanta, provided it is defined over a time scale shorter
than the background variation ∆t � 1/Eback. The constraints from unitarity on this
approximate S-matrix are many, however it is useful to focus on the special case of n
to n scattering, between states of equal momenta, |i〉 = |f〉 = |k1...kn〉. This gives a
unitarity bound for every integer n ≥ 2,

2Im (〈i|T |i〉) =
∑
N

〈i|T †|q1...qN〉〈q1...qN |T |i〉 ≥ |〈q1...qn|T |i〉|2 , (2.26)

so that the scattering amplitudes A2n (with momentum conserving delta function re-
moved) should satisfy the following relation

2Im A2n(kj; kj) ≥
∫

d3q1

(2π)3N (q1)
· · · d3qn

(2π)3N (qn)
|A2n(kj; qj)|2

×
[
(2π)4δ

(
c2
s

a2

(∑
k2
j −

∑
q2
j

))
δ(3)

(∑
kj −

∑
qj

)]
. (2.27)

The scattering amplitudes may be computed using standard Feynman diagrams us-
ing the WKB form for the propagator for scattering at time intervals shorter than
∆t� 1/Eback.

4-point function: In the case of n = 2, the two-body phase space factor on the right
hand side of (2.27) can be evaluated simply in terms of a center of mass energy,

√
s,

and scattering angle, θ, giving the well-known optical theorem for the 2 to 2 scattering
amplitude A4(s, θ). For our dispersion relation ω2 = c2

sk
2/a2, a partial wave expansion

yields the following bound for every ` ≥ 0,∣∣∣A4,`(s)
∣∣∣ ≤ 8π2 ω

k/a
AB = 8π2 (AB3)1/2 , (2.28)

with

A4,`(s) =

∫ 1

−1

d cos θ P`(cos θ)A4(s, θ) . (2.29)

Now consider a cubic operator of the form given in (2.13) with N + M + 2L = 3
(keeping in mind we are still dealing with an irrelevant operator, N + 2M + 4L > 4).
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Taking into account the proper normalization of the propagator, such a cubic operator
would lead to a contribution to the 4-point function scaling as (at fixed angle)

A(cubic)
4 ∼ k4L−2ω2M

BΛ
2(N+2M+4L−4)
NML

∼ A2L−1

B2L

( √
s

ΛNML

)2(M+2L−1)

, (2.30)

(keeping in mind that N = 3−M−2L). We have ignored any combinatory factor in this
estimation since we are mainly after a scaling argument. However once a particular
amplitude is diagnosed as being potentially problematic the proper factors will be
included. Now applying the bound (2.28), we determine that perturbative unitarity
gets broken at the scale

√
s ∼ A

3−4L
4(M+2L−1)B

3+4L
4(M+2L−1) ΛNML , (2.31)

which is precisely the scale µNML inferred from the simple scaling argument in (2.17)
when N = 3 −M − 2L. When dealing with the contribution to the 2 − 2 scatter-
ing amplitude from the cubic vertex ϕ3, we see that the amplitude (2.30) is domi-
nated instead by IR effects and one should go beyond the tree-level amplitude when
Λ300 & (AB)3/4Eback, as deduced in (2.19).

Similarly, we can consider a quartic irrelevant operator of the form given in (2.13)
with N +M + 2L = 4 (N + 2M + 4L > 4) which would lead to a contribution to the
4-point function going as (at fixed angle)

A(quartic)
4 ∼ k2LωM

ΛN+2M+4L−4
NML

∼ AL

BL

( √
s

ΛNML

)M+2L

. (2.32)

From the perturbative unitarity bound (2.28) we see that such a quartic operator would
be responsible for breaking perturbative unitarity at the scale

√
s ∼ ΛNMLA

1−2L
2M+4LB

3−2L
2M+4L , (2.33)

which is again precisely the scale µNML derived in (2.17) for a quartic operator N =
4−M − 2L. When dealing with the marginal operator λϕ4/4!, its contribution to the
previous amplitude would simply go as λ and remaining in the perturbative regime
then requires λ � (AB3)1/2 which is once again precisely the requirement deduced
previously in (2.20), although breaking this bound does not yet imply breaking uni-
tarity since that operator is renormalizable.

One obvious worry is that cancellations could occur for instance between different
cubic operators or between the contributions from A(cubic)

4 and A(quartic)
4 . If that were

the case, it would simply imply that a field redefinition could be performed to remove
such operators (or part of them). For the simple scalar field effective theory we are
dealing with this is fortunately relatively straightforward to monitor and provided we
are not dealing with an unnecessarily complicated formulation of the effective theory
the strong coupling scale would indeed be given by the smallest of the scales µNML

provided in (2.17). A more complete discussion of this aspect is given in section 2.4.
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2n-point function: To complete the perturbative unitarity requirement as directly
imposed from the optical theorem, we provide here the bounds from higher n-point
functions. In that case the n-body phase space factor is a complicated integral over
several momenta and scattering angles, but those do not affect the overall scaling of
the bound and we obtain the following perturbative unitarity bound for the 2n-point
functions,

|A2n| . A(3−n)/2B3(n−1)/2s2−n , (2.34)

where we have ignored order one numerical factors. We can again compare this bound
with the strong coupling scale we would infer from an operator (2.13) withN+M+2L =
2n and we see that we infer precisely the same scaling for the strong coupling scale in
terms of A and B as was found in (2.17).

2.4 Field Redefinitions and Redundant Operators

The previous arguments to deduce the strong coupling scale and the breaking of per-
turbative unitarity implicitly assumed that any operator of the form (2.13) leads to
a contribution to the tree-level scattering amplitude. There are of course cases where
this assumption fails:

• First, it may possible that the contribution of an operator to a scattering am-
plitude accidentally cancelled at tree-level. If the cancellation only occurs at
tree-level but the operator still contributes to loops with an order of magnitude
comparable to what is estimated in for instance (2.32) or (2.30), then the ar-
gument would remain unaffected as the loops will still lead to a violation of
perturbative unitarity (even though this may occur at higher order in the loop
expansion).

• Second, the contribution of an operator to any scattering amplitude may exactly
cancel (to all orders in loops). This would simply mean that this operator is
actually not present and in a single scalar field theory (where there is no gauge
issue) this can only happen if that operator is simply removable by integrations
by parts. This case is of course trivial.

• Finally the particular contribution of an operator may not cancel by itself but
may be canceled by the contributions of other operators. If this cancellation does
not occur for scattering amplitudes and to all orders in loops, then the previous
arguments on the breaking of perturbative unitarity is effectively unaffected. On
the other hand, if this set of operators was simply removable by an appropriate
field redefinition without leading to other new higher order operators, then in
practice these operators are redundant and superficial to the description of any
physics. In practice when analyzing a scalar field effective theory we ought to
take care of all such redundancies in the first place.

Besides these previous special cases, the arguments presented here are robust in diag-
nosing the potentially dangerous operators and applicable to any scalar field effective
field theory which carries operators of the form (2.13). Once a diagnosis has been
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established one can directly compute the amplitude with the appropriate combinatoric
factors to fully determine the fate of unitarity.

The main motivation of this work is to apply these bounds to P (X) models that
can in principle allow for a violation of the NEC and potentially allow for a cosmological
bounce. Within the context of pure P (X) theories (coupled) to gravity, it is well-known
that the speed of sound turns negative at the onset of the NEC violation and thus leads
to gradient instabilities, this agrees with previous literature such as [41, 42]. This can
potentially be remedied by considering new irrelevant operators that arise at a higher
scale and regulate this instability. For instance considering the irrelevant operator
(�Φ)2/Λ2

c it can allow for a stable bounce [9, 28]. In what follows we therefore explore
the effects of such an irrelevant operator on the unitarity bound considered previously,
before focusing on P (X) models endowed with such an operator.

3 Inclusion of high energy effects

We now consider the inclusion of high energy effects that would naturally enter any
EFT. For concreteness, we can imagine that the next massive particle enters with a
mass Λc, and integrating out such a massive particle leads to an operator for the form4

(�Φ)2/Λ2
c in the low-energy effective action for Φ. To see this more precisely, we could

for instance consider the two-scalar field example coupled to gravity,

S[gµν ,Φ, χ] =

∫
d4x
√
−g
(
M2

Pl

2
R + L(g,Φ)− 1

2
(∂χ)2 − Λ2

c

2
χ2 +

1

2
χ�Φ

)
, (3.1)

where we assume no ghost nor other types of pathologies in L(g,Φ). Note that at this
level the model is entirely free of any type of ghost. If the field χ is sufficiently massive
(i.e. the scale Λc is sufficiently large as compared with the other scales in L(g,Φ)), the
field χ is frozen and its dynamics decouple, and we can integrate it out. At leading
order,

χ = − �
�− Λ2

c

Φ =
�Φ

Λ2
c

+ · · · , (3.2)

and we are left with irrelevant operators in the low-energy effective field theory for Φ

S[gµν ,Φ] =

∫
d4x
√
−g
(
M2

Pl

2
R + L(g,Φ) +

1

2Λ2
c

(�Φ)2 + · · ·
)
, (3.3)

where the ellipses designate higher order corrections in�/Λ2
c . As mentioned in footnote

4, the irrelevant operator we have included (�Φ)2 seems to carry higher derivatives
and one could be worried about the associated Ostrogradsky ghost, however in this

4Even though the operator considered here carries more derivatives, as we shall see, by construction,
the would be Ostrogradsky ghost associated with it is not present since its mass lies above the cutoff
of the EFT. In what follows we take great care in making sure that in the regime of validity of the
cosmological bounce, the would-be ghost is not present, see Refs. [44–46] for a discussion of this point.
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context, when reaching the scale Λc, it is no longer appropriate to integrate out the
dynamics of χ and one should go back to (3.1) for the appropriate description, which
is clearly free of ghosts.

In general we could expect the scale Λc to also be background dependent (e.g.
through Φ), and hence to carry a time dependence within this cosmological setup, but
within the WKB approximation (keeping in mind that we interested in energy scales
much smaller than Λc) we shall ignore any possible time dependence of Λc for the rest
of the manuscript.

Since (�Φ)2/Λ2
c is a higher derivative operator, it leads to inevitable unitarity vi-

olation at the scale Λc (or possibly a background redressed version Λ′c). Consequently
this sets an upper bound on the cutoff of the effective theory Λcutoff ≤ Λ′c. This cut-
off scale is not necessarily the same as the strong coupling scale Λs which signals the
breaking of perturbative unitarity of the theory (see refs. [47, 48] for a clear distinction
between these two scales). New physics may not necessarily be required at the scale of
the breaking of perturbative unitarity, however the classical background can no longer
be trusted in that case. So if a classical violation of the NEC occurred at a scale
Eback beyond the strong coupling scale, there would be no reason to believe the NEC
violation actually took place. Putting this together, then overall consistency of our
EFT description requires Eback � Λs ≤ Λcutoff ≤ Λ′c.

3.1 Dispersion Relation

At first sight, the inclusion of the operator (�Φ)2/Λ2
c , suppressed by the large scale

Λc, would appear to have a negligible effect on the theory. Furthermore if it does have
an effect, one would worry that it would be necessary to include the infinite number of
higher order operators that enter at the scale Λc, such as (Φ�n+2Φ)/Λ2+2n

c . The reason
that this is not the case is that in the absence of this operator, for the NEC violating
solutions we consider, cs passes through zero and temporarily becomes negative. The
inclusion of the operator (�Φ)2/Λ2

c then creates a large correction (relative to 0), which
must be included, while at the same time higher order operators like (Φ�n+2Φ)/Λ2+2n

c

will be negligible. To see how this works, we note that on including the irrelevant
operator (�Φ)2/Λ2

c in the scalar field effective theory on the curved background, the
quadratic action for ϕ is then

S(2) =

∫
d4x

a3

2

(
Aϕ̇2 −B (∂iϕ)2

a2
−m2ϕ2 +

1

Λ2
c

(
ϕ̈− ∂2

i ϕ

a2

)2
)

(3.4)

where A,B and m are determined by the background behaviour and we still use the
notation c2

s = B/A. The expression for the function F that provides the equation for
the dispersion relation in (2.25) is therefore now promoted to

F = Aω2 −Bk
2

a2
− 1

Λ2
c

(
ω2 − k2

a2

)2

= 0 , (3.5)
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where we work with modes well above the background and hence the mass, so the mass
term is safely ignored in the previous expression. The previous equation can be solved
as

ω2(k) = c2
s

k2

a2
+

(A−B)2

A3

k4

a4Λ2
c

+O
(
k6/Λ4

c

)
. (3.6)

In general the first term dominates in the naive region of validity of the EFT k/a� Λc.
However, for the bouncing solutions c2

s could become very small, potentially passing
through zero and becoming negative, and the second term then regulates any insta-
bility that may occur, while the higher order corrections O(k6/Λ4

c) remain small in
comparison. Interestingly in our explicit solutions, we will find that the inclusion
of the operator (�Φ)2/Λ2

c also modifies the background solution in such a way that
c2
s remains positive throughout the bounce. Again this is achieved while terms like

(Φ�n+2Φ)/Λ2+2n
c remain negligible.

In addition to the dispersion relation (3.6), there is a second solution which would
be the Ostrogradsky ghost mode

ω2
ghost ∼ AΛ2

c

(
1 +O

(
k2

Λ2
c

))
. (3.7)

These non-unitary degrees of freedom must be excluded from the EFT, and since they
enter at an energy scale

√
AΛc, this sets the maximal value of the energy cutoff of the

theory on this background,

Λcutoff ≤ Λ′c =
√
AΛc . (3.8)

In addition to Λcutoff , it will be useful in what follows to introduce the scale µc which is
the energy scale at which the dispersion relation transitions from the relativistic form
ω = csk, to the non-relativistic form dominated by the operator (�Φ)2/Λ2

c :

µc = c2
s

A3/2

(A−B)
Λc . (3.9)

Due to the background redressing, µc may differ significantly from the scale Λc and from
the cutoff of the theory. For instance if we were in a situation where B � 1� A then
µc ∼ B/

√
AΛc � Λc � Λ′c. In practice, the situations where the irrelevant operator

has an effect on the dispersion relation arise because the speed of sound c2
s = B/A

is small, which implies that B � A. In what follows we shall slightly simplify the
notation by making that assumption and hence write,

µc ∼ c2
s

√
AΛc =

B√
A

Λc . (3.10)

From the quadratic action (3.4) (or the dispersion relation (3.6)), it is clear that when
considering modes k/a� µc/cs – or equivalently when looking at energy scales ω � µc
– the irrelevant operator takes over from the standard gradient term. There are now
therefore two different regimes to consider when checking perturbative unitarity of the
theory.
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3.2 Intermediate energy modes with E2
back � s� µ2

c

For modes with energy well below the scale µc (but yet well above any of the background
scales) the high energy effects are irrelevant and we can perform the analysis in the
same way as we did in the previous section in the absence of the irrelevant operator
(�Φ)2/Λ2

c . We can therefore infer that:

• If any of the energy scales µNML derived in (2.17) happened to be smaller than
the energy scale µc, then the smallest of those scales would be the maximal value
of the strong coupling scale and perturbative unitarity would break down at that
scale.

• If on the other hand all the energy scales µNML derived in (2.17) are larger than
µc then higher energy effects (which are still below the cutoff) ought to be taken
into account to properly diagnose the scale of perturbative unitarity breaking
and the scales computed in (2.17) should then be ignored.

3.3 High energy modes with µ2
c � s� Λ2

cutoff

For the high energy modes, µ2
c � s� Λ2

cutoff as we have seen already at the quadratic
level, the irrelevant operator k4ϕ2/Λ2

c takes over from the standard gradient term. At
those energy scales, the second contribution in (3.6) dominates the dispersion relation
which hence becomes

ω ∼ 1

A1/2Λc

k2

a2
∼ c2

s

µc

k2

a2
. (3.11)

Scaling: The scaling performed in section (2.2) should hence be reinvestigated. Con-
sidering the operator (∂2

i ϕ)2/Λ2
c rather than the subdominant gradient term B(∂iϕ)2,

the appropriate rescaling would then correspond to substituting B by (k/aΛc)
2 ∼

(As/Λ2
c)

1/2. This is a slight abuse of notation, however when working in the WKB
regime, such a rescaling can be justified. This means that an operator of the form
(2.13) (with N + 2M + 4L > 4) preserves perturbative unitarity so long as the energy√
s satisfies

µc .
√
s� AnA

(
As

Λ2
c

)nB/2

ΛNML , (3.12)

where the powers nA and nB are given in (2.18). If nB < 1, i.e. for N + 5M + 6L > 10
this implies unitarity is broken above the energy

√
s ∼ A

N+M−2L+6
2(N+5M+6L−10)

(
ΛNML

Λc

) 4(N+2M+4L−4)
N+5M+6L−10

Λc for N + 5M + 6L > 10 . (3.13)

On the other hand for nB ≥ 1, the bound (3.12) is always satisfied so long as it is
satisfied at s = µ2

c , i.e. so long as

ΛNML � A−
2N+3M+6L−4
2(N+2M+4L−4)B

7N+11M+11L−22
4(N+2M+4L−4) Λc for N + 5M + 6L ≤ 10 , (3.14)
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(and for N + 2M + 4L > 4). For the relevant and marginal operators ϕ3 and ϕ4, this
distinction between intermediate and low energy modes is unimportant and we can
follow the discussion of Eqns. (2.19-2.20).

Scattering Amplitude: The previous argument required a scaling which itself de-
pended on momenta. For a more rigorous treatment, one can instead first directly
compute the bounds imposed by the optical theorem in the presence of the irrelevant
operator and then estimate the 2n point functions without the need of ever performing
the rescaling of the coordinates mentioned previously. Just as in section 2.3, both
methods give the same result, but we sketch the direct bounds from the optical theo-
rem (without the need of any rescaling) to solidify the argument and the results.

When including the irrelevant operator, first notice that the correct normalization
of the field in (2.21) is still given by N = ∂F

∂ω
as in the first equality of Eq. (2.24)

but where the function F is now given by (3.5) and where the dispersion relation
ω = 1

A1/2Λc

k2

a2
, hence leading to

N =
∂F

∂ω
=

2

A5/2Λc

k2

a2
. (3.15)

This change of normalization N affects the momenta integrals in (2.27) which in turn
affects the bounds provided by the optical theorem. Taking these effects into account,
the perturbative unitarity bound from the 2n-point functions (2.34) now becomes

|A2n| . A(n+3)/4

(√
s

Λc

) 3(n−1)
2

s2−n , (3.16)

again up to numerical factors that have been ignored.

Now if we consider the effect of an operator given in (2.13), with N+M+2L = 2n
and N + 2M + 4L > 4, it will lead to a contribution to the 2n-point function going as

ANML ∼
k2LωM

ΛN+2M+4L−4
NML

∼ AL/2
ΛL
c s

(M+L)/2

ΛM+2L+2n−4
NML

. (3.17)

Of course this is only one contribution to that amplitude, and this does not account
for the very special case where this contribution happens to be precisely canceled that
from another operator. This would mean that these two (or more) operators are remov-
able by field redefinition. This requires a very precise tuning between these operators
and simply means that the original formulation of the theory was unnecessarily com-
plicated. We deal with this here by defining the relevant scale ΛNML after all the
appropriate and relevant field redefinitions have been performed. See section 2.4 for
more discussion on this point. We have also ignored any combinatory factors that
ought to be included when computing the amplitude, just like we have ignored for
now any factorial that enters in the definition of the operator (2.13) but those can
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easily be accounted for once we have diagnosed the potentially dangerous operators
and amplitudes.

Then from Eq. (3.16), the contribution to amplitude (3.17) would diagnose a
violation of tree-level unitarity at the energy scale

√
s ∼ A

3−2L+2n
2(−5+2L+2M+n)

(
ΛNML

Λc

) 2(−4+2L+M+2n)
−5+2L+2M+n

Λc , (3.18)

for N +2M +2L > 5 (or N +5M +6L > 10), which is precisely the scale inferred from
the simple scaling argument in (3.13) when using N + M + 2L = 2n. For operators
with N + 5M + 6L ≤ 10 on the other hand, they respect unitarity so long as they
satisfy the same bound as that derived in (3.14).

Strong Coupling Scale: To summarize, we have computed in two different and
yet complementary ways the strong coupling scale associated with a class of scalar
EFTs on a cosmological background. We consider any scalar field EFT that takes the
following form on a cosmological background,

S =

∫
d4x a3

(
A

2
ϕ̇2 − B

2

(∂iϕ)2

a2
− 1

2
m2ϕ2 +

∑
N,M,L≥0

N+M+2L≥3

ϕN ϕ̇M(∂iϕ)2L

ΛN+2M+4L−4
NML a2L

+
(�ϕ)2

2Λ2
c

)
, (3.19)

where A,B,m and the scales ΛNML are all functions of time and depend on the precise
theory one is dealing with and on the particular cosmological background considered.
The scales ΛNML are the relevant scales of the theory on the cosmological background
after all the appropriate and relevant field redefinitions have been performed and typ-
ically ΛNML � AΛc. We denote by Eback the scale of the background.

Then for that theory, (modulo the subtleties related to field redefinitions and
redundant operators discussed in section 2.4) perturbative unitarity requires the fol-
lowing conditions on the scale of the different irrelevant operators:

1. For any irrelevant operator (N + 2M + 4L > 4),

A−
N+M+6L−6

4(N+2M+4L−4)B
3N+3M+10L−6
4(N+2M+4L−4) ΛNML � µc ∼

B√
A

Λc (3.20)

2. For all irrelevant operators with N + 5M + 6L > 10,

A
N+M−2L+6

2(N+5M+6L−10)

(
ΛNML

Λc

) 4(N+2M+4L−4)
N+5M+6L−10

Λc � Eback (3.21)

3. For all the irrelevant operators with N+2M+4L−4 > 0 and N+5M+6L ≤
10,

A
2N+3M+6L−4
2(N+2M+4L−4)B−

7N+11M+11L−22
4(N+2M+4L−4) ΛNML � Λc . (3.22)

– 19 –



The strong coupling scale is designated by

Λs = MinN,M,L

(
A

N+M−2L+6
2(N+5M+6L−10)

(
ΛNML

Λc

) 4(N+2M+4L−4)
N+5M+6L−10

)
Λc , (3.23)

where the minimum is taken over all the N,M,L which satisfy N + 5M + 6L > 10 and
where we have implicitly assumed that Eback & µc ∼ B/

√
AΛc and the second condi-

tion (3.20) is satisfied. If Eback . µc, the last two requirements would be irrelevant
and the right hand side of (3.20) would simply be Eback instead of µc and the strong
coupling scale of interest would be instead given by the left hand side of (3.20). Once
again, these conditions should be taken as a diagnosis. If any of those were broken
one could go back to computing the explicit contributions to the scattering amplitudes
which would account for the proper numerical factors and is independent of field re-
definitions.

When it comes to the relevant and marginal operators, since those operators are
renormalizable, one can in principle deal with those in the strong coupling regime.
Remaining in the perturbative regime requires

µ300 =
Λ300

(AB)3/4
. Eback and µ400 =

λ

(AB3)1/2
. O (16π) , (3.24)

(where λ is the coupling constant that enters for the ϕ4 operator); however we empha-
size that breaking this bound (3.24) does not directly imply breaking of unitarity, but
rather that loops from these operators ought to be considered.

In the rest of this manuscript, we shall now use these bounds to infer if and how
a NEC violation can occur in P (Φ, X) theories of gravity and whether a bounce is
possible without violation of unitarity.

4 Violating the NEC in P (Φ, X) theory

We now focus the discussion of perturbative unitarity on P (Φ, X) theories near a NEC
violating region. In that case the scalar field Lagrangian in (2.1) takes the form

S[gµν ,Φ] =

∫
d4x
√
−g
(
M2

Pl

2
R + P (Φ, X)

)
, (4.1)

with

X = −1

2
gµν∂µΦ∂νΦ , (4.2)

and as before, we will be interested in the effective scalar field theory for ϕ on the
FLRW cosmological background where we have set Φ = φ+ϕ(t, xi) and the background
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satisfies the appropriate equations of motion. In particular the background energy
density is given by

ρ = −P̄ + P̄,X φ̇
2 , (4.3)

where ‘bar’ quantities are related to the background, i.e. X̄ = 1
2
φ̇2 and P̄ = P (φ, X̄).

The kinetic coefficients and the mass that determine the quadratic action for ϕ
are given by

A = 2X̄P̄,XX + P̄,X , B = P̄,X and m2 = ∂t[P̄,ΦX φ̇]− P̄,ΦΦ , (4.4)

and stability of the theory requires these three functions to be positive. Note that
when accounting for the kinetic factors A and B, the effective mass scale ‘perceived’
by the properly normalized scalar field is given by

m2
eff = A−1m2 = A−1

(
∂t[P̄,ΦX φ̇]− P̄,ΦΦ

)
. (4.5)

The operators SNML (2.13) of the effective theory on the cosmological background can
be derived for any given P (Φ, X) model, and the scales ΛNML are given by

Λ
−(N+2M+4L−4)
NML =

M/2∑
j=0

(−1)Lφ̇M−2j

2j+LN !L!j!(M − 2j)!
∂NΦ ∂

M+L−j
X P̄ . (4.6)

Without having more insight on the precise form of the function P and whether or not
it truncates at any order in Φ or X, there is little more one can say about those scales.
In what follows we will hence take into account the fact that the function P allows
for a NEC violation, and even consider the case where P is such that a cosmological
bounce occurs. We will first focus on the case without any higher order effects before
including their effects.

4.1 Ignoring high energy effects

When considering a pure P (Φ, X) model, without the inclusion of higher energy effects
as mimicked by the operator (�Φ)/Λ2

c in section 3, the background equations of motion
are simply

3M2
PlH

2 = ρ = −P̄ + 2P̄,XX̄ , (4.7)

M2
PlḢ = −1

2
(p+ ρ) = −X̄P̄,X . (4.8)

It is well-known that in a P (Φ, X) theory, at the onset of a NEC violation5 P̄,X =
B = 0. Even more worrisome than the standard stability issues caused by the gradient

5From the Raychaudhuri Eq. (4.8) we could try to onset the NEC by setting φ̇ = 0 rather than
P̄,X = B = 0. However setting φ̇ = 0 would also imply Ḧ = 0 at that time, which would mean that
we are not within the NEC violating region unless one also had

...
H = 0 at that time, which itself also

implies P̄,X = 0 (or φ̈ = 0, in which case the same story continues). So to summarize, starting outside

the NEC region Ḣ < 0, one can never enter within the NEC region Ḣ > 0 without passing through a
point for which P̄,X = 0 in a pure P (Φ, X) theory. We can therefore assume that φ̇ 6= 0 at the onset
of the NEC violation without loss of generality.
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terms vanishing or becoming negative, we can directly see that the onset of the NEC
violation in any ‘pure’ P (Φ, X) theory is inexorably linked with a violation of unitarity
which makes it impossible to trust the fact that the NEC violation actually occurred
in the first place.

Indeed, if B → 0 the strong coupling scale derived in (2.17) (or in (3.23)) vanishes
(hence signaling violation of perturbative unitarity at an arbitrarily small scale) unless
all the operators with 3N + 3M + 10L > 6 vanished (or could all have been simul-
taneously removed by a field redefinition) which means there can be no interactions
at all, which of course means there could not have been any operator to set a NEC
violation in the first place. So without including higher energy effects, even putting
aside any stability issue that may occur at the classical level, there can be no NEC vi-
olation within the regime of validity of a pure P (Φ, X) model. In what follows we shall
therefore include the high energy effects that are naturally expected to be present in
any effective field theory. Notice that we still work within the low-energy effective field
theory and therefore should not be sensitive about the exact details of the UV physics
nor its exact realization, but their effect plays the role of a regulator for the low-energy
effective theory which are crucial for the onset of a NEC violation in P (Φ, X) types of
theories.

4.2 Including high energy effects

When including the operator (�Φ)2/Λ2
c , i.e. when considering the following action,

S[gµν ,Φ] =

∫
d4x
√
−g
(
M2

Pl

2
R + P (Φ, X) +

1

2Λ2
c

(�Φ)2

)
, (4.9)

the background equations of motion are slightly modified to

3M2
PlH

2 = −P̄ + 2P̄,XX̄ +
1

2Λ2
c

[
−φ̈2 + 2φ̇

...
φ + 6Ḣφ̇− 9H2φ̇2

]
, (4.10)

M2
PlḢ = −X̄P̄,X +

1

Λ2
c

[
φ̇

...
φ + 3Ḣφ̇2 + 3Hφ̇φ̈

]
. (4.11)

The effect of Λc on the Friedman equation is irrelevant when working within the regime
of validity of the effective field theory, but it allows for a violation of the NEC at finite
positive B,

B = P̄,X =
2

Λ2
c φ̇

(...
φ + 3Hφ̈

)
> 0 when Ḣ = 0 . (4.12)

As mentioned in (2.9), the scale of the background, Eback, is given by

Eback = Max
(
H,
√
Ḣ,m, φ̇/φ, φ̈/φ̇, · · ·

)
&
√
BΛc , (4.13)

where the last inequality is valid when Ḣ ∼ 0. Preserving perturbative unitarity
requires the background scale to be smaller that the strong coupling scale derived in
(3.23)

Eback � Λs (4.14)
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which requires

√
BΛc � Λs . (4.15)

Some of the literature does also require the background energy density ρ to be much
smaller than the strong coupling scale of the perturbed effective field theory ρ � Λ4

s.
This is certainly a safe requirement to impose as one would not expect the EFT to
be stable under quantum corrections otherwise. From a pure unitarity-preserving per-
spective however, we are not forced to impose that condition.

Since we can assume φ̇ 6= 0, and since the derivatives of the background should
be small compared with the scale of high energy physics Λc, we can immediately infer
the hierarchy

B � A and B � 1 when Ḣ = 0 , (4.16)

which implies that the speed of sound ought to be small in this model for a NEC viola-
tion to occur. A small sound speed may not necessarily be problematic at the classical
level, especially not when the high energy effects regulate any gradient instability that
could occur, but as we shall see it greatly affects unitarity.

To establish whether or not perturbative unitarity can be preserved in the vicin-
ity of a NEC violating region we start by looking at the effect of the intermediate
modes as described in section 3.2. We therefore consider modes with energy scale
E2

back � s� µ2
c . In that regime, if any of the scales derived in (2.17) happened to be

smaller than µc ∼ BA−1/2Λc � Λc, with now the ΛNML given by (4.6) (and keeping
in mind that B � A ∼ 2X̄P̄,XX), then that scale would set the strong coupling scale.

Breaking the shift symmetry: Let us start by considering a P (Φ, X) theory which
does not necessarily preserve the shift symmetry (i.e. has explicit Φ dependence). We
also start by making the very natural assumption that the fundamental theory does not
carry any hierarchy of scales by which we mean that one can formulate the function
P (Φ, X) in terms of just one scale Λ(� Λc � MPl) and order one dimensionless
coefficients c`,m,

P (Φ, X) = Λ4
∑
`,n

c`,n
Λ`+4n

Φ`Xn . (4.17)

We would then have ∂4
ΦP̄ ∼ 1 (or ∂4

ΦP̄ � 1 if the background involved φ � Λ or
X̄ � Λ4, but we would not be able to have ∂4

ΦP̄ � 1 unless a very specifically tuned
cancellation occurred precisely at the onset of the NEC violation). Similarly we would
never expect to have ΛN+4M−4∂NΦ ∂

M
X P̄ � 1 unless a very particular tuning was set

to occur precisely at the onset of the NEC violation, or unless the shift symmetry or
another precise type of symmetry was present. So in a typical theory (4.17) with no
hierarchy of scales, we expect ΛNML ∼ Λ for all N + 2M + 4L 6= 4.
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With this assumption in mind, we can consider the quintic operator

L500 =
ϕ5

Λ500

with Λ500 = 5!
(
∂5

ΦP̄
)−1 ∼ 5!Λ . (4.18)

As we have seen, to avoid any breaking of unitarity this operator should satisfy the
requirements (3.20) and (3.22), leading to

Λ & (A3B5)−1/4Λc , (4.19)

which further requires A & B−5/3(Λc/Λ)4/3 � 1, which is only possible if some of
the coefficients present in (4.17) are much larger than unity. Once the door is opened
for such a special tuning (i.e. when some coefficients c`,m in (4.17) are allowed to
be parametrically much larger than others), any vertex can in principle dominate the
scattering amplitudes and lead to much stronger bounds than would be inferred from
the other vertices.

Preserving the shift symmetry: An obvious way to evade the previous argument
is to keep the shift symmetry and hence avoid any operator that depends explicitly on
ϕ. We can start by assuming as we did earlier that the covariant theory contains no
large hierarchies,

P (X) = Λ4
∑
n≥1

cn
Λ4n

Xn , (4.20)

with all the cn of order 1, with the possibility that some of them may vanish and
that the sum may truncate at order N̄ . In that case one should have Λ4(n−1)∂nXP̄ ∼ 1
(or � 1) for any 2 ≤ n ≤ N̄ unless there is particular artificial tuning (or hierarchy
of scales). In this case the most stringent bounds come from the cubic and quartic

operators ϕ̇(∂iϕ)2 and (∂iϕ)4 which impose the requirement (3.20) Λ & c
1/4
s Λc. Since

cs � 1 at the onset of the NEC violation in these types of theories, this requirement
is not a priori unreasonable, but it does constrain the theory. Once this constraint is
satisfied, none of the other operators of the theory would break perturbative unitarity
so long as no artificially large coefficient is included in P (X). Expressed as a constraint
on P (X) we see that perturbative unitarity requires

1� Λ4
cP̄,XX � c−1

s , (4.21)

(where the lower bound is coming from the requirement that Λ � Λc). The pure
ghost-condensate [6, 9, 28, 40] lies in that category of models and is discussed in more
detail in appendix A. For that model we see that the unitarity bounds put severe con-
straints on the high energy operators which end up needing to break the shift symmetry.

The previous unitarity bound was derived by estimating the contribution of the
cubic and quartic vertices to the 2−2 scattering amplitudes. Having identified the po-
tentially most dangerous vertices, we can go ahead and compute their actual contribu-
tions to the tree-level scattering amplitudes to ensure that no ‘accidental cancellations’
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occur. The direct calculation of the 2−2 tree scattering amplitude taking into account
both the cubic and quartic vertices is in complete agreement with the estimations and
provides the following upper bound, Λ4

cP̄,XX � 192π2/(103cs).

Summary: To summarize, a NEC violation in shift-symmetric P (X) theory is in
principle possible so long as higher energy effects enter at a sufficiently low energy
scale to regulate the scattering amplitudes, but still at sufficiently high energies so as
not to entirely spoil the low-energy EFT. With these conditions in mind we obtain a
limited, but not necessarily empty, window of possibility.

In practice however, when it comes to obtaining explicit bouncing solutions, break-
ing the shift symmetry may make the bounce ‘easier’ to model. In the absence of a
protecting shift symmetry, the unitarity bounds are tighter and require an additional
level of tuning of the model. These additional tunings imply that the 2− 2 scattering
is no longer necessarily the dominant scattering amplitude and all processes should
be examined with care to determine whether unitarity is preserved. One should also
ensure that the effective mass and couplings of the marginal and relevant operators
are sufficiently small. This can be done explicitly, and to illustrate the process we now
provide an explicit model which allows for a stable cosmological bounce that preserves
unitarity at the price of introducing an unnaturally small parameter.

4.3 Explicit Model

We now present an explicit model of the form

S[gµν ,Φ] =

∫
d4x
√
−g
(
M2

Pl

2
R + P (Φ, X) +

1

2Λ2
c

(�Φ)2

)
, (4.22)

with

P (Φ, X) = −Λ4V (Φ) + p(Φ)X +
q(Φ)

Λ4
X2 , (4.23)

so the background equations of motion are given by

3M2
PlH

2 = Λ4V + pX̄ +
3

Λ4
qX̄2 +

1

2Λ2
c

[
−φ̈2 + 2φ̇

...
φ + 6Ḣφ̇− 9H2φ̇2

]
, (4.24)

M2
PlḢ = −pX̄ − 2

q

Λ4
X̄2 +

1

Λ2
c

[
φ̇

...
φ + 3Ḣφ̇2 + 3Hφ̇φ̈

]
. (4.25)

We can then explicitly check that the following profile

φ̇ = Λφ, H =
Λ3

M2
Pl

h(φ) . (4.26)
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is an exact solution of the background equations of motion if we choose the following
potential and functions of Φ

V (Φ) = −1

4
q(Φ)

Φ4

Λ4
+

(
3

Λ2

M2
Pl

h2(Φ) + Φh′(Φ)

)
− Φ2

2Λ2
c

(
1 + 3

Λ2

M2
Pl

h(Φ)

)2

, (4.27)

p(Φ) = −q(Φ)
Φ2

Λ2
− 2

Λ2

Φ
h′(Φ) +

2Λ2

Λ2
c

[
1 + 3

Λ2

M2
Pl

h(Φ) + 3
Λ2

M2
Pl

Φh′(Φ)

]
, (4.28)

and for any pair of free functions q(Φ) and h(Φ). This freedom ensures that we can
choose a profile that undergoes a cosmological bounce while preserving unitarity.

Focusing on the decoupling limit about the FLRW background as discussed in
section 2.1, the coefficients of the kinetic matrix are then given by

A = 2q(φ)
φ2

Λ2
− 2

Λ2

φ
h′(φ) + 2

Λ2

Λ2
c

[
1 + 3

Λ2

M2
Pl

(h(φ) + φh′(φ))

]
, (4.29)

B = −2
Λ2h′(φ)

φ
+ 2

Λ2

Λ2
c

[
1 + 3

Λ2

M2
Pl

(h(φ) + φh′(φ))

]
, (4.30)

and so the sound speed is given by

c2
s =

φh′(φ)− φ2

Λ2
c

φh′(φ)− q φ4
Λ4 − φ2

Λ2
c

+O
(

Λ

MPl

)
. (4.31)

For example, if we choose

φ(t) = φ0e
Λt , (4.32)

h(Φ) = − Φ

φ0

1− Φ2/φ2
0

1 + Φ4/φ4
0

Φ10/φ10
0

1 + Φ20/φ20
0

, (4.33)

then the Hubble parameter goes through a bounce at t = 0,

H(t) =
Λ3

2M2
Pl

sinh(Λt)

cosh(2Λt) cosh(10Λt)
, (4.34)

which is a smooth bounce that violates the NEC for a time ∆t ∼ Λ−1 and produces
a Hubble rate on the order of Hm ∼ Λ3/M2

Pl on exiting the NEC violating region.
This is shown in Figure 1. To ensure that the perturbed field on that background is
well-behaved, we can for instance choose,

q(Φ) =
Λ2

M2
Pl

(
1 + q1

φ4
0/Φ

4

(1 + Φ/φ0)

)
. (4.35)

As discussed in section 4.2, without a shift symmetry the model has to involve a hi-
erarchy of scales and the ratio Λ/MPl is chosen to that effect (hence Hm, q, etc. are
parametrically smaller than näıvely expected). This model would give the desired
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Figure 1. The behaviour of the specific example provided in (4.34). The time is given in
Planck scale units. The Hubble parameter is measured in terms of the scale Hm = Λ3/M2

Pl.
The sound speed is manifestly positive throughout the NEC violating region. On the lower
plot, the relevant scales of the system are represented relative to MPl. Λ′c represents the scale
at which the higher energy effects enter, ρ is the energy density of the background, m is the
mass of the perturbed scalar field, and Eback is the background scale and is manifestly smaller
than the scale Λs at which perturbative unitarity breaks down. That scale is dominated by
the cubic and quartic operators ϕ̇(∂iϕ)2 and (∂iϕ)4. For comparison µ500 represents the
scale at which the operator ϕ5 breaks tree-level unitarity. The example (4.34) is specifically
engineered so that the contribution of that operator and any other operator is sub-dominant.
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bouncing solution for φ(t), H(t), when Λc → ∞, however in that limit fluctuations
on this background have negative sound speed (there is a gradient instability), and
it badly violates unitarity. To remedy this, we switch on the high energy effects (i.e.
bring Λc to a finite value) and include the irrelevant operator (�Φ)2 at that scale. As
derived previously, this scale should be in the appropriate range to ‘save’ unitarity, but
without spoiling the low-energy effective theory.

For concreteness we plot the behaviour of the background and the strong coupling
scale for the following specific choices of parameters,

Λ = 10−3MPl , φ0 = 0.5MPl , q1 = 6.4 and Λc = 0.028MPl . (4.36)

For this choice of parameters, we now have a finite positive sound speed and satisfy
tree-level unitarity throughout the bounce. The strong coupling scale is indeed set
by the cubic and quartic operator ϕ̇(∂iϕ)2 and (∂iϕ)4, while the higher order effective
interaction scales are all much larger than the strong coupling scale Λs. This example
has indeed been specifically engineered so as to suppress the effect of any other operator.

Strong Coupling Scale: An explicit calculation shows that within the NEC vio-
lating region, we have A ∼ 2, B ∼ 2 × 10−3 and the strong coupling scale deduced
from the 2− 2 scattering amplitude (including all the operators that would affect that
amplitude) is Λs ∼ 10Λ. Then we can check that the mass of the fluctuations on that
background is indeed small,

m2
eff ∼ Λ2 ∼ 10−2Λ2

s (4.37)

and the scale associated with the relevant operator ϕ3 is sufficiently small, µ300 ∼ Λ,
as is the dimensionless coupling constant in front of the marginal operator ϕ4, µ400 ∼
O(1). As for all the infinite number of irrelevant operators, their respective scales
should be at least Λs. A direct calculation shows that within the region of interest
(i.e. within the NEC violating region), all the requirements derived from tree–level
unitarity in (3.24–3.22) are indeed satisfied. For illustration purposes, we represent the
scale µ500 we would have naively derived from where the quintic operator ϕ5 breaks
unitarity in Fig. 1 and it indeed lies above Λs throughout the bounce. The same re-
mains true for all the other operators (other than ϕ̇(∂iϕ)2 and (∂iϕ)4).

We can also directly see that the derivatives of the background remain small,
obviously φ(n+1)/φ(n) ∼ Λ � Λs (the hierarchy involved in the example is not an im-
portant one, but it simply serves as an illustration of the principle). Moreover we can
check that the variation of the mass and the coefficients of the kinetic matrix are small,
Ḃ/B ∼ 10−6MPl, and Ȧ/A ∼ 1.5 × 10−3MPl, which is actually what sets the scale of
the background, Eback ∼ 1.5 Λ.

We have therefore shown how, for couplings given by (4.28), and solution (4.34),
while if one took Λc → ∞ the bounce would have a classical gradient instability and
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would badly violate perturbative unitarity, this can be remedied by including high
energy effects that are present at sufficiently high energy (finite Λc) without severely
affecting the predictions of the low energy EFT. For a bounce to occur without violating
unitarity in a P (Φ, X) theory, the parameters have to be carefully tuned and a hierarchy
of scale had to be introduced already in the P (Φ, X) model.

5 Summary

While solutions that violate the NEC condition are relatively easy to find classically,
they may not be trusted if they are derived beyond the regime of validity of their
effective field theory. In this work, we have derived the conditions set by tree-level
unitarity on NEC violating effective field theories on a cosmological background. In
P (Φ, X) theories minimally coupled to gravity, without including any higher energy
effects, it is impossible to describe a NEC violation (much less a complete bounce):
Any classical solution automatically severely violates unitarity and cannot be trusted.
A natural resolution is to include the high energy effects, irrelevant operators sup-
pressed by a higher energy scale that are naturally expected to be present. We have
shown that these can regulate not only the classical instabilities that arise in these
classical NEC violating solutions, but can also regulate scattering amplitudes, hence
providing a much better handle on unitarity. We have derived the precise requirements
set by tree-level unitarity in P (Φ, X) models with additional irrelevant operators, and
shown that while the theory should be very carefully tuned, in principle there is a
open window of possibility for a stable cosmological bounce that preserves unitarity.
To further illustrate the constraints set by unitarity and level of tuning required, we
have presented an explicit P (Φ, X) that generates a stable cosmological bounce and
preserves unitarity within the region of the bounce, albeit at the price of introducing
an unnaturally small parameter into, and hence finely tuning, the EFT.

The analysis and example provided here was not aimed at providing a full cos-
mological framework and we have only focused on the possibility of violating the NEC
while avoiding any instability and remaining within the regime of validity of the effec-
tive field theory. We have not addressed the question of particle production throughout
the bounce which is beyond the scope of this work, however given that there is no in-
stability and the scales are under control, there is a priori no reason to expect a large
particle production at this point. Moreover, the high level of tuning required to ob-
tain a stable and unitary bounce certainly raises the question of whether such a model
would ever accommodate the precise cosmology we observe today and be able to repro-
duce the precise value of the spectral index (without an excess of non-Gaussianities,
[49]) and the tensor to scalar ratio to be embedded in a consistent and viable model
for the cosmological history of our Universe.
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A Bouncing with a Pure Ghost-Condensate

In this appendix we review the violation of the NEC in a pure ghost condensate model,
[6, 9, 28, 40]. Starting with the particular P (X),

P (X) = −pX +
q

Λ4
X2 , (A.1)

a violation of the NEC is possible if p > 0. In that case the standard vacuum 〈φ〉 = 0
carries a ghost, but no ghost is present in the ‘ghost-condensate phase’ (〈φ̇〉 6= 0)
where the quadratic terms X2 become relevant. Just like any other P (Φ, X) theory,
this model is unstable and breaks unitarity even before entering the NEC violating
region, unless higher energy effects are considered as discussed in section 4.2 and so
we have these high energy effects entering at Λc in mind throughout this appendix.

The expression for the kinetic coefficients are

A = −p+
6qX

Λ4
and B = −p+

2qX

Λ4
, (A.2)

so interestingly the variations of A and B are linked, Ȧ = 3Ḃ, and we have

X =
Λ4

4q
(A−B) . (A.3)

As a consequence, we therefore have

Ẋ

X
=
Ȧ− Ḃ
A−B

=
2Ḃ

A−B
and similarly

Ẍ

X
=

2B̈

A−B
. (A.4)

Now from the Raychaudhuri equation, within the NEC violating region Ḣ > 0, we
have

0 < B < O

(
1

Λ2
c

Ẍ

X

)
, (A.5)

where the exact expression on the right hand side depends on the very precise operators
that enter at Λc (and could also for instance involve terms of the form HẊ/Λ2

cX), but
this analysis is independent of the precise form (as it should). We merely use the
fact that they involve higher derivatives as is required if those terms are to cure the
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instabilities associated with pure P (X) bounce. Then from (A.4) within the NEC
violating region we ought to have

A−B < O

(
1

Λ2
c

B̈

B

)
. (A.6)

Requiring that the background does not vary faster than Λ′c =
√
AΛc sets B̈/B � AΛ2

c ,
which therefore implies that

1− c2
s � 1 , (A.7)

i.e. the speed of sound should be very close to luminal. Now for a P (X) model with
close to luminal speed of sound the unitarity bound (4.21) cannot be satisfied.

One may be worried that the bound (4.21) is not technically valid if the speed of
sound is not small since in going from (3.9) to (3.10) we have assumed A � B. It is
straightforward to rederive the bound (4.21) when this assumption is relaxed and we
then find that unitarity imposes

1� Λ4
cP̄,XX �

(1− c2
s)

4

cs
, (A.8)

which is even more impossible to satisfy when 1− c2
s � 1. So we can conclude that a

pure ghost-condensate model of the form (A.1) can never give rise to a unitarity NEC
violation (let alone a bounce) even when introducing higher derivative terms at a higher
energy scale. The only way to avoid this argument in the ghost-condensate model is if
the higher energy effects also involve operators that are not higher derivatives, i.e. in-
volve terms that break the shift symmetry at high energy. Instead of trying to maintain
a low energy EFT that preserves the shift symmetry and only breaks that symmetry
softly at high energy, in this manuscript we consider instead an explicit model that
directly breaks the shift symmetry at low energy as is described in section 4.3.
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