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UNITARY UNIFICATION OF S5 MODAL LOGIC AND ITS

EXTENSIONS

Abstract

It is shown that all extensions of S5 modal logic, both in the standard formal-

ization and in the formalization with strict implication, as well as all varieties of

monadic algebras have unitary unification.

1. Introduction

Unification and E-unification are important applications of logic in Com-
puter Science, in particular in Automated Deduction as well as in Term
Rewriting Systems and Databases (see [1], [8]). There is a classification of
equational theories, or varieties of algebras, under unification types.
Given an equational theory E and a finite set of pairs of terms called E-
unification problem: (Π) : (s1, t1), ..., (sn, tn),
a unifier (a solution) for (Π) is a substitution σ such that
E ⊢ σ(s1) = σ(t1), ..., σ(sn) = σ(tn).
(Π) is called unifiable (solvable) if there exists at least one unifier.
A substitution σ is more general then a substitution τ , τ � σ,
if there is a substitution θ such that E ⊢ θ ◦ σ = τ .
� is reflexive and transitive.
A mgu, the most general unifier can be interpreted as “the best” solution
of the unification problem (Π). We consider � between unifiers modulo
exchanging of variables.
An equational theory E is said to have unitary unification (or a unification
type =1) if for every two unifiable terms t1, t2, there is a mgu σ (more
precisely E-mgu) such that E ⊢ σ(t1) = σ(t2).
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The other unification types are defined by taking “the worst” cases of unifi-
able terms under an equational theory E: if there exist finitely (infinitely)
many maximal w.r.t � unifiers in the standard formalization and in the
formalization with strict implication, for some terms then E has a finite
(infinite) unification type, if there is no maximal w.r.t. � unifiers then E

has the unification type = 0 (very bad). Hence ”symbolic” unification type
can be =1 (unitary), finite, infinite or = 0.

Consider an example of the variety of Boolean algebras. Unifiable
terms always have a mgu, i.e. the variety of Boolean algebras has unitary
unification. In other words Classical (propositional) Logic has unitary uni-
fication. Unification algorithms for finding a mgu in Boolean algebras are
described in Martin, Nipkov [7].
Questions on unification and unification types of varieties of algebras can
be translated into various logics which correspond to the varieties (see Ghi-
lardi [5]). In this case the unification problem is a single formula A and
the unifier for a formula A is a substitution σ such that ⊢ σ(A) in logic.
A formula A is unifiable if such σ exists. It is known that every unifiable
formula A in the classical logic has a most general substitution σ such that
⊢ σ(A).
Intuitionistic logic INT (or, the variety of Heyting algebras) can not have
unitary unification. Example: the formula x∨ ¬x has two “maximal” uni-
fiers: x 7→ (p→ p) and x 7→ ¬(p→ p) but a mgu for x∨¬x does not exist.
S.Ghilardi, ([5]) showed that INT has finitary unification, i.e. if a formula
is unifiable, then there are finitely many ”best” (i.e. maximal w.r.t. �)
unifiers.
Using algebraic approach (which will be sketched in the next paragraph)
S. Ghilardi also showed ([4] ) that the variety of distributive lattices and
the variety of distributive lattices with pseudocomplement have unification
type = 0.

We briefly present, after S.Ghilardi [4], [6], an algebraic to unification
and unification types. Ghilardi used finitely presented algebras but we will
only use locally finite varieties, i.e. such varieties that finitely generated
algebras are finite. In this case “finitely presented” is reduced to “finite”.
We show, using Ghilardi’s algebraic method, that all varieties of monadic
algebras have unitary unification. Moreover we prove, both in algebraic and
in syntactical way, that all extensions of modal logic S5, in the standard
formalization and in the formalization with strict implication, also have
unitary unification.
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2. The algebraic approach to unification

In this approach, which is equivalent to the previous “symbolic” one (cf.
[4]), for a given locally finite equational theory E, that determines the
variety of algebras VE , E-unification problem (Π) corresponds to a finite
algebra A from VE .
A unifier (a solution) for A is a pair given by a projective algebra P and a
morphism u : A→ P. P is projective if for every f and q there is a g such
that the diagram Diag.1 commutes

(Diag.1)

Given two unifiers u1 and u2 for A, u1 : A → P1 is more general then
u2 : A → P2, u2 � u1 iff there is a morphism such that the following
diagram (Diag.2) commutes:

(Diag.2)

Unification types are defined in the same way as for symbolic unification,
i.e. according to the number (1, finite, infinite or 0) of maximal (w.r.t. �)
unifiers.

Theorem 1. (S.Ghilardi [4]). For any equational theory E the ‘symbolic’
and the ‘algebraic’ unification type coincide.

Corollary 2. ([4]): The unification type is a categorical invariant.
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It is known that finite Heyting algebras correspond, by duality, to finite
posets (partially ordered sets).
For a locally finite variety V ⊆ H, given by a theory E, Vfin, the category
of finite algebras from V corresponds to FV , the category of finite poset.
Now E-unification problem corresponds to a finite poset P .

A unifier (solution) for P is a pair given by an injective (see below) poset
I ∈ FV mand an (open) morphism u : I → P ,
Given two unifiers u1 and u2 for P , u1 : I1 → P is more general then
u2 : I2 → P , u2 � u1, there is a morphism such that the following diagram
(Diag.3) commutes:

(Diag.3)

Example 1. Boolean algebras and Classical Logic (S.Ghilardi [6]). The
variety is locally finite; finite (countable) algebras are projective (P.Halmos),
except the degenerate one-element algebra which is not unifiable. Hence,
unification type is =1, for any finite non-degenerate Boolean algebra A,
the identity morphism i : A→ A is a mgu.

For a given poset P there is a Heyting algebra P ∗ of the upward closed
subsets, i.e. such X ⊆ P , that (p ∈ X, p ≤ q ⇒ q ∈ X).
Upward closed subsets are also called generated subframes.
An order preserving map f : P → Q among posets is said to be open iff for
p ∈ P, q ∈ Q, f(p) ≤ q ⇒ ∃p1 (p ≤ p1 and f(p1) = q).
If an open map f is surjective, then it is called a p-morphism and then Q

is a p-morphic image of P .
A poset I is injective in FV iff whenever I is a generated subframe of some
P ∈ FV then there is a p-morphism g : P → I which does not change the
elements of I.
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Example 2. Gödel-Dummett’s algebras and linear logic of Gödel and
Dummett (cf.S.Ghilardi, [6]). Gödel Dummett’s algebras are Heyting alge-
bras such that:
(p→ q) ∨ (q → p) = 1
The variety is locally finite; finite algebras are dual to the category of lo-
cally linear posets, i.e. posets satisfying:
(p ≤ q1 and p ≤ q2)⇒ (q1 ≤ q2 or q2 ≤ q1)
and open maps.
It can be checked that every nonempty finite locally linear poset P is an
injective object, hence the identity morphism i : P → P is a mgu, and
linear logic of Gödel and Dummett has unitary unification.
In this example it is more convenient to deal with the dual category of
finite posets then with algebras.

3. Monadic Algebras and Extensions of Modal
Logic S5

A topological Boolean algebra A = 〈A,∨,∧,−, I, 0, 1〉 (equivalently a closure
algebra) is a Boolean algebra 〈A,∨,∧,−, 0, 1〉 with an additional unary
operation I, for “interior” (or C, for “closure”) such that Ia ≤ a, I(a∧b) =
Ia ∧ Ib, IIa = Ia, I1 = 1; (Ca = −I − a).
Modal logic S4 (or the variety of topological Boolean algebras) does not
have unitary unification: the unifiable formula ✷A∨✷¬A does not have a
mgu. (‘necessity’ ✷ corresponds to the ‘interior’ I).
However S.Ghilardi showed that modal logic S4 has finitary unification
type.

A topological Boolean algebra is a monadic algebra if I − Ia = −Ia

holds. Monadic algebras were introduced by Paul Halmos in his algebraiza-
tion of 1st order logic
An algebra is simple if it has only two congruences; in case of a monadic
algebra A, this means that Ia = 0, for a 6= 1.
Let An = 〈2n,∨,∧,−, I, 0, 1〉 be a simple monadic algebra of power 2n, i.e.
with n atoms (it is called a Henle algebra), let Mn be the variety generated
by An, and let M be the variety of all monadic algebras. It is known that
M and Mi for i = 1, 2, ... are locally finite and all subvarieties of M form
a chain: M0 ⊂M1 ⊂ ... ⊂M.
M0 is the class of one element monadic algebras. It is also known that
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every finite monadic algebra is a direct product of simple algebras and that
every n-generated free algebra in M, FrM(n), is isomorphic to n-generated
free algebra in Mk, FrMk

(n), for k = 2n.
The next lemma follows from the fact that a (finite) projective algebra
is a retract of a free (finite) algebra and from the remarks (above) on n-
generated free algebras.

Lemma 3. (R.Quackenbush [9]). Let V be a variety of monadic algebras,
V 6= M0. Then a finite nontrivial algebra P is projective in V iff P has
A1 as a homomorphic image.

Example 3. A monadic algebra on the powerset of X = {a, b, c, d} with
I such that all the open (and closed) sets are ∅, {a, b}, {c, d}, {a, b, c, d} is
not projective.

Theorem 4. The variety of all monadic algebras and its every subvariety
have unitary unification.

Proof (algebraic). Let V be a variety of monadic algebras, V 6= M0.
We use algebraic definition of unification. A unifier (a solution) for A is a
pair given by a projective algebra P and a morphism u : A→ P. A finite
nontrivial algebra A is unifiable in V iff there is a projective algebra P and
a homomorphism u : A → P. By the above lemma any finite nontrivial
algebra P is projective iff P has A1 as a homomorphic image. It follows
that A has A1 as a homomorphic image, i.e. A is projective in V. Hence
the identity morphism i : A→ A is a mgu and V has unitary unification.

Corollary 5. Modal logic S5 and all its extensions have unitary unifi-
cation.

Modal logic S5 corresponds to the variety M of all monadic algebras
and extensions of S5 correspond to subvarieties of the variety M.

Remarks: The above proof is an application of S. Ghilardi algebraic
approach to unification. Unitary unification in the variety of all monadic
algebras can also be derived in entirely different way from the fact that
discriminator varieties have unitary unification (S. Burris, [1]). S. Ghilardi
stated in his lecture (Tarski Centenary Symposium 2001) that modal logic
S5 has unitary unification.

Till now we have considered modal logic S5 in the standard formaliza-
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tion based on classical logic with the classical connectives plus ‘necessity’
operator ✷. There is also a formalization of S5 with strict implication “≺”
(C. A. Meredith) and the other connectives, with the axioms x ≺ (y ≺ y),
(x ≺ y) ≺ ((y ≺ z) ≺ (x ≺ z)), (((x ≺ y) ≺ z) ≺ (x ≺ y)) ≺ (x ≺ y), usual
axioms for ∧, (x ≺ y) ≺ (¬y ≺ ¬x), x ≺ ¬¬x, ¬¬x ≺ x, x∧¬(x∧¬y) ≺ y,
x ∨ y defined by ¬(¬x ∧ ¬y) and Modus Ponens for ≺.

Now we present a syntactic proof of the above corollary. Its advantage
is that a unifier is given in an explicit way. It will also be used in the
formalization of S5 with strict implication. This formalization does not
have well developed algebraic theory.

Theorem 6. Modal logic S5 (both in the standard formalization and in
the formalization with strict implication) and all its extensions have unitary
unification.

Proof. a) For the standard formalization. Assume that L is a modal
logic extending S5. Let A be a formula unifiable in L, hence there is a
ground substitution U0 such that ⊢ U0(A) (a ground substitution means
using only ⊤ = (x → x) and ⊥= ¬(x → x)). Define a substitution (x is a
propositional variable):

σA(x) =

{

✷A→ x, if U0(x) = ⊤
✷A ∧ x, if U0(x) =⊥

By induction on the length of B we have for every formula B:

σA(B)
→

←

{

✷A→ B, if U0(B) = ⊤
✷A ∧B, if U0(B) =⊥

We have ⊢ σA(A), and, for every unifier τ of A, τ(σA(x)) = τ(x), i.e. σA(x)
is a mgu for A in any extension L of S5.
b) For the formalization with strict implication the proof is similar to a)
but σA, for a unifiable formula A, is defined as follows:

σA(x) =

{

¬((A ≺ A) ≺ A) ∨ x, if U0(x) = ⊤
((A ≺ A) ≺ A) ∧ x, if U0(x) =⊥

The rest of the proof is analogous to a).
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Remark. It can be proved (cf. [3]) that pure implicational logic C5,
which is the strict implicational fragment of S5 formalized with strict im-
plication, and all its extensions which are included in logic determined by
the 4-element Henle algebra, does not have unitary unification.
Intuitionistic logic is just the opposite case; it does not have unitary unifica-
tion but its pure implicational fragment and all its extensions have unitary
unification.
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