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UNITARY SPINOR METHODS 

IN GENERAL RELATIVITY 

Zoltan Perjes 

A survey is given of the structure and applications of spinor fields in three-dimensional 
(pseudo-) Riemannian manifolds. A systematic treatment, independent of the metric 
signature, is possible since there exists a fairly general structure, to be associated with 
unitary spinors, which encompasses all but the reality properties. The discussion begins 
with the algebraic and analytic properties of unitary spinors, the Ricci identities and 
curvature spinor, followed by the spinor adjungation as space reflection, and the SU(2) 
and SU(l,l) spin coefficients with some applications. The rapidly increasing range of 
applications includes space-times with Killing symmetries, the initial-value formulation, 
positivity theorems on gravitational energy and topologically massive gauge theories. 

1. A LITTLE HISTORY 

One of the earliest successes of spinor techniques in general relativity is Witten's 

[1] version of the Petrov classification which was later perfected by Penrose [2] and 

complemented by the spin coefficient techniques of Newman and Penrose [3]. In the 

following years, the S L(2, C) spinors have gradually been accepted as a useful mathe­

matical working tool in relativity, even though they never ranked to the straightforward 

physical utility which spinors in particle physics enjoy. The prevailing view as to why 

spinors sail so well in curved space-time is that they are seen closely related to null 

and causal structures. Other insights of more physical nature have only recently been 

provided by the supersymmetric theories [4]. 

The applications of the spinors of unitary and pseudo-unitary subgroups of the 

Lorentz group escaped the attention of relativists until as late as 1970. Then, in an at­

tempt to establish a spinor approach to stationary space-times, the present author has 

worked out an SU(2) spinor formalism [5]. These techniques have been used for obtain­

ing exact solutions of the gravitational field equations [6]. A corresponding formalism 

for the non-compact group SU(l,l) has also been developed [7]. It has been 
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shown possible to formulate the stationary axisymmetric vacuum gravitational equations 

such that the complete description is carried by a set of SU(1,1) spin coefficients, and 

with no curvature quantities appearing. 

In 1980, Sommers [8] introduced the notion of 'space spinors' in connection with 

SU(2) spinors relative to a space-like foliation of the space-time. This approach has been 

taken up by Sen [9] for quantizing the spin-3/2 massless field in a curved background. 

Recently, the pace of applications has increased, due partly to the SU(2) spinorial 

nature of many supergravity models [4]. But SU(2) spinors enter Witten's expression for 

the gravitational energy [10], as well as the theory of topologically massive gauge fields 

[11]. A new spate of works followed Ashtekar's discovery of new canonical variables for 

the quantization of the gravitational degrees of freedom [12]. His configuration space 

is coordinatized essentially by the soldering forms of SU(2) spinors. Unitary spinors 

have been introduced on manifolds of arbitrary non-null congruences [13]. The ensuing 

description of space-time contains both the spinors in hypersurfaces and in the manifolds 

of Killing trajectories as special cases. 

It has already been noted by Barut [14] that SU(2) and SU(1,1) spinors can be 

treated in a unified formalism in which one does not specify the signature of the 3-

metric. The signature-independent properties, characterizing what will be called uni­

tary spinors, embrace all spinorial relations but those involving adjunction. In the 

present note we shall show that there exists a remarkably elaborate structure shared by 

both genres of spinor fields in (pseudo-) Riemannian 3-spaces. Adjoining of spinors is 

relegated to Sec. 5. Applications in general relativity will be discussed at the end of 

each section. 
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2. UNITARY SPINORS 

The algebra of unitary spinors encompasses those properties of the SU(2) and 

SU(1,1) spinors which do not depend on the signature of the associated metric. 

2.0 DEFINITION [15] Spin space is a pair (E, e) where E is a two-dimensional 

vector space over the field of complex (or real) numbers and E a symplectic structure 

on E. 

Note that E provides an ismorphism 

(2.1) e: E --t E* 

between E and the dual space E*. We shall use an index notation such that e E E is 

an element of the vector space E and eA E E* an element of the dual space. Capital 

Roman spinor indices A, B, ... may take the values 0 and 1. Then (2.1) can be written 

e --t eB = eeAB where (eAB) = ( ~1 ~)· Note that fAB = -EBA· The inverse 

map employs the spin or eA B satisfying 

(2.2) 

where cg is the identity map on E. 

2.1 DEFINITION 

(p, q) tensor over E. 

A spinor 11~f~:·· of p upstairs and q downstairs indices is a 

2.2 PROPOSITION The linear map L: E --t E preserving the spinor EAB has 

the determinant 1. The group of the maps Lis SL(2, C). 

The proof is all too easy. 

2.3 DEFINITION The spinor 

(2.3) 
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called the metric, yields a bilinear map V @ V --+ C where V is the vector space 

(2.4) 

The inclusion of V in E @ E* defines the map q : E @ E* --+ V rendering to each 

v; E E @ E* its trace-free part. This map is sometimes called a soldering form and has 

the index structure q~B where 

(205) A o 

Lower case Roman indices refer concisely to the vector space V o 

2.4 DEFINITION Unitary spin space is the triplet (E, ~:, where q : E@E* --+ V 

is the map satisfying 

(2.6) 

and ,.,;; = qi qi B c D 
"' AB CD 

The vector space V is oriented because Trv1 [ v2 , v3 ] defines canonically a three-form 

~:(v 1 ,v 2 ,v 3 ) on V [Hl]. In the index notation we have E;;~t = o:iik-./ii where e:iik is the 

skew numerical Levi-Civita symbol and g = det[gii,]· (Thus f.;ik is imaginary when the 

signature of the metric is negative.) 

2.5 COROLLARY [5] The soldering forms q~A satisfy the Lie product rule 

(207) 

Here the right-hand side changes sign under reversal of the orientation of V. 

2.6 PROPOSITION Let = Jii•~<l be a bivector. Then the spinor FABCD 

(2.8) 

Proof. In three dimensions, the tensor Fik can be written equivalently 

(2.9) 
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The (axial) vector li has the spinor components 

Using the identity ufB u!B = -O;k, we have li = -ufB 4>AB. Substitution of (2.9) in 

4>AB yields 

This contains the terms on the right hand side of Eq. (2.7), hence 

(2.10) 

Now adding the terms H FAD 0 B - FAD 0 B ) to FA B 0 D , it can be written identically as 

FA BOD = FA[B[O[D[ + F[A[D[o[B. For an arbitrary spinor 'T1 with a pair of skew indices 

we have 'T1AB -'T1BA = EAB'T1RR· Thus FABOD = HEBDFARO R +EAoFR~B). Inserting 

here (2.10}, the decomposition (2.8) follows. 

2. 7 DIGRESSION TO SL(2,C) The algebraic properties of unitary spinors can 

be derived [5] from the SL(2, C) spinor algebra in the presence of a preferred non-null 

four-vector a. The soldering forms u of SL(2, C) satisfy the defining relation [3] 

(2.11) 

where Greek indices J.t, v, ... range through the values 0, 1, 2 and 3 and primed spinor 

indices refer to the complex conjugate representation. A hat will signify that the entity 

refers to the 4-space-time whenever such an emphasis is necessary. Choose coordinates 

adapted to the non-null vector a such that the metric g,.., is independent of x 0 = t. 

Then, given a solution u at t = t 0 of (2.11), this u will continue to be a solution for all 

possible values oft. We may choose the soldering form u to be independent oft. 

Let us denote the norm of the vector a by 

(2.12) f =a" a,.= Yoo· 

Then the 4-metric has the decomposition 

(2.13) 
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with the inverse 

where g is the metric in the orthogonal 3-complement. 

We now decompose Eq. (2.11). From the mixed components with (It, = (i,O) 

we get: 

(2.14) 

The spinor a 0 Ac' = aAc' is invariantly defined. We now introduce the soldering forms 

in the 3-space defining 

(2.15) 

The multiplying factor here serves later convenience. Eq. (2.11) then expresses the 

symmetry (2.5) of the soldering forms in their spinor indices. 

The components of Eq. (2.11) with (p,v) = (i,j) yield the anticommutation prop­

erty (2.6) of the soldering forms of unitary spinonL 

The product relation of soldering forms in the 4-space-time has the form [3] 

(2.16) 

By use of the 3+ 1 decomposition of scalar products 

(2.17) 

we obtain the metric (2L3) for the 3-space: 

(2.18) 
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3. SPINOR DERIVATIVES 

In this section we consider covariant derivatives of unitary spinor fields on (pseudo-) 

Riemannian 3-manifolds. 

3.1 DEFINITION A unitary (p, q)- spinor field is a local section of a bundle of 

unitary (p, q)-spinors over a (pseudo-) Riemannian 3-manifold (.M, g). 

The covariant derivative of a spinor with in reference to the metric fJ is defined in 

the contemporary literature such that the soldering forms and the fundamental spinor 

EAB are covariantly constant. 

3.21 DEFINITION The covariant derivative V of a (p, q)-spinor field is a map 

into a (p + 1, q + 1)-spino:r field with the usual linearity and Leibnitz properties of 

derivatives. The map V coincides with the gradient map of scalars when (p, q) = (0, 0). 

and has the further properties 

(3.1) 

3.3 DEFINITION The spinor affine connection r 15, in the covariant derivative 

(3.2) 

can be expressed in the form [5] 

(3.3) 

3.4 PROPOSITION The spinor Ricci identity has the form 

(3.4) 

Proof. Eq. (3.4) can be derived from the Ricci identity 

(3.5) 
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by choosing IJ; to be the null vector IJ; = a: B eA eB . Convecting with ak N a~ Q a~ p and 

using (2.15) we get 

(3.6) 

where V AB = a~ 8 V, and the spinor structure of the Riemann tensor R;ikl is given 

by RAMs N c P v Q = a~ M a~ N a~ P Q fl.;~; 1 • The curvature tensor can be decomposed 

into irreducible parts by use of the scheme (2.8) for pairs of skew indices: 

RAMBNGPDQ 

- fAB Ecv 

(3.7) 

where tPABGD = HR.~o- ~gi1,R)a~Ba~D' R;~o = R.rs~ofl" is the Ricci tensor and 

A = R/24. Transvecting Eq. (3.6) with f.PQ rJN where fiN is an arbitary non­

vanishing spinor field, and removing the OVerall factor 2('1'JB es )'1'/N, We obtain the spinor 

version (3.4) of the Ricci identity. 

2.4 DIGRESSION TO SL(2,C) One can decompose the connection f in terms 

of r. Introduce the complex gravitational vector [5] 

(3.8) G 1 ('• . JT::II I I'"'!) i = 2 f + tf:;kl V 11/IW ' · 

This can be expressed in spinor terms as 

(3.9) 

Straightforward computation yields 

(3.10) 
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4. ADJUNCTION 

The spinor a A c' establishes, in a natural way, a map between the primed and 

unprimed spin spaces. The 'unpriming' of spinor indices proceeds by contraction of 

any primed spinor index with ~aAB'. As an example, the unprimed version vAB 

~a:Jl' f)AB' of the vector i) has the irreducible parts 

A i 
'IJ(AB) = V ULJ!B, 

Thus the 3+ 1 decomposition of tensors becomes a symmetry operation over spinor 

indices. 

4.0 DEFINITION The ad}oint spinor etA is defined 

etA flraAB' eB'· 

4.1 PROPOSITION The double adjoint has the property 

(4.2) 
if f > 0 (time-like a), 

iff < 0 (space-like a). 

Proof. Contraction of Eq. (3.7) with aiL a" yields the product rule for the aAB' spinors: 

(4.3) a'_ f B 
aAa'aB - 1_{jA. 

4.3 DEFINITION The norm of the spinor E is defined by 

(4.4) 

4.4 PROPOSITION The spinor norm (4.4) is reaL 

P:roof. The complex conjugation of scalar products proceeds as follows, 

(4.5) 

-( A) - -A' 2 - A' G B' -
EA 'f/ =EA·TJ = feA'aa a YfB' 
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where the upper and lower sign holds for f > 0 and f < 0, respectively. In particular, 

(4.6) 

4.4 PROPOSITION The soldering forms have the Hermiticity property 

(4.7) 

Pll"oof. Eq. ( 4. 7) follows from the Hermiticity of the SL(2,C) soldering forms and from 

(2.12). 

Although the timelike case carries here a negative sign, this is the kind of behavior 

a Hermitian product aAB = e(A E~) exhibits. 

4.5 PROPOSITION The covariant derivation commutes with adjunction. 

The P:roof is straightforward and will be omitted here. 

When the four-vector a is space-like, 3-spinors can be chosen real, but the adjunc­

tion will retain a direct geometrical interpretation, to be discussed in the next section. 

5. TRIAD FORMALISM 

Consider a spinor r; E :E of positive norm. Such a spinor always exists and can be 

scaled to 

(5.1) 1JA ijA = l. 

(In this section we shaH adopt the tilde notation of Ref. [11] for adjoints.) Then 

(5.2) 

is a real and self-adjoint unit vector: ~ = z; and 

(5.3) 
· def · A B 

m' = TJAa's 1l 
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a null vector (real in ·the space-like case) with m' the adjoint null vector. Adjunction 

may be expressed in geometric terms as a swop of the basis spinors r; and ij, or as an 

exchange of the vectors m and m while leaving the vector l intact. 

The triad of vectors 

(5.4) ') - i ""'i} ,m ~m , p = o,+,-, 

forms a normalized basis in the vector space V. The 3-metric acquires the form 

(5.5) 

5.1 DEFINITION The Ricci rotation coefficients are the invariants 

(5.6) 

The Ricci rotation coefficients will be given the individual notation [11] 

mn 

-o +o +-
p 

0 K, K, E 

+ p (J -T 

- o- p T 

Table 1. The rotation coefficients. 

5.2 DEFINITION The triad derivatives acting on scalars are defined 
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We also use the detailed notation 

{5.7) 6=a_. 

The triad derivatives have the commutators 

{5.8) 
Do - oD = (p + t:)o +uS+ KD 

oi- io = ;8- ro + (P- P)D. 

The Ricci identities have the detailed form 

{5.9) 

where 

(5.10) 

Du- OK. = rK. + K:2 + u(p + p + 2t:) - 2<P+ + 

Dp- SK. = KK.- K.T + UU + p2 - <Poo 

Dr- St: = K.p- {K: + 1-)u + t:{K.- r) + pr- 2<Po­

Su- op = 2ur + K.(p- p) + 2<Po+ 

or+ 8; = pp - uu + 2rr - t:(p - p) - 2<P+- + <Poo 

5.3 DIGRESSION TO SL(2,C) One can decompose the null tetrad of Newman 

& Penrose [ 3] in terms of the triad. The null tetrad is fixed by the { o A , t A } basis in the 

spin space, normalized by oA tA = 1. This defines a tetrad 

l" =oA u"AB 'oB' 

(5.11). m" =OAU"AB'LB' 

n" =tAUI'AB'LB' 

The decomposition will depend on the relation of the o, t and the r], fj basis in the 

spin space. These spinor bases are are locally connected by an SL(2, C) rotation. It is 

sometimes convenient [5] to choose, for example, 

(5.12) ( 2)1/4 
OA = f YJA, 

( f)l/4 t 
'-A = 2 YJA" 

We then have 
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f"' ={Z',r 1 - (liwj)} 

m"' =v1.fi{mi,-(miwjn. 

1 A 

n'" =-fl~' +a~-" 
2 

The spin coefficients of Newman and Penrose [3] have the decomposition 

(5.14) 

t = ~ + G"- Go) 

P = P +Go 

U=IY 

~ = ~ fu 
2 

{t = ~j(p +Go) 

D= ~f*(-IC+2G_) 
4 

R;, = rl/2(~t- 2G+) 

;r = ~jl/2;., 
2 

f = -~Jel/2/t 
2 

& = ~p1 2 (2r + G_- G_) 
4 

A 1 1/2 -

{1=--;j_I (2i+3G++G+) 

1 -
"Y = -Bf(2E- 3Go- Go) 

and the Weyl curvature spinor is given by 

= 2[6G+ -aGo + iG+ + (2G+ + G+ )G+] 

Wl = - p!z [DG+ - K;Q0 - EG+ + (2Go + G,)G+] 

1 -
(5.15) Wz = z-![DG" + ICG+ + ~~:G_ + (G+ + G")Go- 2G+ G_J 

>¥3 = ~ r1 2 [DG_ - ICG, + £.G_ + (2Go + G,)G_J 

12- - - l ">¥4 = z-! [6G_ -oGo+rG_ +(2G_ +G-)G_. 

In a vacuum space~time, the Ricci tensor of the 3-space is determined by Einstein's 

gravitational equations as follows [5]: Rpq +GpGq +GpGq = 0. The triad components 

GP of the gravitational vector satisfy the vacuum field equations [5] 

(5.16) 

DGO + bG+ + oG_ = (p + p)Go- (~~:- i)G_ - (K:- r)G+ 

+(Go- Go)Go + (G+ - G+ )G_ + (G_ - G_ )G+ 

DG_ - bG, = (p- ;:)G_ + uG+ + KGo- GaG- + G_ G, 

DG+ - oG, = uG_ + (p + rE)G+ + ~tG 0 - GoG+ + G+ G, 

oG_ -bG+ = (p-p)G, -rG+ +iG_ -G+G- +G_G+. 
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The choice of the triad has so far been left arbitrary. A convenient orientation for 

the triad vector l is along the eigenrays of the gravitational field. These eigendirections 

are [5] the principal null directions of the gravitational spinor given by the canonical 

decomposition 

(5.17) 

The eigenray condition can be written in triad terms as G + = 0. An eigenray congruence 

in the 3-space is geodesic if and only if the corresponding null congruence with tangent 

four-vector f is geodesic. Solutions of the vacuum gravitational equations with geodesic 

eigenrays have been found in Ref. [6]. 
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