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Abstract—With the advent of ultrahigh-resolution holographic
displays, viewing macroscopic deep scenes with large viewing an-
gles becomes a possibility. These deep holograms possess different
signal properties in contrast with common applications where the
scene content is assumed to lie around a planar slice. Therefore,
the conventional approach of refocusing at a fixed depth is inef-
fective. There is a need for an efficient invertible transformation
that is able to account for the wide depth range of macroscopic
three-dimensional scenes. To this end, we derive necessary invert-
ibility conditions for the diffraction from nonplanar surfaces for
symmetric light propagation kernels, such as Fresnel diffraction.
We construct a unitary transform for modeling deep holographic
scenes using a generalization of linear canonical transforms. From
the symplectic properties of the time–frequency domain, we obtain
invertibility conditions of the transforms depending on surface
shape, hologram bandwidth, and wavelength. These transforms
can be subsequently combined with other sparsifying transforms
for compression. Experiments demonstrate one application in lossy
coding of holograms by implementing a computationally efficient
subset of the transforms for piecewise depth profiles that is com-
bined with the JPEG 2000 codec. Results show improved recon-
struction quality. A significant visual gain is observed as the depth
information is well preserved under identical encoding rates in
contrast to using Fresnel propagation at a fixed depth. This pa-
per shows that it is possible to effectively represent holograms of
variable-depth scenes and our local adaptive transform leads to a
practical holographic compression framework.

Index Terms—Holography, Transforms, Transform Coding,
Computer Graphics.

I. INTRODUCTION

H
OLOGRAPHY is a technique for capturing and re-

constructing the wave field of light, encoding a three-

dimensional representation of a scene. In digital holography,

numerical processing is involved either after recording or for
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displaying the wave field. For hologram recording, the sam-

ple is placed into an interferometric setup, where typically a

CCD-camera will record the interference pattern encoding the

three-dimensional structure of the object. This has many metro-

logical applications, such as cell imaging, lens characterization,

deformation analysis and particle velocimetry [1]. Moreover,

this approach can be used to capture a scene for viewing in

a holographic display setup. Alternatively, holograms can be

computer-generated to be used in display systems. Computer-

generated holograms are computationally very expensive (espe-

cially for the resolutions required in display systems), requiring

more advanced techniques to have tractable computing require-

ments [2], [3]. But even then, the computations are too costly for

real-time viewing, making efficient representations an attractive

choice for display systems.

Holography can be considered as the ultimate display sys-

tem, since it can capture all aspects of the human visual sys-

tem: continuous parallax, no accommodation-vergence conflict

and it can potentially represent features at resolutions match-

ing the diffraction limit of light. One of the main bottlenecks

for current holographic displays is the bandwidth: high qual-

ity holograms for display at appreciable viewing angles need

resolutions requiring hundreds of megapixels up to gigapixels.

Current state-of-the-art holographic display systems often com-

bine many high resolution spatial-light modulators to approach

these resolutions [4], [5]. Efficient representation of these large

data volumes is therefore an important task.

Holograms possess signal properties that differ significantly

from photographic images: because no imaging lens is used,

localized information will spread out over the entire hologram.

Moreover, diffuse object surfaces will give rise to speckle pat-

terns containing pervasive high-frequency information. These

properties will cause standard wavelets, favoring localized fea-

tures and low frequencies, to be inappropriate for efficiently

representing holograms. Therefore, alternative transforms are

required for effectively representing digital holograms.

A. Related Work

Some transforms address the aforementioned problem by

modeling the general properties of holographic signals, e.g.,

addressing the prevalence of directionality (due to the interfer-

ence fringes) and high-frequencies. In [6], the standard JPEG

2000 framework [7] was extended with the directional-adaptive

discrete wavelet transform [8] and packet decompositions for
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improved compression performance. In [9], a non-separable

adaptive vector lifting scheme was used to better encode holo-

graphic data. Wavelet-bandelets have also been used to better

compress holograms [10]. The drawback of these type of ap-

proaches is the lack of “scene-awareness” (the actual objects

and their properties are indirectly modeled), and the resulting

nonlinear relationships between the objective and perceived dis-

tortions of the hologram after lossy compression.

A second approach is to mimic light-field representations, by

cutting the hologram into small pieces and using every recon-

structed hologram piece as a small aperture for a view, which

can e.g., be subsequently coded with light field coders or video

codecs [11]. The main drawback of this approach is the strong

speckle noise present due to the limited aperture size, making

intra-view and inter-view modeling difficult. An approach using

compressed sensing aiming to address this problem was recently

proposed [12].

Other approaches will model the diffraction of light, such

as Fresnelets [13], which combine Fresnel diffraction with B-

spline wavelets. This approach is limited by the fact that unitary

Fresnel diffraction is confined to a fixed depth. This is sufficient

for objects with shallow depth-of-focus, parallel to the camera

plane (as is often the case in holographic microscopy), but causes

problems for deep scenes where it is impossible to simultane-

ously refocus the whole scene using a single Fresnel transform,

causing strong degradations after compression at out-of-focus

regions [14].

B. Problem Statement

Holograms with content spanning deep volumes are subopti-

mally represented by methods currently found in literature (for

visible light, we are typically considering scenes of at least

1 cm deep). This is mainly due to its signal properties, differing

substantially from natural imagery, as shown in the example

hologram in Fig. 1. We want to generalize the Fresnelet ap-

proach [13], which models diffraction for objects at a specific

depth to content placed at variable depths. The goal is to de-

scribe an invertible transform closely tied to the diffraction of

arbitrary-shaped surfaces that is efficiently computable and to

derive the bounds for which it can operate.

C. Contributions

In this paper, we generalize the latter approach by deriving the

criteria for unitary transforms modeling the diffraction of non-

constant surface depths, which can be combined with wavelets

to model deep scenes more accurately. The proposed transform

is guaranteed to be invertible when the first derivative of the

surfaces’ depth map is below a specific bound (see (20)). This

approach can be combined with conventional transforms and

codecs to improve compressibility. Our particular contributions

are as follows:
� We make the connection between unitary transforms

represented by warpings of symplectic manifolds [15]

and Linear Canonical Transforms (LCTs) and their

generalizations; we subsequently apply this framework to

express our proposed transform and derive its properties.

Fig. 1. Uncompressed dice hologram data: (a) absolute value, (b) phase, (c)
focused at back plane, and (d) focused at front plane. Source: Advanced Media
Coding Lab at IRT b-com.

� We generalize the approach of combining wavelets with

convolutional Fresnel diffraction to an efficiently com-

putable approximation for non-planar surfaces.
� We derive the bounds required for invertibility of the pro-

posed transform.
� We implement an approximation of the transform and com-

bine it with the JPEG 2000 codec, evaluating the increase

in compression performance and visual quality.

D. Outline

In Section II, we describe the signal properties of holo-

grams and motivate the choice of a depth-adaptive transform.

In Section III, we demonstrate the unitarity of arbitrary-surface

diffraction and derive the invertibility conditions for diffraction

kernels in general and Fresnel diffraction in particular. Then,

in Section IV, we explore potential application of the method

and propose a compression framework combining our proposed

transform with the JPEG 2000 codec. In Section V, we com-

pare different versions of the transform and report significant

improvements in the visual quality of the coded holograms over

existing methods. We briefly discuss some of the limitations in

Section VI, and conclude in Section VII.

II. SIGNAL PROPERTIES OF HOLOGRAMS

A. Diffraction of Light

The propagation of electromagnetic waves is governed by

Maxwell’s equations, describing a vectorial theory of light.

When the medium is linear, isotropic, homogeneous, non-

dispersive and nonmagnetic, light diffraction reduces to a
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complex-valued scalar model [16]. If we consider a monochro-

matic coherent source, diffraction can be modelled with the

Rayleigh-Sommerfield Diffraction formula [16]

U(p) =
1

iλ

∫∫

S

U(x)
eik‖p−x‖

‖p − x‖cos(n,p − x)dx (1)

evaluating the scalar field U at a point p, where λ is the wave-

length of the light, k = 2π
λ

is the wavenumber, x ∈ S are points

on a surface S over which is integrated and n is the surface

normal of S in x. The aformentioned diffraction integral is gen-

erally not efficiently computable: the integral has to be evaluated

over all points x for every point p. Nevertheless, if the surface S
is planar, diffraction to a parallel target plane can be written as a

convolution, which is much more efficient. Such a propagation

can be modelled precisely using the Angular Spectrum Method

[16]:

A(ωx , ωy , z) = A(ωx , ωy , 0)eiπz
√

λ−2 −ω 2
x −ω 2

y (2)

where A(ωx , ωy , z) is the 2D Fourier transform of the wavefield

in the xy plane at depth z.

For most applications, we can approximate the spherical point

spread functions further with parabolic wavefronts by using a

quadratic Taylor approximation of the diffraction kernel; this

reduces to Fresnel diffraction:

U(x, y, z) =
eikz

iλz

∫∫

R2

U(x′, y′, 0)e
i k
2 z [(x−x ′)2 +(y−y ′)2 ]dx′dy′

(3)

This integral can be efficiently computed using convolutions

with chirp-functions. By rewriting the (unitary) Fresnel trans-

form as a convolution, we get:

U(x, y, z) = U(x, y, 0) ∗ Kz (x, y)

with Kz (x, y) =
1√
λz

e
i π
λz (x2 +y 2 ) (4)

This means we can describe the propagation of light by convolv-

ing with a quadratic chirp function. Due to the separability of

the Fresnel transform, we will mostly describe holographic sig-

nals as one-dimensional, confined to the xz-plane for notational

simplicity.

With increasing z, the light will be increasingly spread over

all pixels of the hologram. This is the main reason why holo-

grams exhibit signal characteristics which differ significantly

from natural images. Methods for effectively addressing this

(and other) issues will be discussed in the next section.

B. Representing Holograms Efficiently

Holography is often used for metrology in small-scale/

microscopic applications. Because of the small distances, the

depth of the object will be encoded as a phase profile, since

these small depth variations will induce varying phase delays.

This allows digital holographic microscopes to acquire the phase

shift image of a sample, giving quantifiable information about

the optical distance besides the conventional bright field im-

age. In this type of setup, the object generally resides at a fixed

depth-plane parallel to the camera. This allows for refocusing

the object using an (inverse) Fresnel transform with the right

z, resulting in a wavefield looking like a natural image. This

is why e.g., Fresnelets are very effective for representing these

types of holograms: they essentially consist of B-spline wavelets

combined with a Fresnel transform. Unfortunately, in the macro-

scopic case, involving large viewing angles, this approach often

does not work anymore. There are two main reasons:

1) the scene is deeper, consisting of objects at multiple

depths. Due to the large hologram aperture size, it is

not possible to simultaneously have the whole scene in

focus using a single Fresnel transform. Fresnelets will

be ineffective at representing depths too far from the

chosen z.

2) diffuse surfaces and large viewing angles. In holography,

the diffraction angle of light θ is described by the fol-

lowing relationship: λf = sin(θ), where f stands for the

spatial frequency of the signal.

Diffuse surfaces, emitting light in all directions, will there-

fore contain frequencies covering the whole frequency spec-

trum, unlike natural imagery which tend to exhibit a power

spectrum proportional to 1/f 2 [17]. The diffusiveness, com-

bined with the large hologram aperture, will severely reduce the

depth of focus, making Fresnelet-like approaches less effective.

Moreover, wavelets will strongly penalize high frequencies after

compression, filtering out off-axis viewing angles and leading

to a “keyhole-effect”: objects will appear to be in a tunnel and

depth perception will be impaired because of the blurring of

sharp details.

C. No Optimal Transform for Hologram Compression

Suppose we have an optimal discrete transform A ∈ GL
(n, C) (general linear group) for a specific holographic sig-

nal emanating from (multiple) objects x. Then y = Ax will

be highly suitable for subsequent coding. However, the ob-

jects can in principle be present at many different depths. A

(thin) object displaced at some z will result in a diffraction

pattern on the hologram, which can e.g., be modeled by the

Fresnel transform of x at distance z, written as xz = Kzx. The

signal on the hologram will thus be efficiently represented by

y = Ãxz = AK−zxz .

However, we want to assess whether we can effectively repre-

sent scenes containing multiple depths. For limz→0 Kz , we get

K0 = I , the identity matrix. For large propagation distances, we

can use the Fraunhofer diffraction model, which is the Fourier

transform of x (up to a constant): limz→∞ Kz = F . This means

that (in the limit) we would need a transform A which can be

simultaneously sparse in both the spatial and the frequency do-

main, as well as for representing all depths in between. This is

impossible due to the Heisenberg uncertainty principle, meaning

that any transform A will by definition be suboptimal, resulting

in some sparsity concessions for holograms in general. To ad-

dress this limitation one could use overcomplete transforms or

adaptive transforms. Our goal is to address the latter in the next

section: how can we construct transforms for modeling objects

with variable depth content?
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Fig. 2. Representations of the Heisenberg boxes in Wigner space correspond-
ing to various (composite) unitary transforms: (a) fractional Fourier transform,
(b) Fresnel transform, (c) fan-chirp transform with wavelets, (d) modulated
Malvar-Wilson basis, (e) fresnelets, and (f) resetting chevron basis. Source (c)
and (f): [21].

III. INVERTIBILITY CONDITIONS FOR THE PROPAGATION OF

NON-PLANAR SURFACES

A. Unitary Transform as Tilings of the Time-Frequency

Domain

Classical linear analysis of signals using Fourier transforms,

conventional wavelets or Gabor atoms are often suboptimal for

the analysis and representation of many types of highly non-

stationary signals, such as speech [18], radar [19] and holo-

grams among many others. It is often useful to describe the

properties of such signals indirectly using time-frequency (TF)

analysis [20], which is a 2n-dimensional representation of a

n-dimensional signal depicting time and frequency domains si-

multaneously. We will refer to this representation as TF space,

which is also known in optics as “Phase space” or “Wigner

space”.

Specifically, several unitary transforms have been constructed

with non-axis aligned Heisenberg boxes [21], [22] (Fig. 2).

Some of these can be computed using operations such as axis

resamplings (e.g., Baraniuk’s Fan-chirp and Resetting Chevron

bases [21]); others use multiple Fourier transforms and all-pass

filters, such as the Linear Canonical Transform (LCT) [23]–[25],

on which we will elaborate.

LCTs are linear transforms of the TF domain described by

the symplectic matrix group Sp(2n, R), defined by

S ∈ Sp(2n, R) ⊆ SL(2n, R) ⇐⇒ STJS = J (5)

where SL(2n, R) is the special linear group. J is given by

J =

(

0n In

−In 0n

)

(6)

where 0n is a n × n matrix of zeros and In is a n × n identity

matrix. For every element S ∈ Sp(2n, R) given by

S =

(

A B
C D

)

(7)

Fig. 3. Time-frequency warpings associated to the Fresnel diffraction of sur-
faces with bounded first derivatives. The top row (C∞) is the original continuous
surface, the second row (C1 ) is the piecewise linear approximation used as a
proposed transform in this paper; the last row (C0 ) corresponds to a regular
Fresnel transform, which is inadequate to efficiently represent surfaces with
strongly varying depth.

where A to D are n × n matrices, there is a bijective mapping

between the double covering of Sp(2n, R) and the metaplec-

tic group Mp(n, R), which are composed of unitary operators;

namely, every symplectic matrix is mapped to a pair of unitary

operators differing only by a sign. The mapping operator MS

for the typical use case (when det B �= 0) is defined as [25]

MS [f ](x̃) := (det iB)−1/2

·
∫

Rn

eiπ (x̃⊺DB−1
x̃−2x

⊺B−1
x̃+x

⊺B−1 Ax)f(x)dx. (8)

The LCTs comprise among others the Fourier transform (a

90° rotation matrix), fractional fourier transforms (arbitrary ro-

tation matrices) and the Fresnel transform (shearing matrix);

see Fig. 2. By combining the unitary Fresnel Transform with

B-spline wavelets, we get the Fresnelets [13]. Unfortunately,

LCTs are insufficient for accurately describing diffraction from

a surface with non-constant depth: we would need a transform

with a varying amount of shearing in TF-space, which cannot

be expressed using a LCT; this is illustrated in Fig. 3.

The question is: can we construct unitary transforms with

these desired properties? To maximize the potential sparsity, we

would like design reversible transforms which accurately model

the diffraction of surfaces with a non-constant depth map. In the

following subsection, we will derive the surface constraints to

guarantee invertibility, using a generalization of the LCT.

B. Non-Planar Diffraction as a Spatially-Varying Convolution

Diffraction u′(x) of a signal u(x) on a planar surface in a

perpendicular direction with a distance z can be described as a

convolution with some kernel h(x):

u′(x) = u(x) ∗z h(x) (9)
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The power convolution ∗z with a real valued exponent z can be

described conventionally in Fourier space as

U ′(ω) = U(ω) · H(ω)z (10)

Suppose now we have a surface with a variable depth profile

described by z(x) emitting light with complex amplitude u(x).
The measured signal on the hologram is then described by the

spatially-varying convolution:

u′(x) = u(x) ∗z (x) h(x) (11)

When z(x) is constant, this reduces to the traditional case

where we get a unitary transform using e.g., the Fresnel trans-

form or the Angular Spectrum Method. Otherwise, we cannot

directly express the transform in Fourier space because of the

space-varying property. We can use a different approach to de-

termine for what z(x) and h(x) the expression is unitary.

For determining these relationships, we would like to be able

to generalize the mapping Sp(2n, R) ↔ Mp(2n, R), i.e., de-

scribing nonlinear canonical transforms. For this purpose we

will be using mathematical tools from classical quantum me-

chanics. There is a close relationship between the phase space

of particles (describing position and velocity) and the time-

frequency representation of signals; e.g., Heisenberg uncer-

tainty principle originating from quantum mechanics is used

in signal processing to express the trade-off between spatial and

frequency localization of transform elements.

C. The Heisenberg Uncertainty Principle Expressed in

Symplectic Geometry

We will use one of the main results from [15], where it has

been proven that there exists a bijective correspondence between

“Hamiltonian symplectomorphisms” and unitary transforms:

P Ham(2n, R) ↔ P U(L2(Rn )) (12)

� We denote by P Ham(2n, R) the set of all one-parameter

families ft ∈ Ham(2n, R) depending smoothly on t and

passing through the identity at t = 0.
� P U(L2(Rn )) is the set of all strongly continuous one-

parameter families of unitary operators Ft on L2(Rn ) de-

pending smoothly on t such that F0 is the identity operator.

Ham(2n, R) is a particular group of diffeomorphisms, de-

scribing operations on the 2n-dimensional TF space represent-

ing n-dimensional signals. A diffeomorphism is an isomorphism

between two smooth manifolds M and N . When the source and

target manifold are the same M = N , i.e., an automorphism,

it can be seen intuitively as a smooth invertible warping of the

manifold (in this case the TF space).

A diffeomorphism is also a symplectomorphism Symp
(2n, R) when it preserves the symplectic structure, effectively

satisfying the Heisenberg uncertainty of a transform. For this to

hold, the diffeomorphism must be volume-preserving, but this is

a necessary, not a sufficient condition. An intuitive understand-

ing of symplectomorphisms is the reformulation of Gromov’s

non-squeezing theorem [26], stating that any 2n-dimensional

phase space ball cannot be deformed by a canonical trans-

form so that it can be squeezed through a hole in any plane of

Fig. 4. Illustrations of the properties of symplectic geometry. (a) A symplec-
tomorphism cannot squeeze a phase space ball B2n

r with radius r into a hole
in any plane (xi , ωi ) with radius r′ < r. (b) Visualization of Ham(2n, R) ⊂
Symp(2n, R), which is the path-component containing the identity transform.

conjugate coordinates (xi , ωi) (i.e., pair of joint time and fre-

quency axes), whose hole is smaller than the cross-section of

the ball (see Fig. 4(a)).

This means that the Heisenberg uncertainty principle of a n-

dimensional signal shall not be violated when looking at that

signal along any axis. In the 1D case, the symplectic condition

reduces to area-preservation of any neighborhood in the 2D TF

space. For a more rigorous description of symplectic manifolds,

we refer to the appendix.

A symplectomorphism f1 is also Hamiltonian when it

is isotopic with the identity mapping. In topological terms,

Ham(2n, R) is the path-component of Symp(2n, R) containing

the identity. Concretely, there should be a continuous path in the

space of symplectomorphisms ft ∈ Symp(2n) parametrized by

t ∈ [0, 1] connecting the identity mapping f0 = Id with the tar-

get symplectomorphism f1 (Fig. 4(b)).

Using these properties, we can express desired properties of

a transform directly in TF domain, while guaranteeing that the

corresponding transform is unitary (and therefore invertible).

This approach allows us to tie in to and generalize the well-

known LCT and can simplify calculations that might otherwise

involve lengthy integral equations.

D. Non-Planar Surface Diffraction as a Unitary Transform

Without loss of generality, we can state that any unitary prop-

agation kernel h expressed in Fourier space as H must be an

all-pass filter of the form H(ω) = eiπG(ω ) , where G : R → R;

hence, the kernel can only cause phase delays, no amplitude

changes; otherwise, the transform will not preserve the energy

of the signal for all possible u, violating the conditions for a

unitary transform. Furthermore, we will assume the propagation

kernel h(x) to be symmetric; this will cause G to be symmetric

as well, i.e., G(ω) = G(−ω).
For the transform, we consider the class of signals with a

finite bandwidth 2η. In the time-frequency representation, this is

described by a symplectic manifold M = R × ]−η,+η[. This

choice can not only be justified by the limited bandwidth of

practical measurement systems, but is an inherent property of

holography, as the bandwidth is bounded by the diffraction limit

determined by the wavelength of the coherent light source.
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Fig. 5. Visual representation of a symplectomorphism operating on the TF
domain for signal points corresponding to a space-varying convolution. Every
signal point of u(x) corresponds to a vertical line (much like a Dirac pulse) in
the TF domain; every such line will be warped by a convolution with a different
kernel with differing phase shifts. The warping of the points within a line is
given by the sought ξ(x, ω).

Therefore, every point of the signal, corresponding to a verti-

cal bounded line in M, similar to a Dirac pulse, will experience

a frequency-dependent phase delay described by the diffeomor-

phism Φ : (x, ω) �→ (x + zt(x)g(ω), ω), with the instantaneous

frequency g(ω) = ∂
∂ω G(ω) as illustrated in Fig. 5.

This still gives us a degree of freedom, as we still can choose

how to redistribute the points within each line. This is de-

termined by the diffeomorphism W : (x, ω) �→ (x, ξt(x, ω)),
warping the points using (an unknown) ξt(x, ω).

We therefore have to find out when the following composite

diffeomorphism is a symplectomorphism:

T = Φ ◦W =

{

x̂ = x + zt(x)g(ξt(x, ω))

ω̂ = ξt(x, ω)
(13)

where we choose zt(x) = t · z(x), with t ∈ [0, 1]. z0(x) = 0
will thus lead to the identity mapping and z1(x) = z(x) will be

the target depth profile. From the appendix, we can infer that

the condition for symplecticness for a 1D signal is given by

∂x̂

∂x
· ∂ω̂

∂ω
− ∂ω̂

∂x
· ∂x̂

∂ω
= 1 (14)

If this holds for all t ∈ [0, 1], we have a Hamiltonian symplec-

tomorphism. We get the following differential equation:

(

∂

∂ω
ξt(x, ω)

) (

∂

∂x
zt(x) · g(ξt(x, ω)) + 1

)

= 1 (15)

After solving for ξt(x, ω), we get:

∂

∂x
zt(x) · G(ξt(x, ω)) + ξt(x, ω) = ω + C (16)

The constant C is yet to be determined. Because the dif-

feomorphism must also be Hamiltonian, ξt(x, ω) must be an

isotopy parametrized by t for every chosen x. Isotopies on a

line interval must preserve point ordering, from which it fol-

lows that the limiting extremities ξt(x,±η) = ±η are fixpoints,

giving us C = ∂xztG(±η):

∂

∂x
zt(x)

(

G(ξt(x, ω)) − G(±η)
)

+ ξt(x, ω) = ω (17)

Fig. 6. The angular spectrum method models the diffraction of spherical
waves, meaning that any non-planarity will ensue in some self-occlusion (and
thus prevent reversibility). Intuitively, this can be seen in the figure, where two
collinear rays map onto the same point on the detector at z = 0, making them
indistinguishable.

Symplectomorphisms are invertible, so ξt(x, ω) must be invert-

ible in ω as well, for every x, t. We can find the inverse mapping

ξ−1
t (x, ω) =

∂

∂x
zt(x)

(

G(ω) − G(±η)
)

+ ω (18)

Because of their invertibility property and because of ξ0(x, ω) =
ω, ∀x ∈ R both ξt(x, ω) and ξ−1

t (x, ω) have to be strictly in-

creasing, i.e.,

∂

∂ω
ξ−1
t (x, ω) > 0 (19)

From (18) and (19), we get the inequality ∂xztg(ω) > −1.

Given the symmetry of G, g must be antisymmetric. We thus get

the equivalent condition ∂xztg(ω) < 1 to hold as well. Combin-

ing these properties, we get the condition for symplecticness:

∣

∣

∣

∂

∂x
z(x)

∣

∣

∣
< inf

]−η ,+η [

(∣

∣

∣

∂

∂ω
G(ω)

∣

∣

∣

−1)

(20)

giving us one of the main results of this paper: for every symmet-

ric unitary propagation kernel, any surface with a sufficiently

bounded first derivative has an associated unitary transform.

It is interesting to note that this relationship is precisely in-

verted w.r.t. the Shannon sampling condition for phase aliasing:

more bandwidth means we can unambigously retrieve the un-

wrapped phase of steeper surfaces. Conversely, less bandwidth

means we can invertibly transform surfaces with steeper surface

features. This means we can still transform deep scenes which

are aliased in their phase information, which is often the case

for holograms of macroscopic objects. (21) shown at the bottom

of the page.

Using the Angular Spectrum Method for the diffraction spher-

ical waves (2), we can determine that for the one-dimensional

case, the propagation kernel produces a phase delay G(ω) =√
λ−2 − ω2 defined for a holographic signal bandlimited by

the diffraction limit η = λ
−1 . When computing the infimum for

⎧

⎪

⎨

⎪

⎩

(

δix + ∂
∂ i zx(x, y) · gx(ξx , ξy )

)(

∂
∂ω j

ξx

)

+
(

δiy + ∂
∂ i zy (x, y) · gy (ξx , ξy )

)(

∂
∂ω j

ξy

)

= δij for i, j ∈ {x, y}
(

∂
∂ξx

gy (ξx , ξy ) · zy (x, y) − ∂
∂ξy

gx(ξx , ξy ) · zx(x, y)
)

·
(

∂ξy

∂ωx

∂ξx

∂ωy
− ∂ξx

∂ωx

∂ξy

∂ωy

)

= 0

(21)
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(20), we get:

inf
]−λ−1 ,λ−1 [

∣

∣

∣

√
λ−2 − ω2

ω

∣

∣

∣
= 0 (22)

Therefore enforcing that the first derivative of a surface

must be identically zero. This means that the angular spectrum

method can only be used for parallel plane-to-plane diffraction

if invertibility is required. This property can also be understood

intuitively: in Fig. 6, we can observe that for any non-planar

shape, the surface will necessarily self-occlude some rays and

cause ambiguity when attempting to retrieve the signal.

E. Non-planar Fresnel Diffraction

We can use an approximation to the diffraction model instead

by using the Taylor expansion of G(ω):

√

λ−2 − ω2 =
1

λ
− λ

2
ω2 − λ

3

8
ω4 − λ

5

16
ω6 − 5λ

7

128
ω8 + ...

(23)

Using any Taylor approximation, we get a polynomial which is

guaranteed to be bounded, resulting in a strictly positive infi-

mum. Depending on the order of the chosen polynomial, we get

a trade-off between precision and maximum surface derivative.

The second-order approximation corresponds to Fresnel diffrac-

tion (amounting to parabolic wavefronts), which is sufficiently

precise for most applications involving holography. Using this

approximation, the symplectomorphism becomes:
{

x̂ = x − λz(x)ξ(x, ω)

ω̂ = ξ(x, ω)
(24)

We now get a spatially varying adaptive shear of the TF

domain. Note that if we pick z(x) = z to be constant, it reduces

to a regular shear, resulting in a conventional LCT. Furthermore,

ξ(x, ω) and its inverse become:

ξ(x, ω) =

{

1−
√

λ2 η 2 (∂x z (x))2 −2λ∂x z (x)ω+1

λ∂x z (x) if ∂xz(x) �= 0

ω if ∂xz(x) = 0

(25)

ξ−1(x, ω) = −λ

2

∂

∂x
z(x)ω2 + ω +

λ

2

∂

∂x
z(x)η2 (26)

If we assume that the surface z(x) continuous and differen-

tiable everywhere, z(x) can be locally approximated by a linear

function αx with arbitrary precision by choosing a small enough

∆x. This gives us (locally) that ∂xz(x) = α. Using (26), we get:

ξ−1(ω) = −1

2
λαω2 + ω +

1

2
λαη2 (27)

Note that the diffeomorphism is not a function of x anymore

(this is true for all valid G(ω)). This means that the symplecto-

morphism can be computed directly in the Fourier domain, in

this case using a quadratic distortion. Note that this particular

transform is very similar to the Fan-chirp transform found in

[21], but modulated as to have the origin of the fan to lie out-

side of the manifold M. This transform effectively computes

a tilted surface diffraction using Fresnel diffraction. This bears

similarities to [27] where tilted diffraction is used with angular

spectrum diffraction, but the latter lacks invertibility because of

(22).

How close is this (local) quadratic warping to Fresnel diffrac-

tion of a tilted plane? The coordinate warping of a source wave-

field u to a target wavefield û is described via the Fourier trans-

form F :

F{û(x)} = Û(ω) = U(ξ−1(ω)) =

∫

R

u(x)e2πixξ−1 (ω )dx

(28)

Using the Fourier inversion theorem, we get:

û(x̂) =

∫∫

R2

u(x)e2πi(xξ−1 (ω )−x̂ω )dωdx

=

∫

R

u(x)√
iλαx

e
i π

λα x ((x−x̂)2 +(λαηx)2 )dx (29)

We get the same expression as for Fresnel diffraction (in (3)),

where z is substituted by αx, up to a differing attenuation in

the denominator. Fortunately, this discrepancy will be reduced

when the average distance of the surface to the hologram is large

enough.

F. Multidimensional Non-planar Fresnel Diffraction

This approach can also be generalized to higher-dimensional

signals. For a n-dimensional signal, we define an associated 2n-

dimensional symplectic manifold M = R
n × B

n
η , where B

n
r

stands for the n-dimensional open ball with radius r, formally:

B
n
r = {x ∈ R

n : ‖x‖ < r}. We will choose λ = 1 to simplify

the subsequent expressions.

In the 2D case, the 4D symplectomorphism becomes:

T =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

x̂ = x + zx(x, y) ∂
∂ωx

G(ω̂x , ω̂y )

ŷ = y + zy (x, y) ∂
∂ωy

G(ω̂x , ω̂y )

ω̂x = ξx(ωx , ωy )

ω̂y = ξy (ωx , ωy )

(30)

We drop the subscript t for notational clarity. The conditions

for symplecticness are now given by a system of five partial

differential equations (21), where δ is the Kronecker delta func-

tion (δij = 1 if i = j, δij = 0 if i �= j). Note that the general

expression has two depth maps zx and zy : this allows for the

modeling of some astigmatic phenomena, where the rays in the

x-plane and y-plane have different foci, which can be useful for

some applications. However, for most intents and purposes, we

can assume that z = zx = zy .

It is difficult to find a closed-form solution with this general

description alone. We therefore make the additional assumption

that points on the manifold only undergo motion in the direc-

tion of the surface gradient: otherwise, it would mean that light

rays (associated to points in M) would change direction and

thus bend in mid-air, which is impossible for free space propa-

gation. Working with these assumptions, we get the following
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Fig. 7. Backpropagated hologram of a tilted ruler. The upper image is recon-
tructed by repropagating the hologram to the depth corresponding to the middle
of the ruler (at 4.1 mm), the lower image uses the quadratic warping to correct
for the tilt w.r.t. the hologram plane. Notice how the defocus at the ruler edges
is corrected. Source: ZIF at the Warsaw University of Technology.

expressions for 2D arbitrary surface Fresnel diffraction:

ξ−1
x (x, y, ωx , ωy ) = ωx +

∂xz(x, y)

2
(ω2

x + ω2
y − 1) (31)

ξ−1
y (x, y, ωx , ωy ) = ωy +

∂yz(x, y)

2
(ω2

x + ω2
y − 1) (32)

Here too, we get a pure Fourier domain warping function

when z(x, y) is a plane.

We evaluate this warping of the Fourier space on the ex-

perimentally acquired hologram of a tilted ruler: this hologram

was recorded using a camera with a pixel pitch p = 3.105 µm

and with a laser of wavelength of λ = 642.1 nm. The ruler was

placed at a distance of 4.1 mm and tilted along the x-axis with an

angle of approximately 12◦. The resulting reconstructions with

and without frequency rewarping are shown in Fig. 7.

IV. APPLICATIONS

Because the transform is unitary, it can substitute the (unitary)

Fresnel transform currently used in many existing systems to

extend their application domain to deep scenes.

For the sensing of holograms with sparse/incomplete data,

it could benefit applications such as viewpoint inference and

despeckling of holograms [12], scene reconstruction from sub-

sampled holograms using compressed sensing [28], or for com-

pressive holographic tomography [29]. The transform bounds

also indicate what types of object surface shapes are possible to

(fully) recover from a hologram.

The proposed transform could also have applications for e.g.,

iterative algorithms, where the source and destination wave

fields must be transformed into each other. This could benefit

(non)convex optimization algorithms for resolution enhance-

ment [30] or ping-pong algorithms for computer-generated

holography [31], extended to deep scenes.

Other application of the transform could benefit depth-

adaptive hologram transformations, for subsequent filtering

Fig. 8. The piecewise constant emissive surface approximation in (a) will
map to wedge-shaped footprints in the TF domain in (b) (see matching colors).
Together, they will seamlessly fold the TF domain.

and/or coding. In particular, we will focus on this paper on

the lossy compression of digital holograms.

A. Lossy Compression of Deep Holograms

Although we can analytically model diffraction between arbi-

trary surfaces, it is not practically desirable to model the general

case, especially for compression purposes, because of the fol-

lowing reasons:
� evaluating the integral in transform for an arbitrary z(x, y)

amounts to computing a different point spread function for

every sample each affecting all hologram pixels, resulting

in O(n2) computations for n samples.
� The associated depth map has to be estimated precisely (or

given) for the corresponding hologram.
� This depth map will cause significant overhead when cod-

ing the hologram.

Instead, we propose to approximate the diffraction for cod-

ing using a piecewise polygonal approximation with only a few

elements. The rationale is that small deviations from the actual

depth map will only result in limited defocus and this will not af-

fect the compressibility significantly. For planar surface pieces,

we have an analytical expression in the Fourier domain (31),

(32). Moreover, this approach will only require the storage of

a small amount of vertices, minimizing overhead. Also, when

the depth map is not available, only a coarse approximation es-

timate is required. Actually, this approach can be viewed as a

folding of the time-frequency domain using neatly fitting tiles;

this is illustrated in Fig. 8. This transform is then intended to

be subsequently compatible with conventional transforms and

codecs.

The suitability of this proposed transform will be evaluated for

coding holograms of deep scenes. We divide each hologram in

a regular square grid with a limited number of segments, which

are each diagonally divided into two right triangles. We thus

only need to store the depth of the corners of all grid elements.

Note that we can potentially improve performance further by

using meshes with adaptive triangulations, but this is currently

considered out of scope.

In the forward transform, each square is propagated to its

designated center using the unitary Fresnel propagation kernel,

then subdivided into two right triangles which are each sep-

arately transformed in their respective Fourier domains, then
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Fig. 9. Compression results using the three tested codec configurations. The PSNR (expressed in dB) is shown in (a), the SSIM of the magnitudes of the
backpropagated hologram for the front and back of the scene are shown respectively in (b) and (c).

Fig. 10. Backpropagated holograms using non-planar Fresnel diffraction. (a)
The non-approximated model. (b) The piecewise planar model.

resampled using the following expression:

U ′(ωx , ωy ) =

√

∂(ξx , ξy )

∂(ωx , ωy )
U(ξx(ωx , ωy ), ξy (ωx , ωy )) (33)

using the Jacobian to preserve the unitarity of the axis rewarping.

The resampling is done using 2D bi-cubic spline interpolation.

Note that this approximation can impact the distortion at high

coding rates; more accurate resampling techniques exist, but

often come at increased computational costs [32].

To code the hologram, we need a (coarse) representation of

the depth map. When the depth is not known, it has to be es-

timated. Depth estimation for shallow and smooth surfaces is

fairly straightforward in holography: it mainly involves the un-

wrapping of the phase. This approach is unfortunately mostly in-

feasible for our use case, because the surfaces are rough, severely

aliased in the phase information, contain speckle noise and have

multiple discontinuities. For these types of holograms, depth

maps could be extracted by e.g., maximizing some sharpness

metric in a focal stack of refocused versions of the hologram

[33].

V. EXPERIMENTS

For the experiments, we use a computer-generated hologram

containing multiple dices generated using the technique de-

scribed in [3], see Fig. 1. The hologram is complex-valued,

with a resolution of 1280 × 1280 pixels, with a pixel pitch of

p = 6.4 µm. We use the red channel, corresponding to a wave-

length of λ = 640 nm. The signal has a maximal bandwidth of

2η = 1/p. We use a 16 × 16 square grid for the piecewise planar

approximation.

The experiments section is divided in two parts: first, we

will compare the difference in quality and calculation time be-

tween the proposed piecewise planar approximation and the

non-approximated spatially varying Fresnel transform; in the

second part we will evaluate the suitability of the proposed

transform for compression and compare it with other conven-

tional transforms.

A. Comparison With the Non-Approximated Model

The non-approximated model consists of evaluating the in-

tegral (or its inverse) from (3). However, we cannot straight-

forwardly discretize this expression, because this would cause

aliasing: the frequencies of the PSF Kz (4) for points too far from

its center will surpass the Nyquist rate. To address this problem,

we will use a solution inspired on the Wavefront Recording

Plane method [34], but adapted to Fresnel diffraction: we only

evaluate the discretized PSF at points that do not violate the

Nyquist rate. Formally, the discretized integral of the propa-

gated hologram U ′ for an surface z with complex amplitude U
is found by:

U ′(x, y) =
∑

x ′,y ′

U(x′, y′) · Kz (x ′,y ′)(x − x′, y − y′) · m(x,x ′,y ,y ′)

(34)

where the binary masking function m is given by

m(x,x ′,y ,y ′) =

{

1 if
√

(x − x′)2 + (y − y′)2 ≤ λ|z (x ′,y ′)|
2

0 otherwise

(35)

Aside from avoiding aliasing, this approach will markedly

improve calculation times over an integration over the complete

hologram, since we only need to evaluate the expression for

points within a limited radius. For the inverse transform, the
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Fig. 11. The compressed dice hologram using 1 bpp. The upper row of subfigures is focused at the back plane, the lower row is focused at the front plane. (a) and
(e) default JPEG 2000. (b) and (f) constant-depth transform with JPEG 2000. (c) and (g) Piecewise planar transform with JPEG 2000. (d) and (h) are the originals.

expression becomes:

U(x, y) =
∑

x ′,y ′

U ′(x′, y′) · Kz (x,y )(x − x′, y − y′) · m(x ′,x,y ′,y )

(36)

We implemented the code in MATLAB R2017b on a ma-

chine with an Intel Core i7 6700K CPU and 32GB RAM, run-

ning on the OS Windows 10. The proposed piecewise trans-

form took 2.1 s, while the discrete integration took about 46

minutes, making it impractical for real-time applications. The

transformed holograms are shown on Fig. 10. Note that the non-

approximated model will not be exactly reversible, because the

depth map does not satisfy (20) in every point (e.g., at the edges

of the dices, where some light leaking is visible). The proposed

transform causes some blurring at the dice edges because of

the gradual z-change of the piecewise planar depth map, but

the overall scene is sharply in focus. This property will benefit

compression performance, as shown in the next subsection.

B. Evaluating Compression Performance

We compare the proposed transform with two other trans-

forms: standard JPEG 2000, and a Fresnelet-inspired transform,

which we will call the “constant-depth” transform, combining

the unitary Fresnel transform propagated to the middle of the

scene with the CDF97 wavelets instead of B-Spline wavelets

for better compatibility with JPEG 2000. Although B-spline

wavelets have superior theoretical properties in the context of

diffraction [13] and have shown to be effective for autofocus

applications [35], it has been shown that Fresnel transformed

CDF97 wavelets are more effective at sparsely representing

holograms [36]. Both the real and imaginary components of

the signal are coded as separate 8-bit quantized channels, us-

ing a 4-level Mallat CDF97 wavelet decomposition and 32 ×
32-sized codeblocks. The depth values are not encoded in the

bitstream.

The compression results are shown in Fig. 9. Our proposed

transform consistently outperforms the constant-depth and clas-

sic JPEG 2000 transforms. Although the gain in PSNR is rather

modest, the visual difference between the reconstructed holo-

grams is quite significant; this is shown in Figs. 11 and 12, show-

ing reconstructed holograms compressed using various methods

at 1 bpp and 0.25 bpp respectively. We also report the SSIM of

the reconstructed amplitude images at the front and back planes

to better quantify the improvement brought by our proposed

algorithm.

Even at higher rates, JPEG 2000 introduces a lot of noise; at

lower rates, the scene is barely recognizable. The constant-depth

transform performs better, but still exhibits noise. Particularly,

the depth information is strongly impacted: objects at their re-

spective depths appear more blurry and the defocus is insuffi-

cient. At lower rates, the difference between the front and back

refocusings is almost imperceptible. The proposed transform

preserves the depth information at both rates, and has sharper

details.

VI. LIMITATIONS

In this section, we briefly discuss some of the limitations of

the method in its current form, and some potential solutions.

Some type of holograms or scenes that will be suboptimally

representable using the proposed transform are the following:
� Holograms with too high surface gradients, surpassing the

bound of (20). Using the piecewise linear approximation

will partially remedy this shortcoming by regularizing the

depth map, as is the case for the used dice hologram. But
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Fig. 12. The compressed dice hologram using 0.25 bpp. The upper row of subfigures is focused at the back plane, the lower row is focused at the front plane.
(a) and (e) default JPEG 2000. (b) and (f) constant-depth transform with JPEG 2000. (c) and (g) Piecewise planar transform with JPEG 2000. (d) and (h) are the
originals.

Fig. 13. Example of a failure case. The scene in (a) cannot be accurately
represented using a (single) depth map, and has a discontinuity which is too
large. The corresponding TF segments in (b) will overlap because of occlusion,
violating the condition for a unitary transform.

this will not work for the general case, where objects are

very steep or have many large discontinuities. A potential

solution would involve segmenting the TF domain into

separate pieces, who each individually satisfy (20).
� TF manifolds with anisotropic bandwidths. More general

expressions for TF warping would be required for such

content.
� Objects placed directly behind each other in wide viewing

angle holograms. Such scenes cannot be faithfully repre-

sented by a single depth map (see example in Fig. 13).

Aside from TF segmentation, the hologram could be di-

vided into different views, each with a corresponding depth

map.

In future work, we intend to further investigate other applica-

tions of the transform, more efficient and accurate techniques for

computing the TF warping operator, generalizing the transform

to broaden the application domain and overcome some of the

previously mentioned limitations, and integrating the transform

in a video codec.

VII. CONCLUSION

We propose a construction of unitary transforms modeling

the diffraction of non-planar surfaces for deep holography. We

motivate the reason and choices made for the operator, derive

its properties and constraints for validity, and apply a compu-

tationally efficient approximation on a deep hologram. We also

show its close ties to the Linear Canonical Transform, by using

its generalization found in the domain of symplectic differential

geometry. The application of data compression was explored,

showing improved compressibility over conventional models,

both objectively and subjectively, has been demonstrated. With

this work, we hope to advance the understanding of transforms

tailored for diffraction and to have an positive impact on the

compression performance of digital holograms.

APPENDIX

SYMPLECTIC MANIFOLDS

Differentiable manifolds are topological manifolds with a

globally defined differential structure, thereby behaving locally

as a linear space, enabling one to do calculus on such a mani-

fold. These manifolds can be equipped with a differential form,

which is a coordinate-independent approach to multi-variable

calculus on differential manifolds. This subject is too large to

fully address in an appendix, so we refer to [37] for more infor-

mation.

A symplectic manifold is an even-dimensional smooth man-

ifold equipped with a symplectic form ω, which is a closed
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non-degenerate differential 2-form. A diffeomorphism f which

preserves this symplectic form is called a symplectomorphism.

Formally, a mapping f : (M,ω) → (N ,ω′) defined on man-

ifolds M and N with associated differential forms ω and ω
′

respectively is a symplectomorphism when:

f ∗
ω

′ = ω (37)

where f ∗ is the pull-back of f [37]. In our case, we consider f
to be automorphic (i.e., M = N ), meaning that the symplectic

form should be invariant under f mapping M to itself. Writing

this out, gives us:

f ∗
(

∑

ω
′
kldx

′
k ∧ dx′

l

)

=
∑

ωijdxi ∧ dxj (38)

using the wedge product ∧; equivalently,

∑

k,l

(ω′
kl ◦ f)

∂

∂xi
fk · ∂

∂xj
fl = ωij (39)

When using the symplectic normal form ω = J (from (6)), (39)

reduces to a set of partial differential equations, namely:

∀i, j ∈ {1, 2n} :

n
∑

k=1

∂fk

∂xi
· ∂fk+n

∂xj
− ∂fk+n

∂xi
· ∂fk

∂xj
= Jij

(40)

These equations are equivalent to the Poisson bracket operator

[37], [38].

As mentioned previously (12), there is a bijective correspon-

dence between the space of Hamiltonian symplectomorphisms

and (a subset of) unitary transforms. This mapping can be com-

puted in general using the following steps [39]. First, the associ-

ated Hamiltonian H is computed using the following equation:

H(x, t) = −
∫ 1

0

x
T
ω

( ∂

∂t
ft ◦ f−1

t

)

(βx)dβ (41)

where ft is a Hamiltonian symplectomorphism parametrized

by t (so that f0 corresponds to the identity mapping), and f−1
t

is its inverse. Then, using Weyl quantization, the associated

Hamiltonian operator Ĥ operating on some function u(x) is

given by:

(Ĥu)(x) =

∫∫

e2πi(x−y)tH
(

x + y

2
, t

)

u(x)dydt (42)

Finally, the corresponding unitary transform Û can be found by

solving a Schrödinger equation:

i�
∂

∂t
Ût = ĤÛt (43)

where typically � = π/2 is chosen; Û0 is the identity operator.

Unfortunately, finding closed-form analytical solutions using

this generic procedure is difficult (and perhaps impossible) for

many practical cases. Instead, we use a different approach in

the paper, but we’ve added this information nonetheless for

completeness.
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