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Unitary Space—Time Modulation for
Multiple-Antenna Communications
In Rayleigh Flat Fading

Bertrand M. HochwaldMember, IEEEand Thomas L. Marzeti&enior Member, IEEE

Abstract—Motivated by information-theoretic considerations, [15]). But increasing the number of transmitter antennas in-
we propose a signaling schemeinitary space—time modulatiorfor  creases the required training interval and reduces the available
multiple-antenna communication links. This modulation is ideally  time in which data may be transmitted before the fading coef-
suited for Rayleigh fast-fading environments, since it does not ficients ch At vehicl ds of 60 mi/h bil
require the receiver to know or learn the propagation coefficients. 'C_'en S change. ve 'CFj' Speeds o _m' » @ mobile oper-

Unitary space—time modulation uses constellations d' x M  ating at 1.9 GHz has a fading coherence interval of about 3 ms,
space-time signal{ ®,, £ = 1, ---, L}, whereT represents the which for a symbol rate of 30 kHz corresponds to a fresh fade
coherence interval during which the fading is approximately con-  every 50-100 symbol periods. If several training symbols per
stant, and M’ < T'is the number of transmitter antennas. The  yangmitter antenna are needed, the coefficients for only a few

columns of each®, are orthonormal. When the receiver does not ¢ be | d bef fresh fad Next
know the propagation coefficients, which between pairs of trans- 21€NNASs can be learned belore a iresh fade occurs. Next-gen-

mitter and receiver antennas are modeled as statistically indepen- €ration cellular systems in Europe will be expected to operate
dent, this modulation performs very well either when the signal-to- under very fast fading (trains moving at speeds up to 500 km/h

noise ratio (SNR) is high or whenT" >> M. _ ~[20]) and hence it may be impractical to learn even the single
We design some multiple-antenna signal constellations and sim- ., efficient between one transmitter and one receiver antenna.

ulate their effectiveness as measured by bit-error probability with . . .
maximume-likelihood decoding. We demonstrate that two antennas Motivated by these considerations, we used Shannon theory

have a 6-dB diversity gain over one antenna at 15-dB SNR. in [8] to analyze muItipIe-a_ntenna links without imposing
Index Terms—Channel coding, fading channels, multielement any tralnlng. scheme's .and with no assumed Knowledge .Of the
antenna arrays, space—time modulation, transmitter and receiver 'andom fading coefficients. The complex fading coefficients
diversity, wireless communications. between all pairs of transmitter and receiver antennas were
modeled as independent with uniformly distributed phases
and Rayleigh distributed magnitudes. The fading coefficients
were piecewise-constant over fixed time intervals, with channel
ADING is traditionally regarded as a nuisance by the deoding performed over many such independent fading intervals.
signers of wireless communications systems. Its effects i showed that the channel capacity could not be increased by
often mitigated by some combination of differential phase mothaking the number of transmit antennas greater than the length
ulation, interleaving, or the transmission of pilot or training sigef the fading interval, and found that the capacity-attaining
nals [1]. But, paradoxically, Rayleigh flat fading can be bersignals had considerable structure. However, we did not explic-
eficial for a multiple-antenna communication link. It is showritly address the problems of modulation and channel coding.
in [6] and [19] that, in a Rayleigh flat-fading environment, dn this paper, we use the structure derived in [8] to motivate a
link has a theoretical capacity that increases linearly with tip@rticular space—time modulation scheme.
smaller of the number of transmitter and receiver antennas, proThe information-theoretic results in [8] suggest a signal
vided that the complex-valued propagation coefficients betweeanstellation comprising complex-valued signals that are or-
all pairs of transmitter and receiver antennas are statistically thonormal with respect to time among the transmitter antennas.
dependent and known to the receiver. We call this signaling schemgnitary space—time modulation
However, learning the fading coefficients becomes increadthen viewed as vector functions of time, the signals carry the
ingly difficult as either the fading rate or number of transmittemessage information entirely in their directions. In this paper,
antennas increases. In an effort to increase channel capacityerexplain in detail how to create, modulate, and demodulate
lower error probability, it is accepted practice to increase thwitary space-time modulation on a multiple antenna link
number of transmitter antennas (thereby gaining “diversity” [9pperating in Rayleigh flat fading. Throughout most of the
paper the propagation coefficients are assumed to be unknown
to the receiver, but we also show how to use the modulation
. . _ when the coefficients are known. When the receiver does not
Manuscript received October 14, 1998; revised September 1, 1999. The ma- .. .
terial in this paper was presented in part at the 1988 IEEE International Symrg(g!ow the coefficients, no attempt to learn them is made. We
sium on Information Theory, Cambridge, MA, August 1998. concentrate on modulation and constellation design, and do not
The authors are with Bell Laboratories, Lucent Technologies, Murray Hilhqdress coding issues that lower error probability by adding
NJ 07974 USA (e-mail: {hochwald; tim}@research.bell-labs.com). . .
Communicated by M. L. Honig, Associate Editor for Communications. ~ fedundancy. We focus, instead, on raw or uncoded signal
Publisher Item Identifier S 0018-9448(00)01359-6. and bit-error probabilities. When combined with appropriate
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channel coding, our proposed signal constellations can thddwe transmitted signal has an average (overithentennas)

retically attain a high fraction of the channel capacity. Somexpected power equal to one

multiple-antenna coding issues for receivers that know the v

channel appear in [18]. 1 Z Elspn|? = 1 .
Section Il presents the signal model and operating as- M — b ’

sumptions, and Section Il reviews the information-theoretic

foundations for unitary space—time modulation. In Section I\f,he additive noise at timeand receiver antennais denoted

we extend the information-theoretic justification by arguingt and is independent (with respect to betindn) and iden-

that unitary space—time modulation is nearly optimal when tfgally distributedCA/(0, 1). The quantities in the signal model

signal-to-noise ratio (SNR) is high. In Section V, we considdd) are normalized so thatrepresents the expected signal-to-

the use of unitary space—time modulation to transmit dafQise ratio (SNR) at each receiver antenna, independently of the

across a multiple-antenna link, and discuss maximum-likBUmber of transmitter antennas. We assume that the realizations

lihood demodulation and the properties a good constellati€h/imn, m =1, ---, M,n =1, ---, N are not known to the

should have. In Section VI some signal design issues dRE€IVEr or transmitter.

treated and simulations of a two-transmitter-antenna system ardVe use matrix notation for the transmitted sighall’x A1),

presented. We extend some of the piecewise-constant theor?@ the received signat’ (7" x N). Conditioned ons, the

continuous fading in Section VII. received signalX has independent and identically distributed
The following notation is used throughout the pageg; = columns (across th& antennas); at a particular antenna,The

is the base-two logarithm of, while In z is basec. Given received symbols are zero-mean circularly symmetric complex

a sequencé,, b, -- -, of positive real numbers, we say tha>aussian, withl” x 1" covariance matrix

a, = O(b,) asn — ~ if |a,|/b, is bounded by some pos-

itive con(sta)nt for sufficientl|y Iz|:\/rga; we say thaty,, = o(b,) A =Ir +(p/M)SS' ©)

if limn,, o an/bn = 0. Two complex vectorsg andb, areor-  whereJ; is theT x T identity matrix. The received signal has

thogonalif a'b = 0, where the superscriptdenotes “conjugate onditional probability density

transpose.” The mean-zero, unit-variance, circularly symmetric,

complex Gaussian distribution is denot& (0, 1).

1

a"'aT' (2)

— “lxx¥
p(x]s) = SRERAA XXT)) @
7 TN det” A
where ‘tr” denotes the trace function.

Consider a communication link comprising transmitter ~ We assume, for now, that the fading coefficients change
antennas andV receiver antennas that operates in a Rayleigh new independent realizations evelly symbol periods.
flat-fading environment. Each receiver antenna responds to eddtis piecewise-constant fading process mimics, in a tractable
transmitter antenna through a statistically independent fadintanner, the behavior of a continuously fading process. Fur-
coefficient that is constant faF symbol periods. The receivedthermore, it is a very accurate representation of many TDMA,
signals are corrupted by additive noise that is statistically indigequency hopping, or block-interleaved systems [13]. We
pendent among th&' receivers and th& symbol periods. In consider continuous fading processes later. Each channel use
complex baseband representation, duringftkeymbol interval (consisting of a block of " transmitted symbols) is independent

Il. MULTIPLE-ANTENNA LINK: SIGNAL MODEL

we transmit the signal of every other. Thus data can be transmitted reliably at any rate
less than the channel capacity, where the capacity is the least

{stm, t=1,---, T,m=1,---, M} upper bound on the mutual information betweerand.S, or

and we receive the noisy signal ¢= Sg; I(X; S)
p

@wtn, t=1,---, T,n=1,.--, N} subject to the average power constraint (2), and where

related by the equation [(X; §)=E log P(ég)
b

M
tn — M hrn,n tm T tns = 3 &
Tin = VP/M Y Bt + w / dSp(S) / dX p(X|S) 1Og{fd5*p(5)p(X|s’) .
Ton=1---N. (1) 5)

m=1

t=1, -

Here h...,, is the complex-valued fading coefficient betweefThe capacityC' is measured in bits per block @f symbols. In
themth transmitter antenna and th¢h receiver antenna. Thegeneral, one must code across multiple blocks to achieve ca-

fading coefficients are constant foe= 1, - -- | 7', and they are pacity.
independent with respect ta andn andCA (0, 1) distributed,
with density [ll. SUMMARY OF KNOWN CAPACITY RESULTS

1 y The conditional density (4) has considerable symmetry
plhimn) = - eXP{—|hnm| } arising from the statistical equivalence of each time sample
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and of each transmitter antenna. The special propertieswdierevy, ---, vys are the nonnegative real diagonal entries of
the conditional density, in combination with the concavity

of the mutual information functional, lead to some general der p(V)
conclusions [8] that are summarized here. f)= /dV' i - '/d‘I’P(‘I’)
II (1+&w2)"
A. Capacity Limited By Length of Coherence Interval; "_’=(]1V .
Structure of Cap?m.ty Attaining Signals - exp Z Z re- < pvZ, ) ol
Theorem 1—Limit on Number of Transmitter Antenn&sr — ~= M + pv2,

any coherence intervdl and any fixed number of receiver an- (®)
tennas, the capacity obtained with > 7" transmitter antennas

equals the capacity obtained withi = 1" transmitter antennas. g3nd also as shown in (9) at the bottom of this page. In (8) and
In what follows we assume that/ < 7. (9), p(V') denotes the joint density on, - - -, vz, and

Theorem 2—Structure of Signal that Achieves Capaciy: AE A, Amin(y, 1)]-

capacity-achieving random signal matrix may be constructed
as a produc = @V, where® is an isotropically distributed Computing the channel capacity requires maximizigg’; .5)
T x M matrix whose columns are orthonormal, dnds an in- With respect to the joint probability density of tii¢ nonnega-
dependenf/ x M real, nonnegative, diagonal matrix. Furthertive real diagonal elements &f. Itis shown in [8] that we may
more, we can choose the joint density of the diagonal elemeff@oseEv; = --- = Evy, = T.
of V to be unchanged by rearrangements of its arguments. ~ 1he transmitted signal has the partitioned form

An isotropically distributedunit vector has a probability

S=vpr -+ vmdm]

density that is unchanged when the vector is left-multiplied by

any deterministic unitary matrix. Similarly, the isotropicalljwhere thes columns, representing the temporal signals fed
distributedI” x M matrix ® obeys®’® = 1, and has a density into the M transmitter antennas, are mutually orthogonal. As
that is unchanged when it is left-multiplied by ady x 7" e will argue, for eithet’ > M, or for high SNR and’ >

unitary matrix. In a natural wayp is the matrix counterpart A7, settingv; = --- = vy = /I, which we callunitary
of a complex scalar having unit magnitude and uniformlgpace—time modulatiomchieves capacity.

distributed phase. The joint probability densityd®fn terms of
its M columnsey, ---, ¢as is [8] B. Capacity Bounds

" An upper bound on capacity is obtained if we assume that the

P(T+1-m) receiver is provided with a noise-free measurement of the prop-
®) = G 6 ¥ m _6771 m . _ . .
p(®) nl;ll gl +l-m ] mll_lnz ($lns P 1ma) agation coefficientd . This perfect-knowledgepper bound is
myEms [6], [19]
(6)

Cy =T E log det [IN + ﬁ HTH} (10)
whereé(-) is the Dirac delta function defined for complex argu- ) )

ments to bé(-) = §(Re{-})-6(Im{ }), ands is one when Per block of1” symbols. WherH is known to the receiver, the
m, = ms and is zero otherwise. Sljbstituicrilr;;wthe structused Perfect-knowledge capacity bound is achieved with transmitted

into (5) and performing some simplification yields S|gna_1IS whose elements are independ€mt’ (0, 1). Fpr the
special cas@/ = N = 1 the perfect-knowledge capacity upper

bound isC,, = T(log ¢)el/? E1(1/p), where

B [ T ) dy

is theexponential integral

M 9
I(X;S):—TNloge—N~Z Elog(l—i—%)

m=1

= [xeny -

min(N, T) A lower bound on capacity that we dendigis obtained by
log f(A) = (loge)- > A (7) assigning unit probability mass tg = - -- = vy, = /T, sub-
£=1 stituting this mass function into (7), and integrating with respect

=1 i<j

min(N, T) min(N, T) | T—N|
exp|l — X A~ | Y T (N = )2
def =1
() |

p min(N,T') (9)
[ T(T—f+1) (N —¢+1)

=1
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to V. For the special cas®/ = N = 1, the integration ove®
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we defineunitary space—time modulatida be the transmission

in (8) can be performed analytically to yield the capacity lowesf S = v/T'®, whered® = I. The previous section argues that

bound
Cy= —Tlog e—log(1+ pT)
/maunawumyg_Lﬁg)
0

T(T)(1 + pT)

T T—1
+pT

- > 14pT
T

(T — 1)eM+T), ( 1 Jﬂ)
_ A

- log

1
TA
(L4 oT) [ £25]

(11)

where

T, 2)E / q' teTldg
0

unitary space—time modulation attains capacityffos- M. We
now argue that unitary space—time modulation is optimal also
for any fixed?Z > M ,tasp — oo. The following result, for the
special casé/ = N = 1, shows that letting; = /7" with
probability one achieves capacity asymptoticallypas oo for

any fixedT' > 1.

Theorem 4—Capacity, Asymptoticallydn Let M =N =1
and? > 1. The capacity has the asymptotic expansions

(5) rm

(%)

asp — oo, Wwherey = 0.5772--- is Euler's constant. This

T-1
C=—C,+log

T +0(1)

(12)

+0(1) (13)

is theincomplete gamméunction. The next theorem, provencapacity is achieved gs— oo by settings; = +/7 with prob-
in [8], says thatC;/T — C/T — C,/T, and the capacity- ability 1.

achieving distribution ofy; is a unit mass ay/T, asT — oo.

C. Asymptotic Capacity and Signal Structure for> M

Theorem 3—Capacity, Asymptoticallyfin LetM =N =1.
The capacity has the asymptotic expansion

/e log T
(log C)G/El(l/p)_0< a )

= CT < C/T < CT

Proof: See Appendix A.

Fig. 1 displays, foMd = N = 1 and7 = 2, the exact ca-
pacity (obtained with the Blahut—Arimoto algorithm [2], [8]),
the perfect-knowledge upper bound (10), the lower bound (11),
and the expansion (12) as a functioneofFig. 2 is similar, ex-
cept thatl” = 5, and we see that the lower bounds, asymptotic
expansions, and capacities are essentially the same for all SNR’s
greater than 0 dB. Unlike the case in Theorem 3 whiére oo,
whenp — oo we see that the capacity diverges away from the

upper bound.

It is worth attempting to find an intuitive explanation for The-
asT — oo. This capacity is achieved & — oo by setting orem 4. The first term in (12) appears to be consistent with the
v1 = VT with probability 1. strategy of sending a single known training symbol from which

Heuristic considerations strongly suggest that Theorem 3 ke receiver obtains a very accurate estimate for the fading co-
tends in a reasonable way to multiple transmitter and receiwfficient, and then transmitting the remainifiy— 1 symbols
antennas. AlthougHl is unknown to the receiver, dsbecomes as if the fading coefficient were known to the receiver. The ca-
large we could reserve a small portion of the coherence interyaicity thus obtained would correspond to approximefely 1
to send training data from which the receiver could estintite perfect-knowledge channel uses, giving rise to the first term in
so C/T should approacld’, /T" asT — oo and this capacity (12); the remaining terms can be viewed as the penalty for esti-
would be attained by a transmitted sigwalvhose components mating the fading coefficient imperfectly.
are approximately independeftv' (0, 1). To demonstrate that  But this appealing argument does not explain why unitary
S = \/T®, wheredTd = I and® is isotropically distributed, space-time modulatios = +/7'®, which has no explicit
attains capacity, we note that @s— oo the entries of5 have training, achieves capacity. Instead, 4et v®, wherev obeys
distributions that approach independént (0, 1) (see [8]). On E»? = T but is otherwise arbitrary, and consider the high-SNR
the other hand, whe/ = T, settingv; = --- = vy = VT received signal,
is not useful; in this casesst = T - &&T = T - I, so
p(X|8) = p(X) and no information is transmitted. In what fol-
lows we always assume thaf < 7.

= (log e)e"/7E1(1/p)

x 72 \/pvhd®,

wherex and ® are7’-dimensional vectors. The unit vectar,

apart from its overall phase, can be determined very accurately

from x, regardless ok. However, the scalar amplitudecannot

A. Unitary Space—Time Modulation Defined be determined so easily because it is multiplied by the unknown
The key results of the previous section say that: 1) there is fg2/ar:. Hence, when the SNR s high, transmitting information

point in making the number of transmitter antennas greater th@i® appears to be more profitable than transmitting ofihis

the duration of the coherence interval and 2) when the duratis#ggests that we should simply set v/T'. Note that both this

of the coherence interval is significantly greater than the numiigument and Theorem 4 apply only/if> 1.

of transmitter antt_anna(.ér_ > M), settinguy = -+ = UM = 1. Zheng and D. Tse have recently informed us that the correct condition
v/ T attains capacity. Taking our cue from these considerationgpears to b& > M/2.

IV. UNITARY SPACE-TIME MODULATION AND HIGH SNR
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Fig. 1. Normalized capacity, and upper and lower bounds, versusgSMR= 2, one transmitter and one receiver antenna). The lower bound and capacity meet
asp — oo. However, unlike the case whef¥e — oo, the capacity never meets the perfect-knowledge upper bound.

A similar intuitive argument suggests that Theorem dhannel codes to attain capacity, we now consider the use of uni-
also holds for multiple transmitters and receivers; that tary space-time modulation in an uncoded form, and find design
vy, -, vy — /T asp — oo. For high SNR and” > M, the rules that help us generate good constellations of these signals.
signal at thenth receiver antenna is

M
Zn 2 O/M > Vb m (14)

V. ML RECEIVER FORUNITARY SPACE-TIME MODULATION

We now consider maximum-likelihood (ML) reception of a

m=1 . . . . .
where z,, and ,, are T-dimensional vectors. Even for alc;:f:)sr;[ellatlon of. signals employing unitary space—time modu-
very high SNR we cannot easily determing, -- -, vy, be- '
cause they are multiplied by the unknown fading coefficients S, — /T V1 . L
hin, -+, harn. However, the columns @b span amy/-dimen- b - T
sional subspace of th&-dimensional complex vector space,, ere{<1>4, ¢=1,..., L} areT x M complex matrices satis-

In this vector space, the subspace is a hyperplane, and
two signals®; and ¢, that generate nonidentical subspace
yield two distinct hyperplanes that intersect on some lower-
mensional hyperline. The probability af, falling on one of

'?Kg o D=1 Ignore for the moment, the problem of how to
enerate such a constellation. We derive the ML receiver and its
erformance whe# is unknown and, for comparison, whéh

is known to the receiverH is never known to the transmitter).

Lhers]esmtsrsectlons |sfzetr|o.dﬂihce,_;ln?(fapen((jpentwnlg){, for It is customary to call the former receiver noncoherent and the
ig we can perfectly distingui rom ®; aslong as | v+ receiver coherent.

their columns do not span the same subspace. (We demonstrate
this effect in the next section by calculating the probability o'& Channel Unknown to Receiver
mistaking one for the other.) Nevertheless, we do not have a

proof thatvy, - - -, var — VT asp — oo, for M > 1. Maximume-likelihood decoding becomes
In short, when eithel’ > M, or p is large withT > O, = arg max p(X|P¢)
M, information-theoretic arguments say that the modulation of R et
v1, -+, vy IS Neither very interesting nor very useful. Rather T X s,y
one should use unitary space-time modulation, where= a1
- = vy = /T and where all message information is trans- eXP<—tf { |:IT + (PT/M)‘I’K‘I’J XXT})

mitted on the directions of the orthonormal columngofWhile - :
information-theoretic arguments implicitly require the use of 7N det” [IT + (pT/M)2®, }
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2 — — — Perfect-knowledge upper bound
Capacity
— — — Lower bound
1 -
-— - — - Asymptotic expansion of capacity
0 1 1 1 I
0 5 10 15 20 25

SNR (dB)

Fig. 2. Normalized capacity, and upper and lower bounds, versus/S&Rn Fig. 1, but withl" = 5.

=arg max pression that depends only on the singular values althe M
PeC (P, 2Ll matrix ®},®
2¥1:
exp(—tr { [IT S - cmclﬂ XXT}) . .
1+M/pT ¢ Theorem 5—Two-Signal Error ProbabilityH-Unknown:
aTN(1 + pT/M)MN Suppose that two unitary space—time modulation sighasnd
= arg max tr {XT<I>5<I>ZX} (15) d, are tr_ansmitted with equal _p_robability, {:\nd decoded with an
Qee{®, -, 01} ML receiver. Then the probability of error is
where the matrix formulas
1
det(I + AB) = det(I + BA) Fe :Z Resmia, { T wtif2
J
and ﬁ [ 1+pT/M r}
' T/M)2(1—d2,)(w?+a2
(A+BCD)™ = A™' = A7'B(C™ + DAT'B)"'DA™! =t (PT/M)A1 = d ) (W a)

are used [17]. The ML receiver seeks to maximize the energy @)

contained in the\/ NV inner products that comprisg] X .
Suppose now that = 2, and®; and®, are transmitted with
equal probability. The probability of decoding error is then

wherel > d; > --- > dj; > 0 are the singular values of the
M x M matrix &}, and

of [1 1 T/M
anl(lif\/z+( +p /

P.=1p (tr {XT<1>2<1>$X} > tr {XT<I>1<I>IX}

pT/M)*(1—d7,)
D, transmittet)
Furthermore . decreases as amly, decreases, and has Cher-

+1ip (tr {XT<I>1<I>IX} > tr {XT<I>2<I>£X}‘ noff upper bound
by transmitteé ) (16) M N
<I7]I (18)
As we show in the next theorem, the probability of error given 2 sy |1+ (PT/M)2(1 2

. : i " 4 AHpT/M)
that @, is transmitted is equal to the probability of error given

that ®, is transmitted, and. has a closed-form analytical ex- Proof: See Appendix B.
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Fig. 3. Two-signal probability of error versus SNR for one transmitter and one receiver affehgaN = 1), 7 = 5, andd = 0.0, 0.4, 0.8.

For a single transmitter antenfd/ = 1), d; is the mag- there is an optimal number of transmitter antenh&hat may
nitude of the inner product betwedn and ®,. For multiple be considerably smaller th&h
transmitter antennagl;, - - -, dys represent the similarity be- )
tween the subspaces spanned by the columds ahd®,. The B. Channel Known to Receiver
formula (17) is a closed-form expression that can be explicitly We have justified unitary space time modulati§n= VT®
evaluated for any special case. See, for example, Appendix d,information-theoretic grounds for receivers that do not know
for the explicit evaluation wherd; = --- = dy;. For given the channel, when eith&f > M or p is large. Surprisingly, we
di, ---, dy, the dependence of the probability of error pn can also justify this modulation whéh > M and when the re-
and? is only through the produgi?’. ceiver knows the channel. When the receiver knows the channel,
Fig. 3 displays the probability of error as a function of SNRapacity is achieved by a matrix composed of independent
for one transmitter and one receiver anteifd = N = 1) CA/(0, 1) random variables. In Section 1l it is argued that
and7 = 5ford; = d = 0.0, 0.4, and 0.8. Note that re- § = \/T'® (with @ isotropically distributed) approaches, in dis-
ducingd below0.4 gains at most 1 dB in equivalent SNR. Fig. 4ribution, a matrix of independei@\/(0, 1) random variables
shows the probability of error as a functiondand SNR= 0, asT — oc. Hence, forT” sufficiently large, unitary space—time
10, and 20 dB. Here we can see more clearly that redutingnodulation is nearly optimal, even when the channel is known.
below approximately.4 does not reduce the error by muchKnowledge ofH, however, mandates different criteria for de-
Fig. 5 illustrates the probability of error for two transmitter ansigning a signal constellation.
tennas(M = 2), with d; = d» = d. Comparing this figure  WhenH is known to the receiver (although still random)
with Fig. 3 reveals that for SNR’s greater than 5 dB, two trans-

mitter antennas can have significantly lower error pr_ob_ability p(X|S, H) = ;N exp <—tr { (X _ /—p/MSH>
than one with the same total transmitted power. This is seen 4l

more explicitly in Section V I. Fig. 6 superimposes e 0 —— i
andd = 0.8 curves from Figs. 3 and 5 for relatively low SNR. ' (X N p/MSH> })
Observe that below approximateh? dB, employing a second

antenna with unitary space—time modulation actually increastidd maximum-likelihood decoding is

the probability of error. This is notinconsistent with Theorems 3 .

and 4, which say that unitary space—time modulation is optimat =l = 28 BeC(Dr @1)

for high SNR or largel’. We conclude that when employing

f
unitary space—time modulation for given valuepof’, andN, tr { (X -V pT/M‘PeH) (X - pT/M<I>eH) } .
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correlation

Fig. 4. Two-signal probability of error versus correlatidbnfor one transmitter and receiver antefdd = N = 1), 7 = 5, and SNR= 0, 10, 20 dB.

As shown in the next theorem, the two-signal probability of error We note that wherl is known andS; and.S; are arbitrary
depends on the singular values of g A difference®, —®;. (i.e., do not necessarily have the unitary space—time structure)
the derivation of exact probability of error in Appendix C still

Theorem 6—Two-Signal Error ProbabilityA Known: applies with minor changes. The probability of error and Cher-
Suppose that two unitary space-time modulation sigrals noff bound for arbltrary51 and S, are still given by (19) and

and®, are transmitted with equal probability, and decoded wi &0) but withs,, - - -, 65 replaced by the singular values of

an ML receiver that kn(_)WH perfectly. Then the probability of Sy — S)/VT. See [18] for an alternative derivation of the
error, averaged oveH, is
Chernoff bound.

1 In general, there is no direct relationship between the
P = Z Resm.:mj{ — - known-H singular valuess, ---, 657, and the unknowrH
7 w+1/2 singular valuesly, -- -, dy;. WhenM = 1, for example, we
M 1 N haved; = |<I>£<I>1| and
1 [(pT/M) 2w+ a2 J }
S0 81 = || @2 — 1] = /2 — 2Re(®] &)
(19)
so for a given value of;, 6; can have the range of values
where2 > & > --- > 6 > 0 are the singular values of
¢y — Py, and \/ 2(1 — dl) <6 < 2(1 + dl)
det /1 1 For the special cas#, = --- = dy; = 0 (the two signals
am =47t T82 /M are orthogonal), thed; = --- = 8§y, = /2, and a direct

comparison of (17) and (19) is meaningful. For high SNR, the
Furthermore P, decreases as ady, increases, and has CherChernoff bounds ford unknown (18) and? known (20) are
noff upper bound then

1 M N 1 4 MN
P =-— unknown
5 H 1+ PT 52 ] : (20) 2 <pT> ( )
=1 4M “m MN
P <I(Z (known)
Proof: See Appendix C. T2\ pl
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Fig. 5. Two-signal probability of error versus SNR for two transmitter antennas and one receiver giteraa2, N = 1), T = 5,andd; = d, = d =
0.0, 0.4, 0.8.

which suggests that the probability of error is a factor of appility of error, one would like the singular values of the products
proximately2™ ™ lower when the receiver know& than when <I>ZZ<I>51, £, # ¢, to be as small as possible. Unfortunately, we
it does not. Fig. 7 shows the exact probability of error as a funde not know of a way to minimize these singular values, nor
tion of SNR when the two signals are orthogonal, for known archn we visualize the properties of a good signal constellation.
unknownH,andM = N = 1, andl’ = 5. For moderately high In constructing a constellation, we note that the pairwise prob-
SNR'’s the knowledge of yields a 3-dB gain, as expected. ability of error is invariant to certain unitary transformations,
We have seen that whédih is known to the receiver, unitary including left-multiplication by a commofi™ x 7" unitary ma-
space-time modulation is a viable option f6r>> M. How- trix, &, — Wid,, ¢ = 1, ---, L, and right-multiplication by
ever, the maximume-likelihood receivers for knowh versus arbitraryM x M unitary matrices¢, — ®,0,,£=1, ---, L.
unknown H are considerably different, and so are the depefonstellations that are related in this way are equally good.
dencies of probability of error on the signals. In the former we
seek to maximize the singular valueslsf— &;, whereas in the A- Bound ond; for One Transmitter Antenna
latter we seek to minimize the singular valuesigfd, ; these  With a single transmitter antenfia/ = 1), the task is to find
criteria are not compatible. Moreover, signal constellations f@runit vectors the magnitudes of whose inner prod(ét$;, .,
known H generally have to be larger than those for unkndiyn ¢, £ /, are as small as possible. As shown in the previous sec-
reflecting the significantly higher channel capacity and loweion, there is no direct relation between the magnitude of the
error probability. Wherf is known, signals are distinguishableinner product between two complex vectors and their Euclidean
that would otherwise be indistinguishablefif were unknown, distance. There is a large body of literature on choosing col-
including antipodal pairs=S, as well as signals whose columngections of unit vectors that maximize their pairwise Euclidean
are permuted with respect to one another. The remainder of thistances (see [3] and the many references therein). However,
paper considers only unknowf. the literature on choosing vectors that minimize their pairwise
correlations appears to be smaller [10], [12], [22]. Moreover, the
constellation design problem ifi-dimensional complex space

VI. DESIGN OFUNITARY SPACE-TIME MODULATION . . )
does not reduce to a design problem2ifi-dimensional real

CONSTELLATIONS

space, becausé, = |®/®,| does not equal the magnitude
We wish to design a constellation bfsignals{S; = vT®,, of the inner product between the reaf-dimensional vectors
£=1,---, L}, where®®, = I. Since we assume no channe[Re(®; )7 Iin(®,)7] and[Re(®2)T Iin(®2)7].

coding, the size of the constellationlis= 2727, whereR is the For given values off” and L, it is not known how small we
data rate in bits per channel use. To minimize pairwise probean makedm.« = maxy, 2, (d1)i, 1., the largest pairwise cor-
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Fig. 6. Two-signal probability of error versus SNR for ordé (= 1, solid curves), and twa({ = 2, dashed curves) transmitter antennas, one receiver antenna
(N =1),T = 5,andd = 0.0, 0.8 .

relation between the signals. However, the following bound vge were able to achievg, ., = 0.515. We see that we are not

available [10], [12]: very far fromthe bound,,.... > 0.46. Fig. 8 illustrates the corre-
) lations between the members of the constellatinn,- - -, ®3..
L< 1= i . I(T+1)-(T+k) (21) This same algorithm may be generalized to multiple trans-

T k+1—(T+ k)dmax k! mitter antennad/ > 1 by identifying the pair of signals whose
roroduct yields the singular values that generate the worst
example, withl” = 5 andl. = 32 (which gives 32 signals in five Slargest) Qh?rnoﬁ pound on error pr.obability accordipg t'o (18).
time samples, oR — 1 bit/channel use), yieldg,.x > 0.46. S(_eparatlng _the S|gnals can be a@ed by left-multiplying by
Hence, we would like to choose 32 complex five-dimensiongitary matrices, since this operation preserves the orthog-

unit vectors, constituting our constellation, for whigh., is as OT‘a"ty c_>f ihe columl_ﬂs in each signal. We omit the (_jetans.
close 100.46 as possible. It is not known how tight the bound:'g' 9 displays the bit-error performance of constellations of

wherek = 0, 1, - - -isafree parameter. Solving this relation, fo

: unitary space—time modulated-signals generatedor= 1
(21) is. . .
andM = 2 transmitter antennas, each with= 1 bit/channel
B. Algorithms for Reducingy,ax use andl’ = 5. We see that the bit-error probability decreases

) 5 . .
Starting with any constellation of unit vector signals for gpproxmately asl/p” for high SNR with two antennas,

single transmitter antendd = 1, we describe a simple iterative o' oUS apprquately ayp \.N'th one antgnna. No atte.mpt was
; . made to assign the data bits to the unitary space—time signals
algorithm for reducingf,, . .
optimally.
1) Computed,,.., the maximum of the magnitudes of all
L(L — 1)/2 distinct inner products, and choose a pair of. Adaptation to Continuous Fading
Yectors Wr,l,ose inner prOdU.CMS“aX' In certain TDMA, frequency hopping, or interleaving appli-
2) “Separate” the pair by moving each vector a smallamount .. L . .
. T . cations, the fading is approximately constant withifi-aymbol
in opposite directions along the difference vector betwe%n . . .
the pair Iogk and is |ndepeqdent across blocks. Howeve_r, ina mob|le
C - environment the fading may change gradually without piece-
3) Renormalize the pair, if needed. o . X L
. wise jumps. If the fading process changes little within a symbol
4) Repeat Steps 1)-3) undl,,.,. stops decreasing. . . . .
interval, one way to model the sampled received signal is to as-
Using this technique witli” = 5 andL = 32 (1 bit/channel use) sign an autocorrelation function to the fading coefficients. One

on a constellation of initially randomly generated unit vectorsommon autocorrelation function is Jakes’, proposed in [9]. Itis
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Fig. 7. Two-signal probability of error versus SNR fHr unknown(d = 0) compared withH known(§ = 1.414--.), and one transmitter and one receiver
antennad M = N = 1), andT = 5.
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Fig. 8. Magnitudes of correlations between, - - -, 3, for T' = 5. The diagonal entries with value0 represent each signal correlated with itself.
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Fig. 9. Performance of unitary space—time constellations\for= 1 versusM = 2 transmitter antennas f&f = 5 as a function of SNR, with 2 =1
bit/channel use.

usually possible to select some value f6such that the fading It is worth noting that fofl’ = 2 andM = 1 (fading approx-
is approximately constant ovérsymbols; in doing so, however, imately constant in blocks of two symbols, and one transmitter
adjacent blocks df’ symbols may be correlated as in Fig. 10. Inantenna), this form of seamless unitary space—time modulation
terleaving blocks of” symbols could remove this residual coris equivalent to conventional differential phase-shift modula-
relation. Instead, we describe a strategy that exploits the residiiah. To see this, suppose we wish to transmit 1 bit/ channel use,
correlation betweefi-symbol blocks with a “seamless” modi- R = 1. Then, using seamless unitary space—time modulation,
fication to unitary space—time modulation. we need onlyL, = 28(T—1) = 2 signals in our constellation,
Seamless unitary space—time modulation constrains all th&ch of which is & x 1 vector whose first and last entries have
entries in the first and the last rows @ to have magnitude magnitudel/+/2. Since only two signals are required, making

1/VT,ie., them orthogonal minimized;, = |& ®,|
[@dinl = [®dzml = VT, m=1,, M. & = wg} @, = [_1;@ .

Suppose now that the signél; is to be transmitted immedi- Let binary messageé be represented by, andl by ¢,. Sup-
ately after the signab;. Recall that we can right-multipl$p; pose we want to transmit a binafyacross the channel after
by any A x M unitary matrix without affecting its statistical having previously sent & represented by,. Then we would
properties at the receiver. Consequently, we can muliply multiply ®, by —1 so thatiits first entry matched the last entry of
by the M x M diagonal unitary matriXo that makes the first the previously senb,. We then transmit only the second entry
row of &, equal the last row of;, i.e.,[®;0]1,, = [®;]rm, 0f the modified®,, which is now—l/\/i. LetX,, ---, X3 de-

m = 1, ---, M. Then, instead of transmitting &l rows of note the three received symbols corresponding to the two trans-
®,, it is only necessary to transmit the |4st- 1 rows of ;0. mitted data bits. The receiver then us€s and X, to decode
Hence, each signal (except the very first) can be transmittectie first message bit, and, and .X; to decode the second. This
T—1time samples rather th&r but the receiver can still exploit modulation—demodulation process is exactly differential binary
theZ-symbol coherence interval to demodulate each signal; sgease-shift keying (D-BPSK).

[11] for single-antenna codes with this feature. It follows that the We now assume that the fading is correlated according to a
size of the signal constellation can be reduced filors 277 Jakes model [9], with autocorrelation functidg 2 f4¢) where

to L = 28(T-1) For example, withR = 1 half the number of J,(-) is the zeroth-order Bessel function of the first kind ghd
signals are needed. is the maximum nondimensional Doppler frequency in cycles
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Fig. 10. Magnitude of two typical independent realizations of a Jakes fading procesf;witl0.01 cycles/sample.

per sample period. The fading processes shown in Fig. 10 ey space—time modulation for high SNR in Section V. The
generated according to this model. Fgr= 0.01 the first zero slightly worse performance at high SNR 6f = 6, compared
of the Bessel function is approximately= 38. On the other with 7 = 5, is possibly due to greater variation of the fading
hand, fading coefficients five time samples apart have cormesefficients over six time samples than over five. Further exper-
lation 0.976. Because of this high correlation, we may safeliments indicate that because the fading is so fast, incredsing
choose to design our constellation for dhy< 6. beyond?l’ = 6 degrades the performance even more.

We now look at the performance of seamless unitary space—
time modulation to transmit 1 bit/channel use = 1) across VIl. EXTENSIONS OFTHEORY TO CONTINUOUS FADING
this continuously fading channel. Fig. 11 shows the bit-error rate
for one(M = 1) and two(M = 2) transmitter antennas, and
one receiver antenna. To generate this figure, signal consteﬁ
tions of size2” ~! were designed fdf = 2, - - -, 6 according to
the above principles. The receiver always decoded using m
imum likelihood as if the fading were constant f6rsymbols.

ste >|<3p||3aslrl1<ed ib%vd)/l h: L ak? déﬁ :d 2 ﬁo:jr?_s por:/t\al/jsmeia(::ltly block, the fading coefficients have an arbitrary time correlation.
aond-T _3 W 'g t;]ses (;)r\?(ljr;mgncz v§r3ie56Iittllgev.vim an_d is We refer to this time correlation as continuous fading. We
=, 0 Mep ’ btain extensions of Theorems 1 (limiting the number of

well-approximated by the dashed line. On the qther hand, W@'f'fective transmitter antennas) and Theorem 2 (structure of
M = 2 (two transmitter antennas), the solid lines show th }

. . . nal th hiev ity).
the performance varies greatly with As noted in Section 1lI, %g al that achieves capacity)

whenM = T, unitary space—time modulation is ineffective ang Consider the model (1) where, within each blockiogym-
- e ' ols, the fading coefficients now are independent, zero-mean,
thus the error probability i8.5 for 7" = 2. For7 = 3, 4, and5, 9 P

the probability of error decreases monotonically very quickly cslrcularly symmetrlc,_stgtmnary complex Gaussian randqm pro-
. : %esseshmm. Thus within a block off” symbols, the received

T increases. FAf’ = 5 and two transmitter antennas, the prob—i nal is

ability of error is lower than for one transmitter antenna for aﬁ 9

SNR’s greater than 8 dB. Seamless unitary space-time modu- M

lation therefore realizes the diversity advantage of the secopgl = \/p/M Z Ntrmn St + Win 5

transmitter antenna for all reasonably highThis behavior is m=1

consistent with our information-theoretic justification of uni- t=1,---T,n=1--- N. (22)

In the previous section, we successfully modified unitary
ace—time modulation to work over a fading channel with a
kes’ autocorrelation, even though the scheme was originally
motivated by a piecewise-constant fading model. In this section,
%€ draw some theoretical conclusions about the optimal signals
for fading channels, where, within each independ@éistymbol
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Fig. 11. Unitary space-time modulation performance for one (dashed line) and two (solid lines) transmitter antennasRseadirigit/channel use with
constellations designed fa& = 2, ---, 6. The fading is a Jakes process with = 0.01 cycles/sample and there is one receiver antenna. The one-antenna
probability of error varies little witll” and is well-approximated by the D-BPSK dashed line. The two-antenna probabilities of error vary greaily Wit best
overall performance for high SNR occurs for= 5.

The fading processes are independent from@symbol block fading, i.e.,k(t) = 0 for |[¢| = 7, 7 + 1, - - -. The next theorem
to another, but within each block they are correlated accordiegtends Theorem 1 to continuous fading.

o a known autocorrelation functice(z) Theorem 7—Limit on Number of Transmitter Antennas

y =6 Sy k(t1 — t2) 23) in Continuous Fading:For any correlation timer and any
ez e fixed number of receiver antennas, the capacity obtained with
M > min(r, T) transmitter antennas can also be obtained
h M = min(r, T) antennas.
Proof: Suppose thad/ > min (7, T) and capacity is ob-
A=1Ir+ (p/M)SSH o K (24) tained for some joint probability density for the elements of the
T x M matrix S. All but the2min (7, T)) — 1 central diagonal

where "” denotes the Hadamard (i.e., element-by-element) m@ands of the Toeplitz matri¥ are zero; that isjK];; = 0,
trix product, andK is theT’ x T Toeplitz covariance matrix, |¢ —j| > min(7, 7). The Hadamard product in (24) therefore

[K1i; = k(i— 7). Note that in the former case of piecewise-corf-auses the conditional probability density (4) to depend on only
stant fading{K];; = 1. the 2min(7, T') — 1 central diagonal bands ¢fS*. A covari-

It is realistic to assume that, within a block, the fading is @hce-extension theorem in [5] states that one can always find a

random process. Less realistic is the independence of the blockss 2" Hermitian nonnegative-definite matr@ whose rank is

but this happens naturally if we assume that the block lefigsh 1€ss than or equal tain (7, T), and whosemin (7, 7') — 1

long compared with the correlation time of the fading procesgéentral diagonal bands are proportional to the corresponding
For then, the fading between differefitsymbol blocks is in- bands ofSST. Thus we can find & satisfying

dependent, with the possible exception of a small number of

samples near the boundaries of adjacent blocks. The block in- Qs (951

: ) P _ li — i . .
dependence is more likely to be satisfied in TDMA systems such win(r, 7) T i — 7| < min (7, T)

E{h’tl miny h*

tamonsg

wherek(0) = 1. The formula for the conditional probability
density (4) still applies but with the modified covariance matri¥’

as 1S-54/136, where a user does not have access to contiguous
blocks.

Suppose that the fading autocorrelation function vanishes l&nce has rank at moshin (7, 7'), it can be factored ag@ =
yond some lag- > 0 that we call thecorrelation timeof the Slsf, whereS; is a7’ x min (7, T) matrix. Consequently, for
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anyT x M matrix.S, we can find & x min (7, T) matrixS; anM x M permutation matrixPpe, £ = 1, ---, M!. Each
such that S Py, yields the same mutual information & Forming an

+ ; equally weighted mixture density for the transmitted signal

(515]) o K — (58 0 K (25) involving all M! arrangements of its columns yields a signal
min (7, 7)) M whose probability density is unchanged by rearranging its
columns. The concavity of mutual information as a functional
of the input density and Jensen’s inequality together imply that
the mutual information for this mixture is at least as great as
that for S.
Etr (5151) Etr(SST) Letthe fad_ing be cyclica_lly stationary. The t_ran_smitted signal
min (7, T) = i =T may be cycllcal!y shlfte(_j in t|me_ by_ premultiplyin§ by the
’ T x T permutation matrix’r, satisfying

which has been shown in [8] to achieve the same capacity as
the stronger power constraint (2). Usingn (7, T') transmitter [PreSlem = S[14(t—1—¢) mod T]m
antennas, we can therefore achieve the same capacity that can t=1,---,T
be achieved with\/ antennas. O

Few realistic autocorrelation functions vanish absolutely bEOrming an equally weighted mixture density for the trans-
yond some time lag. For the Jakes model considered in S&gtted signal involving alll” cyclic delays yields a density for
tion VI-C, the autocorrelation vanishes|at = 7 ~ 38. This the transmitted signal that is jointly cyclically stationary. In
limits the number of transmitter antennas to approximately 38ther words, the periodic extension in time%fs a multivariate

We now determine some of the structure of the capacity-&f{-component) strict-sense stationary random process. We
taining signal in continuous fading. Because of Theorem 7, id@w argue that the cyclic shift does not change the mutual
assume thafl/ < min(7, 7). We define a random processinformation. Recall the model (22); we apply a cyclic shift in
hi, - -+, hy to becyclically stationaryif time of ¢ to S, and—/ to X, to obtain

This relation implicitly specifies a joint probability density for
the elements of; in terms of the joint probability density for
the elements of. We have the power constraint

m=1,---, M. (27)

7

M

Phy, - h (h17 T hT)
' ’ x[l—l—(t—l—l—[) modTln = V p/M Z h[l—l—(t—l—l—[) InodT1rn,nStrn

= DPhy, -, hT(hl-l—t modTy """ hl—l—(T—l-l—t) mod T) me1
. L X +w[1+(t—l+é) mod T]ns
for all ¢, wherepy,, ... »,.(-) is the joint density ohy, -- -, hr. =1 T me=1- N
Intuitively, shifts in time ofhy, - - -, hy “wrap around” without ’ ’ '
affecting their joint distribution, or, equivalently, the periodi

QI'he cyclic delay does not change the probability density of

extension ofhy, ---, hy is a stationary random process in b it ie whi ditd h h babili
the ordinary sense. The next theorem is the continuous-fadi 8q ecause It Is white, and It does not change the probability

version of Theorem 2. Because the fading process is assurﬂ HSity of the fading because it is cyclically stationary. Con-
équently, the cyclic delay of the transmitted signal does not

to have less structure than in Theorem 2, the conclusions aﬁ " el inf tion bet it and th ved
weaker. However, the conclusion that thetransmitted signals change the mutual information between it an e receve

should be time-orthogonal remains. signal, so Jensen'’s inequality implies that the mutual informa-
tion for the mixture density is at least as great as that for the
Theorem 8—Structure of Signal that Achieves Capacity dhiginal signal. O
Continuous Fading: The capacity-attaining can be chosen to ) . L
have mutually orthogonal columns, and have joint density thatWe make some final observations. First, in the above proof we

is unchanged by rearrangements of its columns. Furthermo?g,sur.nethatthe fading s cyclic_ally statioqary. Thisis not restric-_
the columns of can be made jointly cyclically stationary if thet've since any W|d§—sense s_tatlonary fading process asymptoti-
fading is cyclically stationary cally becomes cyclically stationary @s— oo [21]. Second, the

Proof: The singular value decomposition implies that thEOIe of the block lengtl” is secondary to that of the coherence

capacity-achieving signa can always be factored into threef{Ime 7. We impose the constraint that blocksBsymbols be

termsS — &V U, whered and ¥ are unitary matrices and |ndepeqdent bef:ause it allows us to use the standard notions of
is real, nonnegative, and diagonal. Equations (4) and (24) im tual information and char]nel capacity per blocklbéym?
that Is. Wherl” > r, the capacity per channel use becomes inde-
pendent off’, and channel coding could be performed over the
p(X|eV e = p(X|oV). (26) many independent fades that occur in a sirglelock.
At present, we are unable to say anything more about the gen-
Dropping the third factor yields a new sigrnal = ®V that has eral structure of the mutually orthogonal cyclically stationary
the same mutual information &5 and whosel/ columns are signals that attain capacity. However, using what by now are
mutually orthogonal. familiar arguments, we can infer the structure for the limiting
We now assume that the capacity-achievihfas mutually casel’ > 7 >» M. One could send training symbols and esti-
orthogonal columns. There at®l! ways of rearranging the mate the fading coefficients and still have time to send data be-
columns of S, each corresponding to post-multiplyiry by fore the coefficients change. The capacity would approach the
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perfect knowledge capacity, the optimum signals would be ap-We look first at the first term irjg’o g(A) In AdA, which is
proximately white Gaussian, so unitary space—time modulation

. . 0o 6—)\/(1+paT),y T_— 17 paT A
would be approximately optimal. / 0\ pa ( 1:7 521 mA (A2
0 _ pa
VIIl. CONCLUSIONS (T = 1)(1 + paT) |:1+/7aT:|

Multiple-element antenna arrays operating in Rayleig /0%, p°], and(p*, ) for some arbitrang) < e < 1. When

flat fadi jall [ [ .
at fading can potentially sustain enormous data rates wi € [0, 1/p7], paTA/(1 + paT) — 0 asp — oo, and the

Ii/e break the integration into three disjoint ranggs:1/p%],
moderate power in a narrow bandwidth. Our approach to this

problem began with the premise that nobody knows the propoanSIon .
agation coefficients and that the available transmission time o1 F T

i i ini —hA)= +0(z 2 — 0 A3
should be spent sending message signals rather than training g ?) T-1 (=7) S (A-3)

signals. Information-theoretic considerations then led us &md inequalitye—*/(1+re7) < 1 therefore yield
unitary space—time modulation. Preliminary results indicate,.; - o In
that this modulation can be highly effective, even though th d\ e~V Ateal), <T—1, pe ) A=0 < p) .
receiver never explicitly learns the propagation coefficients. /0 1+pal Pr

We have derived performance criteria for unitary space—time (A.4)
modulation and indicated the properties that a signal const8incey(T" — 1, paT /(1 4 paT)) < I'(T — 1) for all A
lation with low block probability of error should have. Our ,..¢ T\
particular constellation designs wead ho¢ however, and the f/ dA e_’\/(lJ’”“T)fy <T -1, P ) In A
problem of how to design constellations systematically that/#® L+ paT
have low probability of error and low demodulation complexity
remains open. We have also not considered how to code
across more than one block fading interval. Solutions to theggen \ < (p°, 00), paTA/(1 + paT) — oo asp — oo, and
problems are especially urgent for laf§feand high data rates. pe expan5|on

&

P
SF(T—l)/ dAIn A=0(p " Inp). (A5)
1/p®

APPENDIX A YT —1,2) =0T —-1)— 2" 2 *(140(1), 2z—o00
ASYMPTOTIC BEHAVIOR OF C' AS p — 00 (A.6)

For M = N = 1, we show that the mutual information9ves
generated by a gives(wv, ) can be no more thas(1) larger than / I\ o~ (). <T 1 pal’ A ) I A
pE

(11), the mutual information generatedy; ) = (v, —v/'T), "1+ pal
aSp — OQ. oo
We start by letting = / dX e~ AHeaT)(1n ))
e

p(v1) = pab(vy — VaT) + pp6(vy — VIT) (T 1) < paT ) )T_2
be composed of two masses, where= a(p) andb = b(p) 1+ paT
are positive functions of that do not go to zero as — oo,
but are otherwise arbitrary. Sindgv? = T, it must hold that - e~ (paTA/QAtpal)) (1 4 o(1))
ap, +bp, = 1, and we assume thag = p,(p) andp, = ps(p) -
are also functlgns b. We aIIowQ but notb to go to mﬁmty as _ / d\ e—A/(l-H)aT)(ln MO = 1) — O(e—f’s)]
p — oo. (Allowing both would violate the power constraint.) It pe
is then a simple matter to parallel the derivatior(fin (11) to = (14 paT)T(T — 1)1 — O(C—/f)]

obtain the mutual information oo
: / dX e In[A(1 + paT)]
/(1+paT)

= (14 paD)I'(T — 1)

1 I = [ ) ()N ) dx} . [111(1 T paT) — 4+ 0 ( o ap )} A7)
apt—¢
(A1) wherey = 0.5772 - - - is Euler’s constant. Joining (A.2), (A.4),
(A.5), and (A.7), and repeating the calculations for the term in-

I=(loge)- {—T — po In(1 4 paT’) — py In(1 4 pbT)

where
volving p, andb, we get
e~ (+pal),, (T -1, 1/;‘_1”%) )
a(\) € p, " /0 dX g(A) In AT 1
(T = 1)(1 + pal’) |:1-|—paT:| = (T — D)[pa In(1 + paT’) + py In(1 + pbT") — ~]
e~ N A+etT)n (P lﬂbi Inp
> 14 pbT
Y ( p ) . + O = (A.8)

T—1
DT — 1)1+ pbT) [%} where0 < e < 1 is arbitrary.
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We now look atf;” ¢(A) In g(\) dA. The first term is and
/.oo " oM (L+pal) (T -1, 1’;‘_‘2;?) / dA q(A) In g(N)
Pa T-1 r oo
0 D(T = 1)(1+ paT) | 2L, . / AN o Tq(pTN) In q(pTN)
=M A+paT)., (T — 1, LeTA ) e oo P »
‘In | pe 1+’m§ - ——In pT+/ d\ (_a eMa 4 ?b e—)\/b)
- a
D(T = 1)(1 + paT’) | 2L 0
- ) [””“T} ‘In (& e Ma g % e—A/") +o(1). (A.14)
— a
. e M (FebT)y (T -1, —1’1’,3,?) A9) Combining (A.12)—(A.14), we get
Py T—1 : o
DT - 1)(1+ pT) [ 227 / A g(A) In g(A)
0
We break the integration into the same three disjoint ranges as oo Pa P an
before. For\ € [0, 1/5°], (A.3) yields = —In(pT) +/0 dA (; Mo+ 3¢ / )
. A Pa A Do _
A/ (L+paT) _ 1 _ . Ya /a o A/b
c —1-0 <71 +paT> (A.10) In o e B ) +o1) (A.15)

and combining this equation with (A.8) gives

5 <T— p, _PaA ) M ey A

"1+ pal T-1 I=(loge)- {ln(pT) + (T — 2)[pe In(1 + paT)
If & = a(p) does not go to infinity, then neither term in the argu- +p In(1+pb)|—T —In T(T) — (T — 1)y
ment of the logarithm in (A.9) dominates the suma(p) goes "0 Pa xja Dy
to infinity, the second term dominates the sum and the logarithm - /0 A (; ¢ - D € )

in (A.9) behaves as Pa —xja , Pb —apb
In(p AT~ /[(T=1)D(T=1)pbT]) = (T—1) In \=In(I'(T+1)pb) ‘o (? cEye )} +oll)

for large p. In either case we may then mimic the analysis of _ 1, .. [ T — Dn(oT) — | + (T — 2
(A.2) to conclude that (log ) - | ( Mn(pT) =]+ )

1/p° In p ‘pelna+p, Inb]—T —1nT(T)
/0 A g(\) In g(\) = O <p1+€) . (A12) - /oo (e 2 o)
For A € (1/p°, p°], the expansion (A.10) again applies, and 0 “
(A.11) implies that - n (& eMa 4 % e‘”")} +0o(1). (A.16)
a

1 pal A
1 1) ————— < T-1
( +0( )) (fT_l)p(T_l)Zi = ’7( ) L+pal
Thus the logarithm in (A.9) i©(ln p), and

) <I(T-1). Wehavethap, +p, = ap, +bp, = 1. Therefore, by Jensen’s
theorem

) PoIna+py In b <lInlap, +bpy) =0 (A.17)
/,7 d g(\) In g(\) = O <ln p) ) (A.13) With equality if and only ifa = b = 1. Furthermore, as shown
1/p¢ pre in [4], for any densityp(\) supported om\ > 0 and satisfying

Finally, for A € (p°, ), we change the variable of integrationf,~ dX Ap(\) = 1

to XN = \/(p), N € (1/(Tp*~¢%), o). It follows from (A.6) o0

that —/ dAp(A) In p(A) <1
0

e~ M Atpa) — =N pT/(1+paT) with equality if and only ifp(A\) = ¢—*. Hence

— o (A+O/p)N /a o
=c Da _Nja | Pb —x/b
LR — dA|—e¢e + =
’7<T—1, —f“TAT): < -1, = L ;) /0 (2 )
+pa + e i (BremVe g By <1 (Als)
pa . i @
=IT-1)- <1 T paT) with equality if and only ifa = b = 1. Thus for7 > 1 and

asp — oo, I is maximized by choosing = b = 1 with

probability one, which collapses the two distinct masses into

—I(T-1)-0 (e—pg) ) one atv; = /T. Whena = b = 1, then] = C;, and from
(A.16) we therefore have the expansion

Cr =(log (T — D[ln(pT) —~]| =T —In T(T) + 1] + o(1)

) e_(pzaTZ)\r/(l-H;aT))(l + 0(1))

Hence
q(X) = q(pTX)

A.19

_1 [& O/ p)N fa 4 Pb C—<1+0<1/p>>x/b} 1 (A19)

pl'La b = log T 1 +0o(1) (A.20)
(14 o(1)) “ % N\en) T ' '
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Since By breaking the integration in (A.24) into the three usual dis-

joint ranges (and omitting the tedious details), we conclude that
CufT = (log <)e " Ex(1/p) = log(p/) + O /) ap s o0 omIng )

we may also write - ¢~ (L+pal) (T _1, IT;AT)
=T o |[(E) L | ho). a2y /0 B r 177
=~ Cutlog | - oy | Tew- A DT = )(1+ paT) [ 25|
In our argument for showing that any density with two distinct =N Atpal) (T 1, 1/:32?)
masses asymptotically generates less mutual information than “ln | p, ! =1
a single mass ay/7’, we have explicitly prevented one of the (T —1)(1 4 pal’) [li‘;)ZT}
two masses from being located«at = 0. We now show that = pa[—In(pal’) — 1 4 1n p,] + o(1) (A.25)

a mass at; = 0 must have probability that tends to zero as

p — oo. As before, we assume that there are two masses wﬁxﬁ Y . oo .
one atv; = v a1 with probabilityp,,, but we place the other at he second term iffy™ ¢(A) In ¢(A) dA is

v, = 0 with probability p,. The mutual informatiod is thenas [~ A py e
in (A.1), but with = 0, and 0 (T)
— a a —AN/(14+paT _ aT A
e )‘/(1+/7 T)ry (T — ]_7 1/;/:72;),\1_‘) G_)\)\T_l . 1n (&2 /( & )’Y (T ].7 1/j|—paT> G—)\)\T—l
q(A) =pa T+ ) Pa T TP TR
(T — 1)(1 + paT) [li‘;fT} D(T = 1)(1 4 paT) [1+paTl
, , . _and the same arguments show that this approaches{asc)
We analyzel as in the previous manner, and begin with . CANT—1 —A\T-1
I a(A) In AT dA. Its first term is the same as (A.2),/ d\ py A Py S AN
ieldi 0 I(T) I(T)
yielding ,
=p|-T+ (T —-0I(T)/I(T) —In I(T) +1 .
o0 6_)‘/(1+PGT)’}/ (T - 1 paT)\ ) pb[ ( ) ( )/ ( ) . ( ) . pb]
d\ P 7 1+pal In )\T—l (A26)
o @ (T = 1)(1 + paT) [ paT }Tfl Combining (A.1) with (A.22)—(A.26), we deduce that
N 1+f’“jf N (A2 I =(log &)[pa(T — )[In(paT) — 4] + pa[-T — In ['(T) + 1]
_( - )pa[n(pa -)_7]4_0( ) ( . ) — P hlpa—pb lnpb]—i—o(l).
(Compare (A.8).) The second term is This expression is clearly maximized by lettipg(p) — 1 as
0 eI \I-1 - I(T) p — oo. Hence, any mass at = 0 in the capacity-achieving
/0 dA py EYOR A =(T-1py (D) (A.23) distribution must have probability that decays to zerpas

] N ] _o0. We have been focusing grfv; ) with two distinct masses,
The integral [, ¢(A) In ¢(A) dX is now analyzed. The first 4 now outline how to generalize the above arguments to show
term s that anyp(wv; ) asymptotically generates less mutual information
e (L+pal) (T _ 1, peTA ) thanp(v,) = 6(v; — +/T). First note that the expansion (A.16)

/ dX pq, 7 1+’m,_TF_1 can be immediately generalized#anasses
0 (T — 1)(1+ paT) [lj_‘;:T} .
—A/(14paT aTA p(v1) =Y p;élvi — Va;T)
e /(1+p ),y (T -1, llji—paT) e M\T-1 ; J J

"In i pa Pe=pery | toobtain

T-—1
P(T = 1)(1+ paT) [ 222

(A24) I=(loge) |(T—Dog(pT) =1+ (T—2)Y_ p;Ina

We note that the density =t
N Cpaldy (T - 1, els ) — T —In T(T) - / dn (S0 B e
T-1 0 =1 %
I(T - 1)(1 + paT) [%] :
has a maximum value of approximatelly(paT’), and is effec- n | ) % M| | +o(1). (A.27)
tively supported fork in an interval that increases linearly with _ j=1 - o
p, beyond which it decays exponentially. On the other hand, tREovided that,, -- -, a,, are taken from some finite positive in-
density terval, the asymptotic expansion (A.27) is uniform, and hence
remains valid even if we let become unbounded (say, as a
e ML function of p). As p — oo, the mutual information in (A.27)
I(T) is therefore maximized by having, ---, a,, — 1, which re-

duces the multiple masses to a single mass at v/7". On a
has its maximum value “~(T—1)T-1/I'(T") atA=T—1, finite interval, we can uniformly approximate any continuous
and decays exponentially asincreases, independently pf density with masses, and becausés concave inp(vy) (see
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[8]), we can approximaté arbitrarily closely as well (we are The structure in (B.4) implies that” comprisesM N sta-
here overlooking many technical details about optimizing in distically independent pairs of correlated random variables,
infinite-dimensional space). The preceding argument therefdrey,,, » Ym+rsn) m = 1, ---, M, n = 1, ---, N}, with
tells us that we are asymptotically better off replacing the conevariance

<1>1)

tinuous density on this finite interval with a massiat= V7. < [ Ym, n } D l
Idm,n  Im+M,n

Ym+M,n
TwoO-SIGNAL P, FORH Al\JPNPKENNoDvI\i(NB EXACT AND CHERNOFF pT/M (T /M)l
) e — = oT/M 9
UPPERBOUND (pT/M)dy, 7777 L+ (pT/M)dy, ]

whered,, is themth diagonal entry of), and this covariance
From (15), the probability of error whedy is transmitted is  does not depend om. The characteristic function for each in-

e T/M d dent t in (B.5) is theref
Pellcl:fP< oL/ tr{XT(<I>2<I>£—<I>1<I>I)X}>0|<I>1> ependent term in (B.5) is therefore

1+ pT/M E (exp{_iw(|ym+1\4,n|2 - |ym,n|2)}|(1>1)
(B.1) f, [ ermM (T/M)d
where the multiplicative factotpT/M)/(1 + pT /M) is in- =det” [+ iw (T M )y, 20 (1 4 (5T /ML)
cluded to simplify the algebraic manipulations in this section. p ™ 1+pT/M P m
Using the singular value decomposition 1 0
®J®, =oDTT (B.2) [ 0 1}
wher_e 6. gnd T are M. X 'M unitary matrices, and B 1+ pT/M ) 1+ pT/M -1
D = diag(dy, - -, dp) is diagonal, real, and nonnega- = TN — 2 |¢ — 1w + T2 — &
tive, we rewrite (B.1) as (T/M)*( _1—:1)T/M (pT/M)*(1 - d3,)
P,=P <4 tr{ X" (000 — &, YT} )X} pT/M?2(1 — 2 )[(w—i/2)% + a2,
L+pT/M whergdm/< )1,(where I /2
> 0|<I>1> a def 1 1+ pT/M
"oV4 S (pT/M2(1-d2)
=P <tr{Y2TY2 -vvi} > 0|‘1>1) (B.3) Whend,, = 1, the characteristic function is identically one for
all w.

where 12 i The region of convergence of the expectation in (B.6) is

Y, pT/M Y[ Tie]

o T A sl ) 1/2 — am < Im(w) < 1/2+ ap,.

Y2 1+ pT/M ofe} The characteristic function of{Y, Y2 — ¥;'¥1 } is the product
TheN columns ofX are independent and identically distribute@f the A/ terms (B.6) raised to thé'th power. We invert the
zero-mean complex Gaussian vectors with covariance matgbaracteristic function, artfully choosing a particular integration
Ir+(pT/M)®,®]. Consequently, th&y columns oft” are also  contour within its region of convergence to obtain the error prob-
independent; any columy), has2M x 2M covariance matrix ability as

E{ynyf| @1} P = 1 /oo dz /OO—H/2 dw exp(iwz)
. (pT/M)I]\{ (pT/M)D ¢ 27 0 —oo+i/2
| T/MD T U+ (oT/M)D] | v |
" 6.4 T Bept=iwlymrar.nl® = lym,n)}H:1)
Note that this covariance matrix depends®nand &, only m:11 ooti/2 1
through the singular value matrix. We conclude thaf |, de- = - dw —
pends only orD. If we were to interchang®; and®,, D would 2 Jootif2 W
be unchanged, and thd3 = P,y = F,,. M 1+ pT/M N
From (B.2), we have thab = ($,0)f(®,T). The matrices ) H (pT/M)2(1 — @2 )[(w — i/2)* + a2
$,0 and®; T each comprisé/{ orthogonal unit vectors, im- dm=<11 " "
plying that everyd,, - - -, dy; is equal to an inner product be- " (B.7)

tween unit vectors. Consequently< dy, < 1. The exponential decay of the inner integral in (B.7xas» co

for Im (w) = 1/2 justifies the above interchange of integration.

A. ExactF With a change of variables, we obtain
We obtain a closed-form expression for the proba- 1 [o° 1
bility of error by inverting the characteristic function of Fe= - i dww—i—i/Z
tr{Y,Y> — Y;¥1}. The use of the characteristic function for v N
this type of calculation is well known [14], [16]. Equation (B.3) I { 1+ oT/M (B.8)
may be written as (PT/M)*(1 — dZ,)(w? + a,) '

m=1

N M L dy, <L, . .
P.=P Z Z (Iym+M,n|2 _ |yrn,n|2) > 0%, |. (B.5) where the _mtegrat_lon is now along _the real axis. We close _the
contour of integration from the positive real axis to the negative

n=1 m=1
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real axis with a semicircle sweeping the entire upper half corand

plex plane in a counterclockwise direction. Since each term in 1 [ 1
the product in the integrand decays for lajgeas1/|w|?Y, the Fe < ir /_Oo dw w? +1/4
semicircle itself does not contribute to the total integral but en- N
closes all the integrand’s upper half plane pales - - -, iay;. M 1
The integral may therefore be evaluated by Cauchy’s theorem ' H 14 WI/MPO-&)
) m=1 Ta@FpT/M)
N
Pe,—z RESw_zaj{ - w+i/2 B 1 M 1 511
] M =3 1 | e (B.11)
14+rhoT /M N m=1 4(1+pT/M)
’ H |:(pT/M)2(1_d2 Nw?+a2 )} } which is (18). It turns out that (B.11) is, in fact, exactly the
e " " Chernoff bound obtained by computing (see, e.g. [21])
(B.9) P.< Lor®
This is (17). T2
We evaluate this expression for the special case of equal S\Mw_ere
gular values!; = --- = dy; = d < 1. Inthis case, we must  p(A) = In E{exp[A(In p(X|®2) —In p(X|P1))]|P1}
evaluate the residue of an ordefV pole and whered < X < 1 is a free parameter that is chosen to
P 1+ pT/M MN 1 minimizen (). To help see this, we note that)) is merely the
e |:(pT/M)2(1 _ Cp)} T(MN) logarithm of the previously computed characteristic function for
AMN-1 1 w = %A, and is minimized ahA = 1/2. The exact expression for
. {deN_l PRSI ia)MN} P, is derived in (B.8) by integrating the characteristic function

The following easilv verified identity: along the lindm (w) = 1/2. This process “tilts” the likelihood
9 y Y ratio by just the right amount needed to obtain (B.11) as the

k
ar : 1 : ; Chernoff bound.
dwb (w+1i/2)(w +ia)MP Finally, to see that decreasing ay decreases the total error
_ (1) zk: D(MN +k— j)I'(k+1) probability, observe that, for any, the integrand in (B.10) de-
= TN (E+1— ) creases ag,, decreases.
w +i/2) "D (@ 4 ) TBINFR=D) APPENDIX C
for k = MN — 1, gives the expression at the bottom of this TWO-SIGNAL P, FOR H KNOWN—EXACT AND CHERNOFF
page. UPPERBOUND

We follow the same strategy as in Appendix B, and therefore
abbreviate the discussion. Wit known, albeit random, the

We evaluate the Chernoff upper bound in an unconventionglerage error probability, given thét is transmitted, is
but concise way. Sincé, is real-valued, we take the real part

B. Chernoff Upper Bound and Monotonicity

of (B.8) to obtain P=P <—tr{ [X—(pT/M)1/2<I>2H:|
1 eo 1
P.=— S :
ar /_Oo d i/ : [X—(pT/M)l/QQDQH} - [X—(pT/M)l/%lH}
M N
1+ pT/M . i
1 _ tp 2/ — : [A_(pT/M)l/chlH} }>0|<1>1>
me=1 (pT/M) (1 - drn)(w + arn)
e . =P <tr{ [(pT/M)1/2(<I>2—<I>1)H+W}
=— dw ———
dr J_ 241/4 i
7rM N / N : [(pT/M)l/Q(‘Ib—‘I’l)H—i-W} —i—WWT} >O> .
. H (pT/J\l)Z(}—dZ ICSESYE (B.10) We use the singular value decompositidn, — ®; = ZAQT,
m=1 | 1+ 1rpT/M where A is diagonal, real, and nonnegative, a@adand? are
_ [ 1+ pT/M }MN ”“Z’:‘l I(2MN — 1 —j)
© L@+ pT/M)? ~ (pdT/M)? = TMN)I(MN —j)

Lt

2y/(2+ pT/M)2 — (pdT/M)?
(FT/M)(1 — )2 4 /2 + pT]M) — (pdT/M)?




HOCHWALD AND MARZETTA: UNITARY SPACE-TIME MODULATION FOR MULTIPLE-ANTENNA COMMUNICATIONS 563

unitary matrices. Becaus# andQ2' H have the same distribu- B. Chernoff Upper Bound and Monotonicity
tion, andW and=ZW have the same distribution, we have that As in Appendix B, the Chernoff bound is computed by ap-

lying an elementary inequality to the exact probability of error
— 1/2 p .
Pep=r <tr{ [(pT/M) AH"‘W} (C.2). The result is
¥ oo M N
. [(pT/M)l/QAH+W:| +WWT}>O> . (Cy P = i/ dw . 1 H |: 21 ! ! :|
ar J_o ey WL Grpnes i az)
The probability of error only depends on the singular values, 6m >0
and hencé’. = P.; = P,)». The singular value decomposition I p 1 M 1 N
i i —_ =f _ =7 —_ [=F _ = — W
ITplleS thatA = Z70,Q — Z70,Q, or é,,, = [ETP2Qm A /_Oo w2+1/4 1__[ 1+ (pT/M)82,(w? + 1/4)
[E7®1Q],m, Where the columns of each of the bracketed ma- m=l N
trices are orthonormal unit vectors. Consequeitlg, 6,, < 2. 1 [ J 1 M 1
< — )
“dr . w?Z+1/4 H 1+ 7L 52
A. ExactP, metLT A
' N | M 1 N
As in Appendix B, we take the characteristic function of the == _ (C.3)
Lo . - . - 2 14 LT 52
log-likelihood ratio (the expectation being with respecHas mei1| 1T 437 0m
well asW¥), and we obtain the probability of error as the integraihich is (20).
coti/2 Finally, to see that increasing afly, decreases the total error
1 iz Y ; .
P=-— dw = probability, observe that, for any, the integrand in (C.3) de-
Mt ) otijz W creases a§,,, increases.
M N
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