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Abstract—Motivated by information-theoretic considerations,
we propose a signaling scheme,unitary space–time modulation,for
multiple-antenna communication links. This modulation is ideally
suited for Rayleigh fast-fading environments, since it does not
require the receiver to know or learn the propagation coefficients.

Unitary space–time modulation uses constellations of
space–time signals� = 1 , where represents the
coherence interval during which the fading is approximately con-
stant, and is the number of transmitter antennas. The
columns of each� are orthonormal. When the receiver does not
know the propagation coefficients, which between pairs of trans-
mitter and receiver antennas are modeled as statistically indepen-
dent, this modulation performs very well either when the signal-to-
noise ratio (SNR) is high or when .

We design some multiple-antenna signal constellations and sim-
ulate their effectiveness as measured by bit-error probability with
maximum-likelihood decoding. We demonstrate that two antennas
have a 6-dB diversity gain over one antenna at 15-dB SNR.

Index Terms—Channel coding, fading channels, multielement
antenna arrays, space–time modulation, transmitter and receiver
diversity, wireless communications.

I. INTRODUCTION

FADING is traditionally regarded as a nuisance by the de-
signers of wireless communications systems. Its effects are

often mitigated by some combination of differential phase mod-
ulation, interleaving, or the transmission of pilot or training sig-
nals [1]. But, paradoxically, Rayleigh flat fading can be ben-
eficial for a multiple-antenna communication link. It is shown
in [6] and [19] that, in a Rayleigh flat-fading environment, a
link has a theoretical capacity that increases linearly with the
smaller of the number of transmitter and receiver antennas, pro-
vided that the complex-valued propagation coefficients between
all pairs of transmitter and receiver antennas are statistically in-
dependent and known to the receiver.

However, learning the fading coefficients becomes increas-
ingly difficult as either the fading rate or number of transmitter
antennas increases. In an effort to increase channel capacity or
lower error probability, it is accepted practice to increase the
number of transmitter antennas (thereby gaining “diversity” [9],
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[15]). But increasing the number of transmitter antennas in-
creases the required training interval and reduces the available
time in which data may be transmitted before the fading coef-
ficients change. At vehicle speeds of 60 mi/h, a mobile oper-
ating at 1.9 GHz has a fading coherence interval of about 3 ms,
which for a symbol rate of 30 kHz corresponds to a fresh fade
every 50–100 symbol periods. If several training symbols per
transmitter antenna are needed, the coefficients for only a few
antennas can be learned before a fresh fade occurs. Next-gen-
eration cellular systems in Europe will be expected to operate
under very fast fading (trains moving at speeds up to 500 km/h
[20]) and hence it may be impractical to learn even the single
coefficient between one transmitter and one receiver antenna.

Motivated by these considerations, we used Shannon theory
in [8] to analyze multiple-antenna links without imposing
any training schemes and with no assumed knowledge of the
random fading coefficients. The complex fading coefficients
between all pairs of transmitter and receiver antennas were
modeled as independent with uniformly distributed phases
and Rayleigh distributed magnitudes. The fading coefficients
were piecewise-constant over fixed time intervals, with channel
coding performed over many such independent fading intervals.
We showed that the channel capacity could not be increased by
making the number of transmit antennas greater than the length
of the fading interval, and found that the capacity-attaining
signals had considerable structure. However, we did not explic-
itly address the problems of modulation and channel coding.
In this paper, we use the structure derived in [8] to motivate a
particular space–time modulation scheme.

The information-theoretic results in [8] suggest a signal
constellation comprising complex-valued signals that are or-
thonormal with respect to time among the transmitter antennas.
We call this signaling schemeunitary space–time modulation.
When viewed as vector functions of time, the signals carry the
message information entirely in their directions. In this paper,
we explain in detail how to create, modulate, and demodulate
unitary space–time modulation on a multiple antenna link
operating in Rayleigh flat fading. Throughout most of the
paper the propagation coefficients are assumed to be unknown
to the receiver, but we also show how to use the modulation
when the coefficients are known. When the receiver does not
know the coefficients, no attempt to learn them is made. We
concentrate on modulation and constellation design, and do not
address coding issues that lower error probability by adding
redundancy. We focus, instead, on raw or uncoded signal
and bit-error probabilities. When combined with appropriate
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channel coding, our proposed signal constellations can theo-
retically attain a high fraction of the channel capacity. Some
multiple-antenna coding issues for receivers that know the
channel appear in [18].

Section II presents the signal model and operating as-
sumptions, and Section III reviews the information-theoretic
foundations for unitary space–time modulation. In Section IV,
we extend the information-theoretic justification by arguing
that unitary space–time modulation is nearly optimal when the
signal-to-noise ratio (SNR) is high. In Section V, we consider
the use of unitary space–time modulation to transmit data
across a multiple-antenna link, and discuss maximum-like-
lihood demodulation and the properties a good constellation
should have. In Section VI some signal design issues are
treated and simulations of a two-transmitter-antenna system are
presented. We extend some of the piecewise-constant theory to
continuous fading in Section VII.

The following notation is used throughout the paper:
is the base-two logarithm of , while is base . Given
a sequence of positive real numbers, we say that

as if is bounded by some pos-
itive constant for sufficiently large ; we say that
if . Two complex vectors, and , areor-
thogonalif , where the superscriptdenotes “conjugate
transpose.” The mean-zero, unit-variance, circularly symmetric,
complex Gaussian distribution is denoted .

II. M ULTIPLE-ANTENNA LINK: SIGNAL MODEL

Consider a communication link comprising transmitter
antennas and receiver antennas that operates in a Rayleigh
flat-fading environment. Each receiver antenna responds to each
transmitter antenna through a statistically independent fading
coefficient that is constant for symbol periods. The received
signals are corrupted by additive noise that is statistically inde-
pendent among the receivers and the symbol periods. In
complex baseband representation, during the-symbol interval
we transmit the signal

and we receive the noisy signal

related by the equation

(1)

Here is the complex-valued fading coefficient between
the th transmitter antenna and theth receiver antenna. The
fading coefficients are constant for , and they are
independent with respect to and and distributed,
with density

The transmitted signal has an average (over theantennas)
expected power equal to one

(2)

The additive noise at timeand receiver antenna is denoted
, and is independent (with respect to bothand ) and iden-

tically distributed . The quantities in the signal model
(1) are normalized so that represents the expected signal-to-
noise ratio (SNR) at each receiver antenna, independently of the
number of transmitter antennas. We assume that the realizations
of , , are not known to the
receiver or transmitter.

We use matrix notation for the transmitted signal ,
and the received signal . Conditioned on , the
received signal has independent and identically distributed
columns (across the antennas); at a particular antenna, the
received symbols are zero-mean circularly symmetric complex
Gaussian, with covariance matrix

(3)

where is the identity matrix. The received signal has
conditional probability density

(4)

where “ ” denotes the trace function.
We assume, for now, that the fading coefficients change

to new independent realizations every symbol periods.
This piecewise-constant fading process mimics, in a tractable
manner, the behavior of a continuously fading process. Fur-
thermore, it is a very accurate representation of many TDMA,
frequency hopping, or block-interleaved systems [13]. We
consider continuous fading processes later. Each channel use
(consisting of a block of transmitted symbols) is independent
of every other. Thus data can be transmitted reliably at any rate
less than the channel capacity, where the capacity is the least
upper bound on the mutual information betweenand , or

subject to the average power constraint (2), and where

(5)

The capacity is measured in bits per block of symbols. In
general, one must code across multiple blocks to achieve ca-
pacity.

III. SUMMARY OF KNOWN CAPACITY RESULTS

The conditional density (4) has considerable symmetry
arising from the statistical equivalence of each time sample
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and of each transmitter antenna. The special properties of
the conditional density, in combination with the concavity
of the mutual information functional, lead to some general
conclusions [8] that are summarized here.

A. Capacity Limited By Length of Coherence Interval;
Structure of Capacity Attaining Signals

Theorem 1—Limit on Number of Transmitter Antennas:For
any coherence interval and any fixed number of receiver an-
tennas, the capacity obtained with transmitter antennas
equals the capacity obtained with transmitter antennas.

In what follows we assume that .

Theorem 2—Structure of Signal that Achieves Capacity:A
capacity-achieving random signal matrix may be constructed
as a product , where is an isotropically distributed

matrix whose columns are orthonormal, andis an in-
dependent real, nonnegative, diagonal matrix. Further-
more, we can choose the joint density of the diagonal elements
of to be unchanged by rearrangements of its arguments.

An isotropically distributedunit vector has a probability
density that is unchanged when the vector is left-multiplied by
any deterministic unitary matrix. Similarly, the isotropically
distributed matrix obeys , and has a density
that is unchanged when it is left-multiplied by any
unitary matrix. In a natural way, is the matrix counterpart
of a complex scalar having unit magnitude and uniformly
distributed phase. The joint probability density ofin terms of
its columns is [8]

(6)

where is the Dirac delta function defined for complex argu-
ments to be , and is one when

and is zero otherwise. Substituting the structured
into (5) and performing some simplification yields

(7)

where are the nonnegative real diagonal entries of

(8)

and also as shown in (9) at the bottom of this page. In (8) and
(9), denotes the joint density on , and

Computing the channel capacity requires maximizing
with respect to the joint probability density of the nonnega-
tive real diagonal elements of. It is shown in [8] that we may
choose .

The transmitted signal has the partitioned form

where the columns, representing the temporal signals fed
into the transmitter antennas, are mutually orthogonal. As
we will argue, for either , or for high SNR and

, setting , which we callunitary
space–time modulation,achieves capacity.

B. Capacity Bounds

An upper bound on capacity is obtained if we assume that the
receiver is provided with a noise-free measurement of the prop-
agation coefficients . Thisperfect-knowledgeupper bound is
[6], [19]

(10)

per block of symbols. When is known to the receiver, the
perfect-knowledge capacity bound is achieved with transmitted
signal whose elements are independent . For the
special case the perfect-knowledge capacity upper
bound is , where

is theexponential integral.
A lower bound on capacity that we denoteis obtained by

assigning unit probability mass to , sub-
stituting this mass function into (7), and integrating with respect

(9)
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to . For the special case , the integration over
in (8) can be performed analytically to yield the capacity lower
bound

(11)

where

is the incomplete gammafunction. The next theorem, proven
in [8], says that , and the capacity-
achieving distribution of is a unit mass at , as .

C. Asymptotic Capacity and Signal Structure for

Theorem 3—Capacity, Asymptotically in: Let
The capacity has the asymptotic expansion

as . This capacity is achieved as by setting
with probability .

Heuristic considerations strongly suggest that Theorem 3 ex-
tends in a reasonable way to multiple transmitter and receiver
antennas. Although is unknown to the receiver, asbecomes
large we could reserve a small portion of the coherence interval
to send training data from which the receiver could estimate,
so should approach as and this capacity
would be attained by a transmitted signalwhose components
are approximately independent . To demonstrate that

, where and is isotropically distributed,
attains capacity, we note that as the entries of have
distributions that approach independent (see [8]). On
the other hand, when , setting
is not useful; in this case, , so

and no information is transmitted. In what fol-
lows we always assume that .

IV. UNITARY SPACE–TIME MODULATION AND HIGH SNR

A. Unitary Space–Time Modulation Defined

The key results of the previous section say that: 1) there is no
point in making the number of transmitter antennas greater than
the duration of the coherence interval and 2) when the duration
of the coherence interval is significantly greater than the number
of transmitter antennas , setting

attains capacity. Taking our cue from these considerations,

we defineunitary space–time modulationto be the transmission
of , where . The previous section argues that
unitary space–time modulation attains capacity for . We
now argue that unitary space–time modulation is optimal also
for any fixed ,1 as . The following result, for the
special case , shows that letting with
probability one achieves capacity asymptotically as for
any fixed .

Theorem 4—Capacity, Asymptotically in: Let
and . The capacity has the asymptotic expansions

(12)

(13)

as , where is Euler’s constant. This
capacity is achieved as by setting with prob-
ability .

Proof: See Appendix A.

Fig. 1 displays, for and , the exact ca-
pacity (obtained with the Blahut–Arimoto algorithm [2], [8]),
the perfect-knowledge upper bound (10), the lower bound (11),
and the expansion (12) as a function of. Fig. 2 is similar, ex-
cept that , and we see that the lower bounds, asymptotic
expansions, and capacities are essentially the same for all SNR’s
greater than 0 dB. Unlike the case in Theorem 3 where ,
when we see that the capacity diverges away from the
upper bound.

It is worth attempting to find an intuitive explanation for The-
orem 4. The first term in (12) appears to be consistent with the
strategy of sending a single known training symbol from which
the receiver obtains a very accurate estimate for the fading co-
efficient, and then transmitting the remaining symbols
as if the fading coefficient were known to the receiver. The ca-
pacity thus obtained would correspond to approximately
perfect-knowledge channel uses, giving rise to the first term in
(12); the remaining terms can be viewed as the penalty for esti-
mating the fading coefficient imperfectly.

But this appealing argument does not explain why unitary
space-time modulation , which has no explicit
training, achieves capacity. Instead, let , where obeys

but is otherwise arbitrary, and consider the high-SNR
received signal,

where and are -dimensional vectors. The unit vector,
apart from its overall phase, can be determined very accurately
from , regardless of . However, the scalar amplitudecannot
be determined so easily because it is multiplied by the unknown
scalar . Hence, when the SNR is high, transmitting information
on appears to be more profitable than transmitting on. This
suggests that we should simply set . Note that both this
argument and Theorem 4 apply only if .

1L. Zheng and D. Tse have recently informed us that the correct condition
appears to beT > M=2.
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Fig. 1. Normalized capacity, and upper and lower bounds, versus SNR� (T = 2, one transmitter and one receiver antenna). The lower bound and capacity meet
as� ! 1. However, unlike the case whereT ! 1, the capacity never meets the perfect-knowledge upper bound.

A similar intuitive argument suggests that Theorem 4
also holds for multiple transmitters and receivers; that is

as . For high SNR and , the
signal at the th receiver antenna is

(14)

where and are -dimensional vectors. Even for a
very high SNR we cannot easily determine be-
cause they are multiplied by the unknown fading coefficients

. However, the columns of span an -dimen-
sional subspace of the-dimensional complex vector space.
In this vector space, the subspace is a hyperplane, and any
two signals and that generate nonidentical subspaces
yield two distinct hyperplanes that intersect on some lower-di-
mensional hyperline. The probability of falling on one of
these intersections is zero. Hence, independently of, for
high SNR we can perfectly distinguish from as long as
their columns do not span the same subspace. (We demonstrate
this effect in the next section by calculating the probability of
mistaking one for the other.) Nevertheless, we do not have a
proof that as , for .

In short, when either , or is large with
, information-theoretic arguments say that the modulation of

is neither very interesting nor very useful. Rather
one should use unitary space–time modulation, where

and where all message information is trans-
mitted on the directions of the orthonormal columns of. While
information-theoretic arguments implicitly require the use of

channel codes to attain capacity, we now consider the use of uni-
tary space-time modulation in an uncoded form, and find design
rules that help us generate good constellations of these signals.

V. ML RECEIVER FORUNITARY SPACE–TIME MODULATION

We now consider maximum-likelihood (ML) reception of a
constellation of signals employing unitary space–time modu-
lation,

where are complex matrices satis-
fying . Ignore, for the moment, the problem of how to
generate such a constellation. We derive the ML receiver and its
performance when is unknown and, for comparison, when
is known to the receiver ( is never known to the transmitter).
It is customary to call the former receiver noncoherent and the
latter receiver coherent.

A. Channel Unknown to Receiver

Maximum-likelihood decoding becomes
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Fig. 2. Normalized capacity, and upper and lower bounds, versus SNR� as in Fig. 1, but withT = 5.

(15)

where the matrix formulas

and

are used [17]. The ML receiver seeks to maximize the energy
contained in the inner products that comprise .

Suppose now that , and and are transmitted with
equal probability. The probability of decoding error is then

transmitted

transmitted (16)

As we show in the next theorem, the probability of error given
that is transmitted is equal to the probability of error given
that is transmitted, and has a closed-form analytical ex-

pression that depends only on the singular values of the
matrix .

Theorem 5—Two-Signal Error Probability—Unknown:
Suppose that two unitary space–time modulation signalsand

are transmitted with equal probability, and decoded with an
ML receiver. Then the probability of error is

(17)

where are the singular values of the
matrix , and

Furthermore, decreases as any decreases, and has Cher-
noff upper bound

(18)

Proof: See Appendix B.
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Fig. 3. Two-signal probability of error versus SNR for one transmitter and one receiver antenna(M = N = 1), T = 5, andd = 0:0; 0:4; 0:8:

For a single transmitter antenna , is the mag-
nitude of the inner product between and . For multiple
transmitter antennas, represent the similarity be-
tween the subspaces spanned by the columns ofand . The
formula (17) is a closed-form expression that can be explicitly
evaluated for any special case. See, for example, Appendix B,
for the explicit evaluation when . For given

, the dependence of the probability of error on
and is only through the product .

Fig. 3 displays the probability of error as a function of SNR
for one transmitter and one receiver antenna
and for and . Note that re-
ducing below gains at most 1 dB in equivalent SNR. Fig. 4
shows the probability of error as a function ofand SNR 0,
10, and 20 dB. Here we can see more clearly that reducing
below approximately does not reduce the error by much.
Fig. 5 illustrates the probability of error for two transmitter an-
tennas , with . Comparing this figure
with Fig. 3 reveals that for SNR’s greater than 5 dB, two trans-
mitter antennas can have significantly lower error probability
than one with the same total transmitted power. This is seen
more explicitly in Section V I. Fig. 6 superimposes the
and curves from Figs. 3 and 5 for relatively low SNR.
Observe that below approximately2 dB, employing a second
antenna with unitary space–time modulation actually increases
the probability of error. This is not inconsistent with Theorems 3
and 4, which say that unitary space–time modulation is optimal
for high SNR or large . We conclude that when employing
unitary space–time modulation for given values of, , and ,

there is an optimal number of transmitter antennasthat may
be considerably smaller than.

B. Channel Known to Receiver

We have justified unitary space time modulation
on information-theoretic grounds for receivers that do not know
the channel, when either or is large. Surprisingly, we
can also justify this modulation when and when the re-
ceiver knows the channel. When the receiver knows the channel,
capacity is achieved by an matrix composed of independent

random variables. In Section III it is argued that
(with isotropically distributed) approaches, in dis-

tribution, a matrix of independent random variables
as . Hence, for sufficiently large, unitary space–time
modulation is nearly optimal, even when the channel is known.
Knowledge of , however, mandates different criteria for de-
signing a signal constellation.

When is known to the receiver (although still random)

and maximum-likelihood decoding is
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Fig. 4. Two-signal probability of error versus correlationd for one transmitter and receiver antenna(M = N = 1), T = 5, and SNR= 0, 10, 20 dB.

As shown in the next theorem, the two-signal probability of error
depends on the singular values of the difference .

Theorem 6—Two-Signal Error Probability— Known:
Suppose that two unitary space–time modulation signals
and are transmitted with equal probability, and decoded with
an ML receiver that knows perfectly. Then the probability of
error, averaged over , is

(19)

where are the singular values of
, and

Furthermore, decreases as any increases, and has Cher-
noff upper bound

(20)

Proof: See Appendix C.

We note that when is known and and are arbitrary
(i.e., do not necessarily have the unitary space–time structure)
the derivation of exact probability of error in Appendix C still
applies with minor changes. The probability of error and Cher-
noff bound for arbitrary and are still given by (19) and
(20), but with replaced by the singular values of

. See [18] for an alternative derivation of the
Chernoff bound.

In general, there is no direct relationship between the
known- singular values , and the unknown-
singular values . When , for example, we
have and

so for a given value of , can have the range of values

For the special case (the two signals
are orthogonal), then , and a direct
comparison of (17) and (19) is meaningful. For high SNR, the
Chernoff bounds for unknown (18) and known (20) are
then

(unknown)

(known)
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Fig. 5. Two-signal probability of error versus SNR for two transmitter antennas and one receiver antenna(M = 2, N = 1), T = 5, andd = d = d =
0:0; 0:4; 0:8:

which suggests that the probability of error is a factor of ap-
proximately lower when the receiver knows than when
it does not. Fig. 7 shows the exact probability of error as a func-
tion of SNR when the two signals are orthogonal, for known and
unknown , and , and . For moderately high
SNR’s the knowledge of yields a 3-dB gain, as expected.

We have seen that when is known to the receiver, unitary
space-time modulation is a viable option for . How-
ever, the maximum-likelihood receivers for known versus
unknown are considerably different, and so are the depen-
dencies of probability of error on the signals. In the former we
seek to maximize the singular values of , whereas in the
latter we seek to minimize the singular values of ; these
criteria are not compatible. Moreover, signal constellations for
known generally have to be larger than those for unknown,
reflecting the significantly higher channel capacity and lower
error probability. When is known, signals are distinguishable
that would otherwise be indistinguishable if were unknown,
including antipodal pairs , as well as signals whose columns
are permuted with respect to one another. The remainder of the
paper considers only unknown.

VI. DESIGN OFUNITARY SPACE–TIME MODULATION

CONSTELLATIONS

We wish to design a constellation ofsignals ,
, where . Since we assume no channel

coding, the size of the constellation is , where is the
data rate in bits per channel use. To minimize pairwise proba-

bility of error, one would like the singular values of the products
, to be as small as possible. Unfortunately, we

do not know of a way to minimize these singular values, nor
can we visualize the properties of a good signal constellation.
In constructing a constellation, we note that the pairwise prob-
ability of error is invariant to certain unitary transformations,
including left-multiplication by a common unitary ma-
trix, , , and right-multiplication by
arbitrary unitary matrices, , .
Constellations that are related in this way are equally good.

A. Bound on for One Transmitter Antenna

With a single transmitter antenna , the task is to find
unit vectors the magnitudes of whose inner products ,

are as small as possible. As shown in the previous sec-
tion, there is no direct relation between the magnitude of the
inner product between two complex vectors and their Euclidean
distance. There is a large body of literature on choosing col-
lections of unit vectors that maximize their pairwise Euclidean
distances (see [3] and the many references therein). However,
the literature on choosing vectors that minimize their pairwise
correlations appears to be smaller [10], [12], [22]. Moreover, the
constellation design problem in-dimensional complex space
does not reduce to a design problem in-dimensional real
space, because does not equal the magnitude
of the inner product between the real -dimensional vectors

and .
For given values of and , it is not known how small we

can make , the largest pairwise cor-
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Fig. 6. Two-signal probability of error versus SNR for one (M = 1, solid curves), and two (M = 2, dashed curves) transmitter antennas, one receiver antenna
(N = 1), T = 5, andd = 0:0; 0:8 .

relation between the signals. However, the following bound is
available [10], [12]:

(21)

where is a free parameter. Solving this relation, for
example, with and (which gives 32 signals in five
time samples, or 1 bit/channel use), yields .
Hence, we would like to choose 32 complex five-dimensional
unit vectors, constituting our constellation, for which is as
close to as possible. It is not known how tight the bound
(21) is.

B. Algorithms for Reducing

Starting with any constellation of unit vector signals for a
single transmitter antenna , we describe a simple iterative
algorithm for reducing .

1) Compute , the maximum of the magnitudes of all
distinct inner products, and choose a pair of

vectors whose inner product is .
2) “Separate” the pair by moving each vector a small amount

in opposite directions along the difference vector between
the pair.

3) Renormalize the pair, if needed.
4) Repeat Steps 1)–3) until stops decreasing.

Using this technique with and (1 bit/channel use)
on a constellation of initially randomly generated unit vectors,

we were able to achieve . We see that we are not
very far from the bound . Fig. 8 illustrates the corre-
lations between the members of the constellation, .

This same algorithm may be generalized to multiple trans-
mitter antennas by identifying the pair of signals whose
product yields the singular values that generate the worst
(largest) Chernoff bound on error probability according to (18).
“Separating” the signals can be aided by left-multiplying by
unitary matrices, since this operation preserves the orthog-
onality of the columns in each signal. We omit the details.
Fig. 9 displays the bit-error performance of constellations of
unitary space–time modulated-signals generated for
and transmitter antennas, each with 1 bit/channel
use and . We see that the bit-error probability decreases
approximately as for high SNR with two antennas,
versus approximately as with one antenna. No attempt was
made to assign the data bits to the unitary space–time signals
optimally.

C. Adaptation to Continuous Fading

In certain TDMA, frequency hopping, or interleaving appli-
cations, the fading is approximately constant within a-symbol
block and is independent across blocks. However, in a mobile
environment the fading may change gradually without piece-
wise jumps. If the fading process changes little within a symbol
interval, one way to model the sampled received signal is to as-
sign an autocorrelation function to the fading coefficients. One
common autocorrelation function is Jakes’, proposed in [9]. It is
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Fig. 7. Two-signal probability of error versus SNR forH unknown(d = 0) compared withH known(� = 1:414 � � �), and one transmitter and one receiver
antenna(M = N = 1), andT = 5.

Fig. 8. Magnitudes of correlations between� ; � � � ; � for T = 5. The diagonal entries with value1:0 represent each signal correlated with itself.
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Fig. 9. Performance of unitary space–time constellations forM = 1 versusM = 2 transmitter antennas forT = 5 as a function of SNR�, with R = 1
bit/channel use.

usually possible to select some value forsuch that the fading
is approximately constant oversymbols; in doing so, however,
adjacent blocks of symbols may be correlated as in Fig. 10. In-
terleaving blocks of symbols could remove this residual cor-
relation. Instead, we describe a strategy that exploits the residual
correlation between -symbol blocks with a “seamless” modi-
fication to unitary space–time modulation.

Seamless unitary space–time modulation constrains all the
entries in the first and the last rows of to have magnitude

, i.e.,

Suppose now that the signal is to be transmitted immedi-
ately after the signal . Recall that we can right-multiply
by any unitary matrix without affecting its statistical
properties at the receiver. Consequently, we can multiply
by the diagonal unitary matrix that makes the first
row of equal the last row of , i.e., ,

. Then, instead of transmitting all rows of
, it is only necessary to transmit the last rows of .

Hence, each signal (except the very first) can be transmitted in
time samples rather than, but the receiver can still exploit

the -symbol coherence interval to demodulate each signal; see
[11] for single-antenna codes with this feature. It follows that the
size of the signal constellation can be reduced from
to . For example, with half the number of
signals are needed.

It is worth noting that for and (fading approx-
imately constant in blocks of two symbols, and one transmitter
antenna), this form of seamless unitary space–time modulation
is equivalent to conventional differential phase-shift modula-
tion. To see this, suppose we wish to transmit 1 bit/ channel use,

. Then, using seamless unitary space–time modulation,
we need only signals in our constellation,
each of which is a vector whose first and last entries have
magnitude . Since only two signals are required, making
them orthogonal minimizes

Let binary messagebe represented by , and by . Sup-
pose we want to transmit a binaryacross the channel after
having previously sent a represented by . Then we would
multiply by so that its first entry matched the last entry of
the previously sent . We then transmit only the second entry
of the modified , which is now . Let de-
note the three received symbols corresponding to the two trans-
mitted data bits. The receiver then uses and to decode
the first message bit, and and to decode the second. This
modulation–demodulation process is exactly differential binary
phase-shift keying (D-BPSK).

We now assume that the fading is correlated according to a
Jakes model [9], with autocorrelation function where

is the zeroth-order Bessel function of the first kind and
is the maximum nondimensional Doppler frequency in cycles



HOCHWALD AND MARZETTA: UNITARY SPACE–TIME MODULATION FOR MULTIPLE-ANTENNA COMMUNICATIONS 555

Fig. 10. Magnitude of two typical independent realizations of a Jakes fading process withf = 0.01 cycles/sample.

per sample period. The fading processes shown in Fig. 10 are
generated according to this model. For the first zero
of the Bessel function is approximately . On the other
hand, fading coefficients five time samples apart have corre-
lation . Because of this high correlation, we may safely
choose to design our constellation for any .

We now look at the performance of seamless unitary space–
time modulation to transmit 1 bit/channel use across
this continuously fading channel. Fig. 11 shows the bit-error rate
for one and two transmitter antennas, and
one receiver antenna. To generate this figure, signal constella-
tions of size were designed for according to
the above principles. The receiver always decoded using max-
imum likelihood as if the fading were constant forsymbols.
As explained above, and corresponds exactly
to D-BPSK, which is shown by the dashed line. With
and the performance varies little with, and is
well-approximated by the dashed line. On the other hand, with

(two transmitter antennas), the solid lines show that
the performance varies greatly with. As noted in Section III,
when , unitary space–time modulation is ineffective, and
thus the error probability is for . For and
the probability of error decreases monotonically very quickly as

increases. For and two transmitter antennas, the prob-
ability of error is lower than for one transmitter antenna for all
SNR’s greater than 8 dB. Seamless unitary space–time modu-
lation therefore realizes the diversity advantage of the second
transmitter antenna for all reasonably high. This behavior is
consistent with our information-theoretic justification of uni-

tary space–time modulation for high SNR in Section IV. The
slightly worse performance at high SNR of , compared
with , is possibly due to greater variation of the fading
coefficients over six time samples than over five. Further exper-
iments indicate that because the fading is so fast, increasing
beyond degrades the performance even more.

VII. EXTENSIONS OFTHEORY TOCONTINUOUSFADING

In the previous section, we successfully modified unitary
space–time modulation to work over a fading channel with a
Jakes’ autocorrelation, even though the scheme was originally
motivated by a piecewise-constant fading model. In this section,
we draw some theoretical conclusions about the optimal signals
for fading channels, where, within each independent-symbol
block, the fading coefficients have an arbitrary time correlation.
We refer to this time correlation as continuous fading. We
obtain extensions of Theorems 1 (limiting the number of
effective transmitter antennas) and Theorem 2 (structure of
signal that achieves capacity).

Consider the model (1) where, within each block ofsym-
bols, the fading coefficients now are independent, zero-mean,
circularly symmetric, stationary complex Gaussian random pro-
cesses . Thus within a block of symbols, the received
signal is

(22)
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Fig. 11. Unitary space–time modulation performance for one (dashed line) and two (solid lines) transmitter antennas sendingR = 1 bit/channel use with
constellations designed forT = 2; � � � ; 6. The fading is a Jakes process withf = 0.01 cycles/sample and there is one receiver antenna. The one-antenna
probability of error varies little withT and is well-approximated by the D-BPSK dashed line. The two-antenna probabilities of error vary greatly withT . The best
overall performance for high SNR occurs forT = 5.

The fading processes are independent from one-symbol block
to another, but within each block they are correlated according
to a known autocorrelation function

(23)

where . The formula for the conditional probability
density (4) still applies but with the modified covariance matrix

(24)

where “ ” denotes the Hadamard (i.e., element-by-element) ma-
trix product, and is the Toeplitz covariance matrix,

. Note that in the former case of piecewise-con-
stant fading, .

It is realistic to assume that, within a block, the fading is a
random process. Less realistic is the independence of the blocks,
but this happens naturally if we assume that the block lengthis
long compared with the correlation time of the fading process.
For then, the fading between different-symbol blocks is in-
dependent, with the possible exception of a small number of
samples near the boundaries of adjacent blocks. The block in-
dependence is more likely to be satisfied in TDMA systems such
as IS-54/136, where a user does not have access to contiguous
blocks.

Suppose that the fading autocorrelation function vanishes be-
yond some lag that we call thecorrelation timeof the

fading, i.e., for , . The next theorem
extends Theorem 1 to continuous fading.

Theorem 7—Limit on Number of Transmitter Antennas
in Continuous Fading:For any correlation time and any
fixed number of receiver antennas, the capacity obtained with

transmitter antennas can also be obtained
with antennas.

Proof: Suppose that and capacity is ob-
tained for some joint probability density for the elements of the

matrix . All but the central diagonal
bands of the Toeplitz matrix are zero; that is, ,

. The Hadamard product in (24) therefore
causes the conditional probability density (4) to depend on only
the central diagonal bands of . A covari-
ance-extension theorem in [5] states that one can always find a

Hermitian nonnegative-definite matrix whose rank is
less than or equal to , and whose
central diagonal bands are proportional to the corresponding
bands of . Thus we can find a satisfying

Since has rank at most , it can be factored as
, where is a matrix. Consequently, for
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any matrix , we can find a matrix
such that

(25)

This relation implicitly specifies a joint probability density for
the elements of in terms of the joint probability density for
the elements of . We have the power constraint

which has been shown in [8] to achieve the same capacity as
the stronger power constraint (2). Using transmitter
antennas, we can therefore achieve the same capacity that can
be achieved with antennas.

Few realistic autocorrelation functions vanish absolutely be-
yond some time lag. For the Jakes model considered in Sec-
tion VI-C, the autocorrelation vanishes at . This
limits the number of transmitter antennas to approximately 38.

We now determine some of the structure of the capacity-at-
taining signal in continuous fading. Because of Theorem 7, we
assume that . We define a random process

to becyclically stationaryif

for all , where is the joint density of .
Intuitively, shifts in time of “wrap around” without
affecting their joint distribution, or, equivalently, the periodic
extension of is a stationary random process in
the ordinary sense. The next theorem is the continuous-fading
version of Theorem 2. Because the fading process is assumed
to have less structure than in Theorem 2, the conclusions are
weaker. However, the conclusion that thetransmitted signals
should be time-orthogonal remains.

Theorem 8—Structure of Signal that Achieves Capacity in
Continuous Fading:The capacity-attaining can be chosen to
have mutually orthogonal columns, and have joint density that
is unchanged by rearrangements of its columns. Furthermore,
the columns of can be made jointly cyclically stationary if the
fading is cyclically stationary.

Proof: The singular value decomposition implies that the
capacity-achieving signal can always be factored into three
terms , where and are unitary matrices and
is real, nonnegative, and diagonal. Equations (4) and (24) imply
that

(26)

Dropping the third factor yields a new signal that has
the same mutual information as, and whose columns are
mutually orthogonal.

We now assume that the capacity-achievinghas mutually
orthogonal columns. There are ways of rearranging the
columns of , each corresponding to post-multiplying by

an permutation matrix , . Each
yields the same mutual information as. Forming an

equally weighted mixture density for the transmitted signal
involving all arrangements of its columns yields a signal
whose probability density is unchanged by rearranging its
columns. The concavity of mutual information as a functional
of the input density and Jensen’s inequality together imply that
the mutual information for this mixture is at least as great as
that for .

Let the fading be cyclically stationary. The transmitted signal
may be cyclically shifted in time by premultiplying by the

permutation matrix satisfying

(27)

Forming an equally weighted mixture density for the trans-
mitted signal involving all cyclic delays yields a density for
the transmitted signal that is jointly cyclically stationary. In
other words, the periodic extension in time ofis a multivariate
( -component) strict-sense stationary random process. We
now argue that the cyclic shift does not change the mutual
information. Recall the model (22); we apply a cyclic shift in
time of to , and to , to obtain

The cyclic delay does not change the probability density of
because it is white, and it does not change the probability

density of the fading because it is cyclically stationary. Con-
sequently, the cyclic delay of the transmitted signal does not
change the mutual information between it and the received
signal, so Jensen’s inequality implies that the mutual informa-
tion for the mixture density is at least as great as that for the
original signal.

We make some final observations. First, in the above proof we
assume that the fading is cyclically stationary. This is not restric-
tive since any wide-sense stationary fading process asymptoti-
cally becomes cyclically stationary as [21]. Second, the
role of the block length is secondary to that of the coherence
time . We impose the constraint that blocks ofsymbols be
independent because it allows us to use the standard notions of
mutual information and channel capacity per block-of--sym-
bols. When , the capacity per channel use becomes inde-
pendent of , and channel coding could be performed over the
many independent fades that occur in a single-block.

At present, we are unable to say anything more about the gen-
eral structure of the mutually orthogonal cyclically stationary
signals that attain capacity. However, using what by now are
familiar arguments, we can infer the structure for the limiting
case . One could send training symbols and esti-
mate the fading coefficients and still have time to send data be-
fore the coefficients change. The capacity would approach the
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perfect knowledge capacity, the optimum signals would be ap-
proximately white Gaussian, so unitary space–time modulation
would be approximately optimal.

VIII. C ONCLUSIONS

Multiple-element antenna arrays operating in Rayleigh
flat fading can potentially sustain enormous data rates with
moderate power in a narrow bandwidth. Our approach to this
problem began with the premise that nobody knows the prop-
agation coefficients and that the available transmission time
should be spent sending message signals rather than training
signals. Information-theoretic considerations then led us to
unitary space–time modulation. Preliminary results indicate
that this modulation can be highly effective, even though the
receiver never explicitly learns the propagation coefficients.

We have derived performance criteria for unitary space–time
modulation and indicated the properties that a signal constel-
lation with low block probability of error should have. Our
particular constellation designs weread hoc, however, and the
problem of how to design constellations systematically that
have low probability of error and low demodulation complexity
remains open. We have also not considered how to code
across more than one block fading interval. Solutions to these
problems are especially urgent for largeand high data rates.

APPENDIX A
ASYMPTOTIC BEHAVIOR OF AS

For , we show that the mutual information
generated by a given can be no more than larger than
(11), the mutual information generated by ,
as .

We start by letting

be composed of two masses, where and
are positive functions of that do not go to zero as ,
but are otherwise arbitrary. Since , it must hold that

, and we assume that and
are also functions of. We allow but not to go to infinity as

. (Allowing both would violate the power constraint.) It
is then a simple matter to parallel the derivation ofin (11) to
obtain the mutual information

(A.1)

where

We look first at the first term in , which is

(A.2)

We break the integration into three disjoint ranges: ,
, , and for some arbitrary . When

, as , and the
expansion

(A.3)

and inequality therefore yield

(A.4)

Since , for all

(A.5)

When , as , and
the expansion

(A.6)

gives

(A.7)

where is Euler’s constant. Joining (A.2), (A.4),
(A.5), and (A.7), and repeating the calculations for the term in-
volving and , we get

(A.8)

where is arbitrary.
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We now look at . The first term is

(A.9)

We break the integration into the same three disjoint ranges as
before. For , (A.3) yields

(A.10)

(A.11)

If does not go to infinity, then neither term in the argu-
ment of the logarithm in (A.9) dominates the sum. If goes
to infinity, the second term dominates the sum and the logarithm
in (A.9) behaves as

for large . In either case we may then mimic the analysis of
(A.2) to conclude that

(A.12)

For , the expansion (A.10) again applies, and
(A.11) implies that

Thus the logarithm in (A.9) is , and

(A.13)

Finally, for , we change the variable of integration
to , . It follows from (A.6)
that

Hence

and

(A.14)

Combining (A.12)–(A.14), we get

(A.15)

and combining this equation with (A.8) gives

(A.16)

We have that . Therefore, by Jensen’s
theorem

(A.17)

with equality if and only if . Furthermore, as shown
in [4], for any density supported on and satisfying

with equality if and only if . Hence

(A.18)

with equality if and only if . Thus for and
as , is maximized by choosing with
probability one, which collapses the two distinct masses into
one at . When , then , and from
(A.16) we therefore have the expansion

(A.19)

(A.20)
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Since

we may also write

(A.21)

In our argument for showing that any density with two distinct
masses asymptotically generates less mutual information than
a single mass at , we have explicitly prevented one of the
two masses from being located at . We now show that
a mass at must have probability that tends to zero as

. As before, we assume that there are two masses, with
one at with probability , but we place the other at

with probability . The mutual information is then as
in (A.1), but with , and

We analyze as in the previous manner, and begin with
. Its first term is the same as (A.2),

yielding

(A.22)

(Compare (A.8).) The second term is

(A.23)

The integral is now analyzed. The first
term is

(A.24)

We note that the density

has a maximum value of approximately , and is effec-
tively supported for in an interval that increases linearly with
, beyond which it decays exponentially. On the other hand, the

density

has its maximum value at
and decays exponentially asincreases, independently of.

By breaking the integration in (A.24) into the three usual dis-
joint ranges (and omitting the tedious details), we conclude that
(A.24) approaches

(A.25)
as .

The second term in is

and the same arguments show that this approaches (as )

(A.26)
Combining (A.1) with (A.22)–(A.26), we deduce that

This expression is clearly maximized by letting as
. Hence, any mass at in the capacity-achieving

distribution must have probability that decays to zero as
. We have been focusing on with two distinct masses,

and now outline how to generalize the above arguments to show
that any asymptotically generates less mutual information
than . First note that the expansion (A.16)
can be immediately generalized tomasses

to obtain

(A.27)

Provided that are taken from some finite positive in-
terval, the asymptotic expansion (A.27) is uniform, and hence
remains valid even if we let become unbounded (say, as a
function of ). As , the mutual information in (A.27)
is therefore maximized by having , which re-
duces the multiple masses to a single mass at . On a
finite interval, we can uniformly approximate any continuous
density with masses, and becauseis concave in (see
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[8]), we can approximate arbitrarily closely as well (we are
here overlooking many technical details about optimizing in an
infinite-dimensional space). The preceding argument therefore
tells us that we are asymptotically better off replacing the con-
tinuous density on this finite interval with a mass at .

APPENDIX B
TWO-SIGNAL FOR UNKNOWN—EXACT AND CHERNOFF

UPPERBOUND

From (15), the probability of error when is transmitted is

(B.1)
where the multiplicative factor is in-
cluded to simplify the algebraic manipulations in this section.
Using the singular value decomposition

(B.2)
where and are unitary matrices, and

is diagonal, real, and nonnega-
tive, we rewrite (B.1) as

(B.3)

where

The columns of are independent and identically distributed
zero-mean complex Gaussian vectors with covariance matrix

. Consequently, the columns of are also
independent; any column has covariance matrix

(B.4)
Note that this covariance matrix depends on and only
through the singular value matrix. We conclude that de-
pends only on . If we were to interchange and , would
be unchanged, and thus .

From (B.2), we have that . The matrices
and each comprise orthogonal unit vectors, im-

plying that every is equal to an inner product be-
tween unit vectors. Consequently, .

A. Exact

We obtain a closed-form expression for the proba-
bility of error by inverting the characteristic function of

. The use of the characteristic function for
this type of calculation is well known [14], [16]. Equation (B.3)
may be written as

(B.5)

The structure in (B.4) implies that comprises sta-
tistically independent pairs of correlated random variables,

, , , with
covariance

where is the th diagonal entry of , and this covariance
does not depend on. The characteristic function for each in-
dependent term in (B.5) is therefore

(B.6)

when , where

When , the characteristic function is identically one for
all .

The region of convergence of the expectation in (B.6) is

The characteristic function of is the product
of the terms (B.6) raised to the th power. We invert the
characteristic function, artfully choosing a particular integration
contour within its region of convergence to obtain the error prob-
ability as

(B.7)
The exponential decay of the inner integral in (B.7) as
for justifies the above interchange of integration.
With a change of variables, we obtain

(B.8)

where the integration is now along the real axis. We close the
contour of integration from the positive real axis to the negative
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real axis with a semicircle sweeping the entire upper half com-
plex plane in a counterclockwise direction. Since each term in
the product in the integrand decays for largeas , the
semicircle itself does not contribute to the total integral but en-
closes all the integrand’s upper half plane poles .
The integral may therefore be evaluated by Cauchy’s theorem

(B.9)
This is (17).

We evaluate this expression for the special case of equal sin-
gular values . In this case, we must
evaluate the residue of an order pole

The following easily verified identity:

for , gives the expression at the bottom of this
page.

B. Chernoff Upper Bound and Monotonicity

We evaluate the Chernoff upper bound in an unconventional
but concise way. Since is real-valued, we take the real part
of (B.8) to obtain

(B.10)

and

(B.11)

which is (18). It turns out that (B.11) is, in fact, exactly the
Chernoff bound obtained by computing (see, e.g. [21])

where

and where is a free parameter that is chosen to
minimize . To help see this, we note that is merely the
logarithm of the previously computed characteristic function for

, and is minimized at . The exact expression for
is derived in (B.8) by integrating the characteristic function

along the line . This process “tilts” the likelihood
ratio by just the right amount needed to obtain (B.11) as the
Chernoff bound.

Finally, to see that decreasing any decreases the total error
probability, observe that, for any, the integrand in (B.10) de-
creases as decreases.

APPENDIX C
TWO-SIGNAL FOR KNOWN—EXACT AND CHERNOFF

UPPERBOUND

We follow the same strategy as in Appendix B, and therefore
abbreviate the discussion. With known, albeit random, the
average error probability, given that is transmitted, is

We use the singular value decomposition, ,
where is diagonal, real, and nonnegative, andand are
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unitary matrices. Because and have the same distribu-
tion, and and have the same distribution, we have that

(C.1)

The probability of error only depends on the singular values,
and hence . The singular value decomposition
implies that , or

, where the columns of each of the bracketed ma-
trices are orthonormal unit vectors. Consequently, .

A. Exact

As in Appendix B, we take the characteristic function of the
log-likelihood ratio (the expectation being with respect toas
well as ), and we obtain the probability of error as the integral

(C.2)

where

This proves (19).
For the special case where , we have the

exact expression

B. Chernoff Upper Bound and Monotonicity

As in Appendix B, the Chernoff bound is computed by ap-
plying an elementary inequality to the exact probability of error
(C.2). The result is

(C.3)

which is (20).
Finally, to see that increasing any decreases the total error

probability, observe that, for any, the integrand in (C.3) de-
creases as increases.
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