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Abstract: We prove an equivalence between the following notions: (i) unitary Möbius
vertex algebras, and (ii) Wightman conformal field theories on the circle (with finite-
dimensional conformal weight spaces) satisfying an additional condition that we call
uniformly bounded order. Reading this equivalence in one direction, we obtain new an-
alytic and operator-theoretic information about vertex operators. In the other direction
we characterize OPEs of Wightman fields and show they satisfy the axioms of a ver-
tex algebra. As an application we establish new results linking unitary vertex operator
algebras with conformal nets.
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1. Introduction

Two-dimensional conformal field theory has attracted the attention of physicists and
mathematicians for its rich algebraic and analytic structures (see e.g. [DMS97]). There
are several well-developed approaches to axiomatizing unitary two-dimensional chiral
conformal field theories (chiral CFTs), and in recent years the problem of reconciling the
various approaches has garnered considerable interest. In this article, we will compare
two formulations of two-dimensional unitary chiral conformal field theories, namely the
vertex algebra approach (in terms of formal power series) and the Wightman approach
(in terms of operator-valued distributions on the circle).While these two axiomatizations
are supposed to describe the same theories, the manners in which they do so are quite
different. In particular, Wightman fields rely on nontrivial analytic properties which are
not readily visible in the vertex algebra formulation.

Our main result is that unitary Möbius vertex algebras are equivalent to Möbius-
covariant Wightman field theories that satisfy an analytic condition which we call uni-
formly bounded order. The adjective “Möbius” describes the underlying symmetry of
the theories under consideration, which is sl2 at the infinitesimal level or PSU(1, 1) at the
global level. The main result is summarized in Theorem 3.12. A highlight of the result
is that we do not impose any extraneous constraints on the vertex algebras under con-
sideration, which is a departure from other results comparing axiomatizations of chiral
CFTs. We establish the main result by giving a careful axiom-by-axiom comparison of
the two notions, with emphasis on the key properties of locality and Möbius covariance.

The uniformly bounded ordered property arises in our treatment of the locality axiom,
and it seems that this property had not been noticed in earlier comparisons of vertex
operators andWightmanfields at a physical level of rigor (e.g. [Kac98, §1.2]; seeSect. 3.4
for further discussion). We use the locality axiom of vertex algebras to show that unitary
Möbius vertex algebras satisfy uniformly bounded order, which yields new analytic
information about these theories. On the other hand, we observe that uniformly bounded
order forWightman fields allows us to construct a vertex algebra structure. This amounts
to showing operator product expansion for Wightman fields (cf. [Bos05]).

As an application, we are able to obtain further results comparing unitary vertex
operator algebras (VOA) with conformal nets, another well-studied axiomatization of
two-dimensional unitary chiral conformal field theories in the spirit of the Haag-Kastler
axioms for algebraic quantum field theory (AQFT). First, starting from a conformal net
we construct a canonical unitaryVOAstructure on a subspace of the finite-energy vectors
of the theory. We show that this subspace is, in fact, the entire space of finite-energy
vectors whenever the conformal net “comes from” a unitary VOA in a loose sense. This
construction applies to arbitrary conformal nets, extending a result of [CKLW18] (based
on the construction of [FJ96]). Second, we construct conformal nets from unitary VOAs
possessing a strong commutativity property, which reproduces a result of [CKLW18]
without requiring the technical assumption of “polynomial energy bounds.”

The article is organized as follows: In Sect. 2 we describe the vertex algebra and
Wightman formulations of unitary two-dimensional chiral conformal field theories. We
also give preliminary results constructingWightman fields from unitary vertex algebras.
In Sect. 3 we give a careful comparison of the two different axiomatizations, with partic-
ular attention to locality and Möbius covariance. Here, we prove our main result giving
an equivalence between the two notions. In Sect. 4 we discuss conformal nets and give
several applications of our results in this context.
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2. Two Formulations of Chiral CFT

In this section we introduce our two formulations of chiral CFT, namely unitary Möbius
vertex algebras and Möbius-covariant Wightman field theories.

2.1. Positive-energy representations of the Möbius group. We denote byMöb the group
of holomorphic automorphisms of the unit disk, which we identify with fractional-linear
transformations via

Möb ∼= PSU(1, 1) =
{(

a b
b a

)
: a, b ∈ C, |a|2 − |b|2 = 1

}
/ {±Id} .

It is a three-dimensional real Lie group with Lie algebra denoted Lie(Möb). If we
consider Möb as a subgroup of the group Diff(S1) of orientation-preserving diffeo-
morphisms of the unit circle S1 ⊂ C, Lie(Möb) is identified with a three-dimensional
subspace of the space of smooth vector fields Vect(S1) on S1. Each vector field is identi-
fied with a differential operator f (eiθ ) d

dθ
for some smooth function f (eiθ ), and the Lie

bracket is given by [ f d
dθ

, g d
dθ

] = ( f ′g − f g′) d
dθ
, where f ′ denotes d f

dθ
. Note that this

bracket is the opposite of the bracket of vector fields, which is the natural choice when
identifying Vect(S1) with the Lie algebra of Diff(S1). This gives rise to an embedding
Lie(Möb) ⊂ Vect(S1), and the complexification Lie(Möb)C ∼= sl(2, C) of Lie(Möb)
is spanned by the elements {L−1, L0, L1}, where Lm is the complexified vector field
−ieimθ d

dθ
. The vector fields Lm satisfy the commutation relations

[Lm, Ln] = (m − n)Lm+n, m, n = −1, 0, 1.

A representation of Lie(Möb) on an inner product space V is called a unitary rep-
resentation if 〈Lmu, v〉 = 〈u, L−mv〉 for all u, v ∈ V and m = −1, 0, 1. Here we have
extended the representation of Lie(Möb) to its complexification, and, as an abuse of
notation, used the same symbols Lm for operators on the representation space. We are
interested in positive-energy representations of Lie(Möb), which are unitary represen-
tationswith the additional property that L0 is a diagonalizable operatorwith non-negative
eigenvalues. Any positive-energy representation of Lie(Möb) in which L0 has integral
spectrum can be integrated to a continuous (in the strong operator topology, SOT) uni-
tary representation of Möb on the Hilbert space completion H of V (see e.g. [Lon08],
[Wei05, Appendix A], or [CKLW18, §3.1]).

Conversely, an SOT-continuous unitary representationH ofMöb is called a positive-
energy representation if the generator of the rotation subgroup is a positive operator
(with necessarily integral spectrum). In this case, the representation is the integration of
a positive-energy representation of Lie(Möb) on the dense subspace V of finite-energy
vectors (that is, the algebraic span of eigenvectors of the generator of rotation). In this
article, we will emphasize positive-energy representations in which the generator of
rotation L0 ∈ Lie(Möb)C has finite-dimensional eigenspaces.

2.2. Unitary Möbius vertex algebras. In this section, we define (unitary) Möbius ver-
tex algebras, which were introduced under the name quasi-vertex operator algebra in
[FHL93]. The reader is cautioned that other authors have used the term Möbius ver-
tex algebra to refer to a more general notion, in particular relaxing the requirement of
finite-dimensionality of the weight spaces (e.g. [BK08]).
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IfV is a vector space,wedenote byEnd(V)[[z±1]] the set of formal power series in z±1

with coefficients in End(V). Given v ∈ V and A(z) = ∑
n∈Z Anzn ∈ End(V)[[z±1]],

we can consider a formal series A(z)v = ∑
n Anvzn in the variables z±1 with coeffi-

cients in V . Furthermore, for any B ∈ End(V) we have [A(z), B] = ∑
n[An, B]zn ∈

End(V)[[z±1]]. If B(w) is another formal series, then the expression [A(z), B(w)]makes
sense as a formal series in z±1 and w±1.

Definition 2.1. An (N-graded) Möbius vertex algebra consists of a vector space V
equipped with a representation {L−1, L0, L1} of Lie(Möb)C, a state-field correspon-
dence Y : V → End(V)[[z±1]], and a choice of vector � ∈ V such that the following
hold:

(VA1) V =⊕∞
n=0 V(n), whereV(n) = ker(L0−n) and eachV(n) is finite-dimensional.

(VA2) � is Lie(Möb)-invariant, i.e. Lk� = 0 for k = −1, 0, 1, and Y (�, z) = IdV .
(VA3) Y (v, z)� has only non-negative powers of z for all v ∈ V .
(VA4) [Lk, Y (v, z)] =∑k+1

j=0

(k+1
j

)
zk+1− j Y (L j−1v, z) and Y (L−1v, z) = d

dz Y (v, z) for
all v ∈ V and k = −1, 0, 1.

(VA5) (z − w)N [Y (v, z), Y (u, w)] = 0 for N sufficiently large.

For v ∈ V , the field Y (v, z) associated with v can be expanded as a formal series
Y (v, z) =∑m∈Z v(m)z−m−1, where v(m) ∈ End(V). A vector v ∈ V is called homoge-
neous (with conformal dimension d) if it lies in V(d). As a direct consequence of the
axioms, when v is homogeneous with conformal dimension d we have

[L0, Y (v, z)] = zY (L−1v, z) + Y (L0v, z) = z d
dz Y (v, z) + dY (v, z)

=
∑
m∈Z

(d − m − 1)v(m)z
−m−1.

By comparison of formal series, one can deduce that [L0, v(m)] = (d − m − 1)v(m). It
follows that v(m) maps V(n) into V(n + d − m − 1).

An (antilinear) automorphism of V is an (anti)linear bijection � : V → V that fixes
�, commutes with the Lm , and satisfies �(v(n)u) = �(v)(n)�(u) for all v, u ∈ V and
n ∈ Z. A vector v ∈ V is called quasi-primary if it is homogeneous and L1v = 0. The
field Y (v, z) associated with a quasi-primary vector v is called a quasi-primary field.

An invariant bilinear form (·, ·) on a Möbius vertex algebra V is a bilinear form such
that

(Y (v, z)u, u′) = (u, Y (ezL1(−z−2)L0v, z−1)u′).

Definition 2.2. Aunitary Möbius vertex algebra is aMöbius vertex algebraV equipped
with an inner product 〈·, ·〉 and an antilinear automorphism � such that the following
hold:

1. 〈L−nv, u〉 = 〈v, Lnu〉 for all v, u ∈ V and n = −1, 0, 1 (i.e. V is a positive-energy
representation of Lie(Möb)C).

2. ‖�‖ = 1.
3. 〈·,�·〉 is an invariant bilinear form.
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Note that we follow the convention that the inner product is linear in the first variable. As
in [CKLW18, §5], the operator � is automatically an involution, and a unitary Möbius
vertex algebra is simple (has no proper ideals) if and only if V(0) = C�. Moreover if
V(0) = C�, then there is at most one involution � making V into a unitary Möbius
vertex algebra, and so in this case we can omit � from the extra structure needed to
specify unitarity.

If v ∈ V is homogeneous with conformal dimension d, then we write vn := v(n+d−1)
for the degree-shifted mode, and we extend this definition to arbitrary v ∈ V by linearity.
The shiftedmodes have the property that vnV(m) ⊂ V(m−n). For convenience of calcu-
lation, we will make use of both conventions throughout the paper. As in [CKLW18], we
call a quasi-primary field Y (v, z)Hermitian if 〈vnu, u′〉 = 〈u, v−nu′〉 for every u, u′ ∈ V
and n ∈ Z. This last condition is equivalent to requiring �v = (−1)dv v, where dv is the
conformal dimension of v.

Let S ⊂ V be a set of homogeneous vectors. We say that the fields {Y (v, z) : v ∈ S}
generate V if

V = Span{(v1)(n1) · · · (vk)(nk)u : v j , u ∈ S, n j ∈ Z, k ∈ Z≥0}.
We have the following version of [CKLW18, Proposition 5.17] for Möbius vertex alge-
bras, proven exactly the same way as for vertex operator algebras in the reference.

Proposition 2.3. Let V be a N-graded Möbius vertex algebra with V(0) = C�. Sup-
pose that V is equipped with an inner product such that ‖�‖ = 1 and such that the
representation of Lie(Möb)C on V is unitary. Then V is a unitary Möbius vertex algebra
if and only if it possess a generating family of Hermitian quasi-primary fields.

2.3. Möbius-covariant Wightman fields. We now give an alternate axiomatization of
two-dimensional chiral CFTs, in terms of Wightman fields. The Wightman axioms are
usually definedon theMinkowski spaceR

d+1, but they can be adapted to chiral conformal
field theory.

Let H be a Hilbert space, and let D ⊆ H be a dense subspace. An operator-valued
distribution on the unit circle S1 with domain D is a continuous linear map

ϕ : C∞(S1) → Hom(D,H),

where Hom(D,H) is the space of linear maps D → H, equipped with the topology of
pointwise convergence. We regard ϕ( f ) as an unbounded operator1 on H with domain
D.

An operator-valued distribution ϕ with domain D is called adjointable (or an ad-
jointable field) on D if there exists an operator-valued distribution ϕ† with domain D
such that

〈ϕ( f )�,�〉 = 〈�,ϕ†( f )�〉
for all �,� ∈ D. Equivalently, ϕ is adjointable if D ⊆ Dom(ϕ( f )∗) for every f ∈
C∞(S1), in which case the adjoint distribution is given by ϕ†( f ) := ϕ( f )∗ |D. Note that

1 Following standard references, the domain Dom(A) of an unbounded operator A is treated as part of the
data of A. If B is the restriction of A to a subspace Dom(B) ⊂ Dom(A), then we write B ⊂ A. The adjoint
A∗ of A is defined on � ∈ H for which there exists a constant CA such that ‖〈A�, �〉‖ ≤ CA‖�‖ for all
� ∈ Dom(A), and it is characterized by 〈�, A∗�〉 = 〈A�, �〉. An unbounded operator is called closed if
its graph is a closed subspace of H × H, and called closable if the closure of its graph is the graph of some
(closed) operator. See e.g. [Rud91,Ped89] for basic notions of unbounded operators.
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continuity of f �→ ϕ†( f )� is automatic, by the closed graph theorem. Ifϕ is adjointable,
then so is ϕ† and ϕ†† = ϕ. It follows that when ϕ is adjointable the operators ϕ( f ) and
ϕ†( f ) are closable. Note that an adjointable field with domain D remains adjointable
when restricted to a dense subspace D′ ⊂ D.

We now assume that our Hilbert space carries a positive-energy representation of
Möb. Following [CKLW18, §6], for γ ∈ Möb we denote by Xγ ∈ C∞(S1) the function

Xγ (eiθ ) = −i
d

dθ
log(γ (eiθ )),

which takes values in the positive real numbers since γ is an orientation preserving
diffeomorphism of S1. For f ∈ C∞(S1) and d ∈ Z≥0 we denote by βd(γ ) f ∈ C∞(S1)

the function

(βd(γ ) f )(z) = (Xγ (γ −1(z)))d−1 f (γ −1(z)). (2.1)

Now, letD be a dense subspace ofH. An operator-valued distribution with domainD
is called Möbius-covariant of degree d (in the Wightman sense) if for every γ ∈ Möb
we have U (γ )D = D and

U (γ )ϕ( f )U (γ )∗ = ϕ(βd(γ ) f )

for every f ∈ C∞(S1), where the equality is that of maps D → H.

Remark 2.4. The function Xγ ∈ C∞(S1) is characterized in terms of the pushforward
of the vector field d

dθ
∈ 
(T S1) by the identity γ∗ d

dθ
= (Xγ ◦ γ −1) d

dθ
. It follows that

when d > 0 the operation βd(γ ) can be understood in terms of pushforwards of sections
of the tensor product bundle T ⊗d−1S1:

γ∗
(

f d
dθ

⊗d−1
)

= (βd(γ ) f ) d
dθ

⊗d−1
.

Thus in some contexts the input to a Wightman field of degree d is best understood as

a tensor field f d
dθ

⊗d−1
of degree d − 1 rather than a function f (see [Lee13, Chapter

12]). Indeed, the same holds when d = 0, with d
dθ

⊗−1
interpreted as dθ .

A set F of operator-valued distributions on S1 with common dense domain D ⊂ H
invariant under ϕ( f ) ∈ F , together with a SOT-continuous unitary representation U of
Möb and a vector � ∈ D, are called a Möbius-covariant Wightman field theory on
S1 if they satisfy the following axioms:

(W1) Möbius covariance: For every γ ∈ Möb, U (γ ) preserves D. For each ϕ ∈ F
there is d ∈ Z≥0 such that ϕ is Möbius-covariant of degree d.

(W2) Adjoint: Each ϕ ∈ F is adjointable and F is closed under the involution sending
ϕ to ϕ†.

(W3) Locality: If f and g have disjoint supports, then ϕ1( f ) and ϕ2(g) commute for
any pair ϕ1, ϕ2 ∈ F .

(W4) Spectrum condition: The generator L0 of rotations U (Rθ ) = eiθ L0 is positive.
(W5) Vacuum: The vector � is the unique (up to scalar) vector that is invariant under

U , and � is cyclic for F in the following sense: whenever ϕ1, . . . , ϕk ∈ F and
f1, . . . , fk ∈ C∞(S1) we have ϕk( fk) · · · ϕ1( f1)� ∈ D, and moreover D is
spanned by vectors of this form.
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It follows automatically that expressions such as ϕ1( f1) · · · ϕk( fk)� are jointly
continuous in the f j . Indeed, f j �→ ϕ( f1) . . . ϕ( fk)� has a closed graph, because
f j �→ 〈ϕ( f j )�,�〉 is continuous for any �,� ∈ D and D is dense. As C∞(S1) is a
Fréchet space, the map is therefore continuous. Hence the expression ϕ( f1) . . . ϕ( fk)�

is separately continuous in the f j , and separately continuous maps from Fréchet spaces
into a Fréchet space (the Hilbert spaceH) are jointly continuous (see e.g. [Rud91, The-
orem 2.17]).

Let V be the finite-energy vectors V =⊕∞
n=0 V(n), where V(n) = ker(L0 − n) and

the direct sum is the algebraic direct sum. In this article we will emphasize theories that
also satisfy:

(W6) The eigenspaces V(n) = ker(L0 − n) of L0 are finite-dimensional.

Examples of Wightman field theories that do not satisfy (W6) can be produced by the
infinite tensor product construction, as in [CW05, §6].

We claim that if a Wightman field theory F satisfies (W6) then V ⊂ D. First, from
the Möbius covariance axiom we see that the subspaceW of D given by

W = span{ ϕk( fk) · · · ϕ1( f1)� : f j ∈ C[z±1], ϕ j ∈ F , k ∈ Z≥0}
is contained in V and invariant under L0. Thus W = ⊕∞

n=0 W(n) with W(n) ⊆ V(n).
Since D is dense in H and expressions of the form ϕk( fk) · · · ϕ1( f1)� are continuous
in the f j , W is also dense. But this means that W(n) is dense in V(n), and since V(n)

was assumed finite-dimensional we must haveW(n) = V(n). We conclude that V ⊂ D
as claimed.

For v ∈ V , expressions of the form ϕk( fk) · · · ϕ1( f1)v are jointly continuous in the
f j by the same argument given above in the case v = �. The Wightman fields that
correspond to unitary Möbius vertex algebras satisfy an additional, apparently stronger,
requirement that we now explain. For N ∈ R≥0, the N -Sobolev norm on C∞(S1) is
given by

‖ f ‖N =
(∑

n∈Z

∣∣ f̂ (n)
∣∣2(1 + n2)N

)1/2

. (2.2)

The Hilbert space completion of C∞(S1) under this norm, denoted H N (S1), can be
identified with the subspace of L2(S1) consisting of functions with finite N -Sobolev
norm. The topology on C∞(S1) is induced by the norms ‖·‖N , and a linear map from
C∞(S1) to a Banach space is continuous precisely when it extends to a bounded linear
map on some H N (S1). Thus, we extend the domain of the expression ϕ1( f1) · · · ϕk( fk)v

from C∞(S1)k to H N (S1)k for some N that depends on v.
We consider the following additional property, asking that N can be chosen indepen-

dent of v:

(W7) Uniformly bounded order: For every collection ϕ1, . . . , ϕk ∈ F , there is a posi-
tive number N such that for everyv ∈ V themap ( f1, . . ., fk) �→ ϕk( fk)· · ·ϕ1( f1)v
extends continuously to H N (S1)k .

Remark 2.5. We do not know if the condition of uniformly bounded order follows from
the other axioms. Since we will show that Möbius-covariant Wightman field theories
with uniformly bounded order correspond exactly to unitaryMöbius vertex algebras, the
uniformly bounded order condition is automatic if and only if every Möbius-covariant
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Wightman field theory corresponds to a vertex algebra. The axioms of a vertex algebra
essentially require the existence of operator product expansions (OPE), while from the
Wightman point of view a form of OPEs has been proved under additional analytic
conditions (see e.g.[Bos05]). On the other hand, if we assume uniformly bounded order,
then we prove that the fields generate a Möbius vertex algebra, and OPE A(z)B(w) =∑N−1

j=0 (iw,z
1

(z−w) j+1 c j (w)+ : A(z)B(w) :) as formal series follow [Kac98, Theorem
2.3], and this equality holds as distributions.

Remark 2.6. The definition of uniformly bounded order given here implicitly assumes
that V ⊂ D, which will usually only occur when the weight spaces V(n) are finite-
dimensional. If the V(n) are infinite-dimensional, then the condition (W7) should be
modified to only require that the vectors v lie in V ∩ D.

2.4. Adjointable fields from unitary Möbius vertex algebras. Let V be a unitary Möbius
vertex algebra. In this section, we show that the formal distributions Y (v, z) correspond
to adjointable operator-valued distributions on S1, and that these distributions can be
repeatedly applied to the vacuum. This is a first step in constructing a Wightman field
theory from V . Other conditions of Wightman fields, such as Möbius covariance and
locality, will be studied in Sect. 3.

Recall that for v ∈ V we have a formal series Y (v, z) = ∑
n v(n)z−n−1 with v(n) ∈

End(V). For f ∈ C∞(S1), we wish to define an unbounded operator Y 0(v, f ) on the
Hilbert space completion H of V by the formula

Y 0(v, f )u =
∑
n∈Z

f̂ (n)vnu, u ∈ V. (2.3)

Here, f̂ (n) are the coefficients of the Fourier series of f , and the degree-shifted mode
vn is given by vn = v(n+d−1) when v is homogeneous with conformal dimension d, and
otherwise extended linearly. Formally, the map Y 0(v, f ) corresponds to the smeared
field

∮
S1 Y (zL0v, z) f (z) ds, where ds is normalized arclength measure.

We will see shortly that with this formula Y 0(v, f ) indeed maps V into the Hilbert
space completionH of V , for any smooth f . The key estimate is given by the following
lemma.

Lemma 2.7. LetV be a unitary Möbius 2 vertex algebra. Then for all v1, . . . , vk, u, u′ ∈
V , there exists a polynomial p such that

∣∣∣〈v1m1
v2m2

· · · vk
mk

u, u′〉
∣∣∣ ≤ |p(m1, . . . , mk)|

for all (m1, . . . , mk) ∈ Z
k . The polynomial depends on the vectors v j , u, and u′, but

the degree of p may be bounded independent of u and u′.

Proof. We proceed by induction on k. The case k = 0 is vacuous and the case k = 1 is
immediate as 〈vmu, u′〉 is nonzero for only finitely many m. Now suppose the result has
been proven for a value k − 1, with k ≥ 2. We assume without loss of generality that
each v j is homogeneous with conformal dimension d j , and similarly for u and u′.

2 For this lemma, the statement and proof go through equally well with V a N-graded vertex algebra and
u′ in the restricted dual

⊕V(n)∗.
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First, observe that when m1 < −du′ we have 〈v1m1
v2m2

· · · vk
mk

u, u′〉 = 0 by unitarity,
and thus we need only consider m1 ≥ −du′ . We have

〈v1m1
v2m2

· · · vk
mk

u, u′〉 = 〈(v2m2
· · · vk

mk

)
v1m1

u, u′〉 + 〈[v1m1
, v2m2

· · · vk
mk

]u, u′〉. (2.4)

We show separately that the two terms on the right-hand side are bounded by polyno-
mials in the m j (with degrees controlled by the v j ). We begin with the first of these two
terms. Observe that when m1 > du we have 〈v2m2

· · · vk
mk

v1m1
u, u′〉 = 0, and thus we are

left with finitely many values of m1 to consider. For each fixed value of m1 the inductive
hypothesis asserts that

∣∣〈v2m2
· · · vk

mk

(
v1m1

u
)
, u′〉∣∣ is bounded by a suitable polynomial in

m2, . . . , mk , which completes the argument for the first term.
For the second term on the right-hand side of (2.4), we write

〈[v1m1
, v2m2

· · · vk
mk

]u, u′〉 =
k∑

�=2

〈v2m2
· · · [v1m1

, v�
m�

] · · · vk
mk

u, u′〉.

As the sum on the right-hand side is finite, it suffices to bound each term separately by
a suitable polynomial. We will now apply the Borcherds commutator formula (see e.g.
[Kac98, Section 4.8]), which is given in terms of degree-shifted modes by

[am, bn] =
da+db−1∑

s=0

(
m + da − 1

s

)(
as−da+1b

)
m+n

when a and b are homogeneous (with conformal dimensions da and db, respectively).
The commutator formula yields

〈v2m2
· · ·[v1m1

, v�
m�

] · · · vk
mk

u, u′〉 =

=
d1+d�−1∑

s=0

(
m1 + d1 − 1

s

)
〈v2m2

· · · (v1s−d1+1v
�
)

m1+m�
· · · vk

mk
u, u′〉. (2.5)

By the inductive hypothesis, for each s we may bound
∣∣〈v2m2

· · · (v1s−d1+1v
�
)

m1+m�
· · · vk

mk
u, u′〉∣∣ ≤ | p̃(m1, . . . , m1 + m�, . . . , mk)|

≤ |p(m1, . . . , mk)|
for a polynomial p in the m j . As s takes only finitely many values we may choose a
single p that works for all s. Note that the degree of p̃, and thus of p, may be bounded
independent of u and u′, by the inductive hypothesis.

Taking absolute values in (2.5), we now have

∣∣〈v2m2
· · · [v1m1

, v�
m�

] · · · vk
mk

u, u′〉∣∣ ≤ |p(m1, . . . , mk)|
d1+d�−1∑

s=0

(
m1 + d1 − 1

s

)
.

Observe that
(m1+d1−1

s

)
is a polynomial in m1 of degree s, and thus the above sum of

binomial coefficients is a polynomial in m1 of degree at most d1 +d� −1. This shows that∣∣〈v2m2
· · · [v1m1

, v�
m�

] · · · vk
mk

u, u′〉∣∣ is bounded by a suitable polynomial, which completes
the proof. ��
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If f is a Laurent polynomial (i.e. if f has only finitely many nonzero Fourier coeffi-
cients), then the map Y 0(v, f ) defined in (2.3) is a finite linear combination of v(n)’s and
thus Y 0(v, f ) defines a map V → V . We have the following estimate for these maps.

Lemma 2.8. Let V be a unitary Möbius vertex algebra. Let v1, . . . , vk, u ∈ V , and let
f1, . . . , fk ∈ C[z±1] be Laurent polynomials. Then there is a positive number N, which
depends only on the v j , such that∥∥∥Y 0(vk, fk) · · · Y 0(v1, f1)u

∥∥∥ ≤ C ‖ f1‖N · · · ‖ fk‖N .

The constant C depends on the v j and u.

Proof. Recall that ‖ f ‖N refers to the Sobolev norm (2.2). The definition of a unitary
Möbius vertex algebra implies that

〈vnu, u′〉 = 〈u,
(
eL1(−1)L0�v

)
−nu′〉

for all u, u′ ∈ V (see e.g. the proof of [CKLW18, Theorem 5.16]). Thus, setting ṽ j =
eL1(−1)L0�v j we have
∥∥Y 0(vk, fk) · · · Y 0(v1, f1)u

∥∥2 =
=
∑

n1,...,nk
m1,...,mk

f̂1(n1) f̂1(m1) · · · f̂k(nk) f̂k(mk) 〈ṽ1−m1
· · · ṽk−mk

vk
nk

· · · v1n1u, u〉.

By Lemma 2.7 we may choose a polynomial p such that∣∣〈ṽ1−m1
· · · ṽk−mk

vk
nk

· · · v1n1u, u〉∣∣ ≤ |p(m1, . . . , mk, n1, . . . , nk)| ,
for all n j and m j , with the degree of p bounded independent of u. Choose M sufficiently
large that

|p(m1, . . . , mk, n1, . . . , nk)| ≤ C
k∏

j=1

(1 + m2
j )

M (1 + n2
j )

M

for some constantC . Note thatwemay choose M independent of u (although the constant
C does depend on u).

We then have

∥∥Y 0(vk, fk) · · · Y 0(v1, f1)u
∥∥2 ≤ C

∑
n1,...,nk
m1,...,mk

k∏
j=1

∣∣ f̂ j (n j ) f̂ j (m j )
∣∣(1 + n2

j )
M (1 + m2

j )
M

= C
k∏

j=1

(∑
n

∣∣ f̂ j (n)
∣∣(1 + n2)M

)2

≤ C ′ ‖ f1‖22M+1 · · · ‖ fk‖22M+1 ,

where in the last inequality we apply the Cauchy-Schwarz inequality to the expression∣∣ f̂ j (n)
∣∣(1 + n2)M+1/2 · (1 + n2)−1/2. Note that there is no issue of convergence, as the

f j are Laurent polynomials and all sums are finite. This establishes the desired estimate
with N = 2M + 1. ��
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In particular we have
∥∥Y 0(v, f )u

∥∥ ≤ C ‖ f ‖N when f is a Laurent polynomial.
Thus, if f ∈ C∞(S1) and fk is a sequence of Laurent polynomials that converges to f
in C∞(S1), we have

lim
k→∞ Y 0(v, fk)u =

∑
n∈Z

f̂ (n)vnu,

with convergence in H. We may therefore define Y 0(v, f ) : V → H as in (2.3) for
arbitrary f ∈ C∞(S1). As noted in the proof of Lemma 2.8, the definition of a unitary
Möbius vertex algebra implies that

〈vnu, u′〉 = 〈u,
(
eL1(−1)L0�v

)
−nu′〉

for all u, u′ ∈ V . Extending by continuity, we have

〈Y 0(v, f )u, u′〉 = 〈u, Y 0(eL1(−1)L0�v, f )u′〉
for f ∈ C∞(S1), and thus we have an extension of unbounded operators

Y 0(eL1(−1)L0�v, f ) ⊂ Y 0(v, f )∗.

In particular Y 0(v, f )∗ is densely defined, and consequently the operators Y 0(v, f ) are
closable. We denote the closure of Y 0(v, f ) by Y (v, f ). Taking closures in the above
extension, we obtain

Y (eL1(−1)L0�v, f ) ⊂ Y (v, f )∗. (2.6)

A variant of the above argument shows that smeared fields Y (v, f )may be repeatedly
applied to finite-energy vectors.

An expression of the form Y (vk, fk) · · · Y (v1, f1) thus denotes a product of closed
operators. Expressions Y (vk, fk) · · · Y (v1, f1)u obtained by applying this product of
operators are continuous in the fi , and thus this expression is also the continuous ex-
tension of the canonical map C[z±1]k → V defined on Laurent polynomials to a map
C∞(S1)k → H.

Proposition 2.9. Let V be a unitary Möbius vertex algebra, let v1, . . . , vk ∈ V , and let
f1, . . . , fk ∈ C∞(S1). Then V is contained in the domain of Y (vk, fk) · · · Y (v1, f1).
Moreover, there exists a number N such that for every u ∈ V we have∥∥∥Y (vk, fk) · · · Y (v1, f1)u

∥∥∥ ≤ C ‖ f1‖N · · · ‖ fk‖N ,

for some constant C (that depends on u).

Proof. We proceed by induction on k. Suppose that k ≥ 1 and that the result holds for
k − 1 (with the base case k = 0 being vacuous). By the inductive hypothesis we may
choose N such that∥∥∥Y (vk−1, fk−1) · · · Y (v1, f1)u

∥∥∥ ≤ C ‖ f1‖N · · · ‖ fk−1‖N .

By Lemma 2.8 and the following discussion, there is a continuous multilinear map
X : H N ′

(S1)k → H such that when f1, . . . , fk−1 are Laurent polynomials

X ( f1, . . . , fk) = Y (vk, fk)Y (vk−1, fk−1) · · · Y (v1, f1)u.
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Making N or N ′ larger if necessary, we assume without loss of generality that N = N ′.
Now let f1, . . . , fk ∈ C∞(S1), and for j = 1, . . . , k−1 choose sequences of Laurent

polynomials f j,n such that f j,n → f j in H N (S1). Then, by the inductive hypothesis,
we have

lim
n→∞ Y (vk−1 fk−1,n) · · · Y (v1, f1,n)u = Y (vk−1, fk−1) · · · Y (v1, f1)u

inH. Moreover, since X is continuous we have that

lim
n→∞ Y (vk, fk)Y (vk−1, fk−1,n) · · · Y (v1, f1,n)u = lim

n→∞ X ( f1,n, . . . , fk−1,n, fk)

= X ( f1, . . . , fk).

Since Y (vk, fk) is closed, it follows that Y (vk−1 fk−1) · · · Y (v1, f1)u lies in the domain
of Y (vk, fk), and that

Y (vk, fk)Y (vk−1 fk−1) · · · Y (v1, f1)u = X ( f1, . . . , fk). (2.7)

Since u ∈ V was arbitrary, we have that V is contained in the domain of the prod-
uct Y (vk, fk) · · · Y (v1, f1). The desired estimate on

∥∥Y (vk, fk) · · · Y (v1, f1)u
∥∥ follows

immediately from (2.7) and the continuity of X , completing the proof. ��
Remark 2.10. The natural analog of Proposition 2.9 with the vertex operators Y (v, z)
replaced by a unitary module action Y M (v, z) also holds, with the same proof. However
we will not discuss modules for vertex algebras in this article.

Corollary 2.11. Let V be a unitary Möbius vertex algebra and let v ∈ V . Let

D = Span{Y (vk, fk) · · · Y (v1, f1)� : v j ∈ V, f j ∈ C∞(S1), k ∈ Z≥0}.
Then the assignment ϕv( f ) = Y (v, f ) |D is an adjointable operator-valued distribution
on D. If ṽ = eL1(−1)L0�v, then ϕ†

v = ϕṽ .

Proof. The fact that ϕv and ϕṽ are operator-valued distributions on D follows immedi-
ately fromProposition 2.9.Adjointability and the formula forϕ†

v now follow immediately
from Equation (2.6). ��

Note that Corollary 2.11 applies to an arbitrary unitary Möbius vertex algebra V ,
in contrast to earlier results (e.g. in [CKLW18]) which rely on specialized analytic
assumptions on V , such as polynomial energy bounds.

3. Vertex Operators and Möbius-Covariant Wightman Fields

In this section, we will show that the distributions described in Corollary 2.11 satisfy
the axioms of Wightman field theory. We will also establish a converse result, that the
space of finite-energy vectors in a Wightman field theory with uniformly bounded order
can be equipped with a structure of Möbius vertex algebra.

One of the technical challenges in establishing theWightman axioms is that all fields
act on a common domain D which is in turn determined collectively by all of the fields
(as it is spanned by expressions of the form ϕk( fk) · · · ϕ1( f1)�). It is easier to consider
properties that can be studied for each field separately, which we will do by restricting
our Wightman fields to the smaller domain of finite-energy vectors V . In this section,
we will formulate a notion of “quasi-Wightman field theory” which corresponds to a
family of operator-valued distributions with domain V that satisfy analogs of the axioms
of Wightman fields, and we will show that, under the assumption of uniformly bounded
order, Wightman field theories and quasi-Wightman field theories are both equivalent to
unitary Möbius vertex algebras.
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3.1. Regularity of adjointable fields on V . As before, fix a Hilbert space H carrying
a positive-energy representation U : Möb → U(H) of Möb, and denote by V =⊕

n∈Z≥0
V(n) the dense subspace of finite-energy vectors. We assume that each V(n) =

ker(L0 − n) is finite-dimensional and that dim V(0) = 1.
As discussed above, it will be a useful technical tool to consider a variation of the

Wightman axioms in which the operator-valued distributions have domain V , and not a
larger invariant domain. Working with such theories, which we call quasi-Wightman
field theories, involve several technical trade-offs. For our purposes, a key benefit is
that quasi-Wightman field theories are easier to construct than Wightman field theories,
since almost all of the imposed conditions are phrased in terms of properties of individual
fields as opposed to interactions of families of fields.

We will now study general properties of operator-valued distributions defined on the
domain V . Write V̂ =∏n∈Z≥0

V(n) for the algebraic completion of V , namely, the set of
all sequences (v1, v2, · · · )with vn ∈ V(n), equipped with the product topology.We have
inclusions V ⊂ H ⊂ V̂ as linear spaces. The inner product on V gives an identification
of V̂ with V∗

, the algebraic dual space of the complex conjugate of V . We will generally
use 〈 · , · 〉 to denote both the inner product on H and the induced sesquilinear pairing
of V with V̂ , adding subscripts to clarify when necessary. The topology on V̂ is induced
by the family of linear functionals 〈 · , u〉, for u ∈ V .
Lemma 3.1. Let ϕ be an operator-valued distribution with domainV . Then the following
are equivalent:

1. ϕ is adjointable.
2. The map ϕ : C∞(S1) × V → H extends to a continuous map C∞(S1) × H → V̂ .

Proof. Note that joint and separate continuity of mapsC∞(S1)×H → V̂ are equivalent
by the Banach-Steinhaus theorem for Fréchet spaces (see e.g. [Rud91, Theorem 2.17]).

First assume that ϕ is an adjointable field. For each f ∈ C∞(S1) we extend ϕ( f ) to
a mapH → V̂ as follows. For ξ ∈ H, we define ϕ( f )ξ ∈ V̂ ∼= V∗

by requiring

〈ϕ( f )ξ, v〉V̂,V = 〈ξ, ϕ†( f )v〉H.

The latter expression is evidently continuous in ξ and f separately, hence jointly.
Conversely, assume that ϕ extends to a continuous map C∞(S1) ×H → V̂ . We use

the symbol ϕ( f ) to denote both the map V → H as well as the extension H → V̂ . For
each f ∈ C∞(S1) and v ∈ V the map H → C given by ξ �→ 〈ϕ( f )ξ, v〉 is continuous
by assumption. Restricting to ξ ∈ V we have v ∈ Dom(ϕ( f )∗) for every f . Define
ϕ† : C∞(S1) × V → H by the formula ϕ†( f )v = ϕ( f )∗v. By construction we have

〈ξ, ϕ†( f )v〉H = 〈ϕ( f )ξ, v〉V̂,V ,

for ξ, v ∈ V , and by continuity this extends to all ξ ∈ H. By assumption the right-
hand expression is continuous in f . Thus f �→ ϕ†( f )v is continuous as a map into H
equipped with the weak topology. This then implies that this map is continuous into H
with the norm topology by the closed graph theorem (see e.g. [Rud91, Theorem 5.1]),
and thus ϕ† is an operator-valued distribution. ��

As a consequence of Lemma3.1,whenϕ is an adjointable fieldwith domainV wewill
implicitly extend ϕ( f ) to a continuous map ϕ( f ) : H → V̂ . We will generally consider
compound expressions which define vectors in V̂ or some subspace. For example, if ϕ

and ψ are adjointable fields and u ∈ V , then we have ϕ( f )ψ(g)u ∈ V̂ .
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As described in Sect. 2, Wightman fields arising from vertex operators are not only
adjointable; they also satisfy a certain uniformity condition on the orders of the distri-
butions. We describe this analog of the uniformly bounded order condition below in the
context of a single operator-valued distribution with domain V . In contrast, the condition
(W7) of uniformly bounded order for a Wightman field theory is apparently stronger, as
it is a condition on a collection of Wightman fields acting on an invariant domain. We
will see later (Theorem 3.12) that these two notions of uniformly bounded order are, in
fact, equivalent. The uniformly bounded order condition will eventually play a crucial
role in comparing locality of fields in the Wightman sense with locality in the sense of
vertex operators.

Definition 3.2. An adjointable operator-valued distribution ϕ with domain V is said to
have uniformly bounded order if there is a positive number N such that the assignment
f �→ ϕ( f )v extends to a continuous map H N (S1) → H for every v ∈ V .

Note that for each vwe are guaranteed that themap f �→ ϕ( f )v extends continuously
to H N (S1) for some N by the definition of the topology on C∞(S1), but in Definition
3.2 we insist on choosing N independent of u.

We have the following analog of Lemma 3.1.

Lemma 3.3. Let ϕ be an adjointable field with domain V . Then the following are equiv-
alent:

1. ϕ† has uniformly bounded order.
2. For some N > 0 the map ϕ : C∞(S1) × H → V̂ extends to a continuous map

H N (S1) × H → V̂ .

Proof. This can be proved in a parallel way as in Lemma 3.1, replacing the Fréchet
space C∞(S1) by the Hilbert space H N (S1). ��

3.2. Möbius covariance for adjointable fields. As above, let H be a Hilbert space car-
rying a positive-energy representation U : Möb → U(H), and let V be the subspace of
finite-energy vectors, with finite-dimensional weight spaces V(n) = ker(L0 − n) and
dim V(0) = 1. As described in Sect. 2.1, U is the exponentiation of a positive-energy
representation of Lie(Möb). Given a complexified vector field g d

dθ
∈ Lie(Möb)C, we

write π(g d
dθ

) ∈ spanC{L−1, L0, L1} for the corresponding operator, which we may
regard as a map of V into V or as a map of V̂ into V̂ . Thus, if ϕ is an adjointable field,
we may consider expressions π(g d

dθ
)ϕ( f )u ∈ V̂ and ϕ( f )π(g d

dθ
)u ∈ H. This allows

us to state transformation rules for ϕ under the action of Lie(Möb) in terms of familiar
commutation relations.

Remark 3.4. If g d
dθ

∈ Lie(Möb), then iπ(g d
dθ

) is a linear combination of L1, L0 and
L−1, and so it is essentially skew-adjoint on V by the commutator theorem [RS75,
Theorem X.37] and the explicit estimates in [Lon08, Section 1.5]. Hence the domain of
its closure on V coincides with the domain of (π(g d

dθ
)|V )∗. From this point of view, the

operator π(g d
dθ

) can be seen as a map from H to V̂ and the domain of the closure of
π(g d

dθ
) |V consists of the vectors ξ ∈ H such that π(g d

dθ
)ξ ∈ H.

An adjointable field ϕ on V is called Möbius-covariant (or quasi-primary) with
degree d, in the Wightman sense if, for every f ∈ C∞(S1), u ∈ V , and γ ∈ Möb, we
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have3 ϕ( f )U (γ )∗u ∈ H, and moreover ϕ satisfies the covariance condition

U (γ )ϕ( f )U (γ )∗u = ϕ(βd(γ ) f )u,

where βd is defined in (2.1). Similarly, an adjointable field ϕ on V is called Möbius-
covariant (or quasi-primary) with degree d in the vertex algebra sense if it satisfies
the infinitesimal covariance condition with degree d:

[π(g d
dθ

), ϕ( f )]u = ϕ((d − 1) dg
dθ

f − g d f
dθ

)u (3.1)

for all g d
dθ

∈ Lie(Möb)C, u ∈ V , and f ∈ C∞(S1). For a quasi-primary field ϕ with
degree d, we have a formal series expansion ϕ̂(z) =∑n ϕ(en)z−n−d , where en(eiθ ) =
einθ . By taking g(eiθ ) = −ieikθ , we see that Möbius covariance in the vertex algebra
sense is equivalent to the familiar condition

[Lk, ϕ̂(z)] = (zk+1 d
dz + (k + 1)zkd)ϕ̂(z), k = −1, 0, 1. (3.2)

Lemma 3.5. Let ϕ be an adjointable operator-valued distribution with domainV and let
d be a non-negative integer. Then ϕ is Möbius-covariant with degree d in the Wightman
sense if and only if it is so in the vertex algebra sense.

Proof. First assume that ϕ satisfies the infinitesimal covariance condition (3.1). Let
g d

dθ
∈ Lie(Möb) be a real vector field, and let γt = exp(tg d

dθ
) ∈ Möb be the corre-

sponding one-parameter group. Note that the exponential map from Lie(Möb) to Möb
is surjective, so it suffices to prove covariance for transformations of the form γt . The
operator π(g d

dθ
) is skew-adjoint (we work with the closure of the operator defined on

finite-energy vectors) and we have U (γt ) = etπ(g d
dθ

) (see [Lon08, Section 1.5]). Fix
u ∈ V , and let

u1(t) = ϕ( f )U (γ−t )u, and u2(t) = U (γ−t )ϕ(βd(γt ) f )u.

Note that u1 naturally takes values in V̂ and u2 naturally takes values in H. We would
now like to show that u1 = u2. As both u1(t) and u2(t) are continuous in f (as maps
into V̂), we may assume without loss of generality that f is a Laurent polynomial.

We first argue that both u1 and u2 extend to holomorphic functions on a neighborhood
ofR. Indeed, by [Wei05, PropositionA.2.9], the functionU (γ−t )u=U (γ−t0)U (γ−(t−t0))u
extends to a holomorphic function into H defined on a neighborhood of an arbitrary
t0 ∈ R. Composing with the continuous linear map ϕ( f ) : H → V̂ yields a V̂-valued
holomorphic extension of u1 (see [Rud91, Definition 3.30]).

We now consider u2. As each γt maps S1 onto itself, the map t �→ γt has a holomor-
phic extension to a neighborhood of R, taking values in Möbius transformations that
map S1 into C

×. Since f is a Laurent polynomial, the map (t, z) �→ (βd(γt ) f )(z) has
an extension to a neighborhood of R × S1 which is (separately, and therefore jointly)
holomorphic. Thus the function t �→ βd(γt ) f extends to a holomorphic function from a
neighborhood of R into C∞(S1), since the z-derivatives of (βd(γt ) f )(z) are uniformly
continuous in a compact neighborhood of S1. Composing with the continuous linear
map ϕ shows that t �→ ϕ(βd(γt ) f )u has a holomorphic extension as a map into H.
Hence,

〈u2(t), v〉 = 〈ϕ(βd(γt ) f )u, U (γ−t )
∗v〉

3 While a priori ϕ( f )U (γ )∗u ∈ V̂ we require that it is, in fact, in H.
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has a holomorphic extension for every v ∈ V . We conclude that u2 extends to a holo-
morphic map from a neighborhood of R into V̂ .

As both u1 and u2 are analytic, it suffices to show that their Taylor series centered at
t = 0 coincide. For u1, it is straightforward to compute the derivatives

d

dt
〈u1(t), v〉 = d

dt
〈U (γ−t )u, ϕ†( f )v〉 = 〈ϕ( f )U (γ−t )π(−g d

dθ
)u, v〉.

Repeatedly differentiating (while noting that π(−g d
dθ

) maps V into itself) we obtain

u(n)
1 (0) = ϕ( f )π(−g d

dθ
)nu. (3.3)

We now turn our attention to u2. Recall from Remark 2.4 that βd(γt ) f is given by
the pushforward

γt ∗
(

f d
dθ

⊗d−1
)

= βd(γt ) f d
dθ

⊗d−1
,

where in the case d = 0 we formally set d
dθ

⊗−1 := dθ . We thus have

d

dt
βd(γt ) f d

dθ

⊗d−1 = d

dt
γt ∗
(

f d
dθ

⊗d−1
)

= − d

ds

∣∣∣∣
s=0

γ−s∗
(
γt ∗
(

f d
dθ

⊗d−1
))
(3.4)

= −L
g d

dθ

(
βd(γt ) f d

dθ

⊗d−1
)

=
(
(d − 1) dg

dθ
βd(γt ) f − g d

dθ

[
βd(γt ) f

]) d
dθ

⊗d−1
,

where L is the Lie derivative of tensor fields (see [Lee13, Chapter 12]). As f �→ ϕ( f )u
is continuous, we can plug in the formula for d

dt βd(γt ) f from (3.4) and compute

d

dt
〈u2(t), v〉 = d

dt
〈ϕ(βd(γt ) f )u, etπ(g d

dθ
)
v〉

= 〈ϕ((d − 1) dg
dθ

βd(γt ) f − g d
dθ

[
βd(γt ) f

] )
u, etπ(g d

dθ
)
v〉

+ 〈ϕ(βd(γt ) f )u, π(g d
dθ

)etπ(g d
dθ

)
v〉.

By the infinitesimal commutation relation (3.1),π(g d
dθ

)ϕ(βd(γt ) f )u is a linear com-
bination of vectors inH, and thus lies inH as well. By Remark 3.4, ϕ(βd(γt ) f )u lies in
the domain of the skew-adjoint unbounded operator π(g d

dθ
). We can now continue the

above calculation:

d

dt
〈u2(t), v〉 = 〈[π(g d

dθ
), ϕ(βd(γt ) f )]u, etπ(g d

dθ
)
v〉 − 〈π(g d

dθ
)ϕ(βd(γt ) f )u, etπ(g d

dθ
)
v〉

= 〈ϕ(βd(γt ) f )π(−g d
dθ

)u, etπ(g d
dθ

)
v〉

= 〈e−tπ(g d
dθ

)
ϕ(βd(γt ) f )π(−g d

dθ
)u, v〉.

We now repeatedly apply this computation to conclude that

d

dt

n

〈u2(t), v〉 = 〈e−tπ(g d
dθ

)
ϕ(βd(γt ) f )π(−g d

dθ
)nu, v〉.
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Combining this with (3.3), we obtain

u(n)
2 (0) = ϕ( f )π(−g d

dθ
)nu = u(n)

1 (0)

for all n ≥ 0. As u1 and u2 are analytic, we conclude that u1 = u2. The map u2
takes values in H, so it follows that u1 does as well. Hence ϕ( f )U (γ−t )u ∈ H, and
multiplying u1 and u2 by U (γt ) we get

U (γt )ϕ( f )U (γ−t )u = ϕ(βd(γt ) f )u,

completing one direction of the proof.
Now assume conversely that ϕ satisfies theWightman version of Möbius covariance.

Without loss of generalitywe take f to be a Laurent polynomial as above, as the infinites-
imal covariance condition is continuous in f . It suffices to consider g d

dθ
∈ Lie(Möb),

and we take γt as above. The functions u1 and u2, defined as above, are analytic, and
this time by assumption we have u1 = u2. Evaluating the derivatives as before, we have

u′
1(0) = −ϕ( f )π(g d

dθ
)u

and

u′
2(0) = −π(g d

dθ
)ϕ( f )u + ϕ((d − 1) dg

dθ
f − g d f

dθ
)u.

The infinitesimal covariance condition follows immediately from the equality of these
two quantities. ��

3.3. Locality for adjointable fields. We continue with our Hilbert space H carrying a
positive-energy representationU ofMöb.Wehavefinite-energyvectorsV =⊕∞

n=0 V(n),
with each V(n) finite-dimensional and dim V(0) = 1. We now turn to discussing the
notion of locality for a pair of adjointable fields ϕ and ψ with domain V . Using the
extension of adjointable fields to maps H → V̂ from Lemma 3.1, we may consider
products like ϕ( f )ψ(g) as maps V → V̂ , and we can define locality in terms of these
products.

Our goal is to relate adjointable fields to point-like formal distributions as studied
in the context of vertex algebras. Let ϕ be an adjointable field with domain V that
is Möbius-covariant with degree d. Let ϕn = ϕ(en), where en(z) = zn , and observe
that ϕn ∈ End(V) by rotation covariance. The associated formal distribution ϕ̂(z) ∈
End(V)[[z±1]] is given by

ϕ̂(z) =
∑
n∈Z

ϕnz−n−d . (3.5)

Now let ϕ andψ be a pair of Möbius-covariant adjointable fields with domain V , and
let ϕ̂ and ψ̂ be the associated formal distributions.We say thatϕ andψ are relatively local
in the vertex algebra sense if for N sufficiently large we have an equality of formal
series (z − w)N [ϕ̂(z), ψ̂(w)] = 0. On the other hand, ϕ and ψ are called relatively
local in the Wightman sense if whenever f, g ∈ C∞(S1) have disjoint support we
have ϕ( f )ψ(g) = ψ(g)ϕ( f ) as maps V → V̂ .

The equivalenceofWightmanandvertex algebra localitywas established in [CKLW18,
Appendix A] under the hypothesis of polynomial energy bounds. It is not knownwhether
every unitary VOA satisfies this property. Below, we observe that the argument from
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[CKLW18] goes through under the weaker hypothesis of uniformly bounded order (Def-
inition 3.2), which we have shown holds in every unitary Möbius vertex algebra (see
Proposition 2.9).

First, we need a technical result. Recall that a distribution on S1 × S1 with order N
is a distribution that can be written as

∑
α ∂α fα , where fα are continuous functions on

S1 × S1 and α are multi-indices with |α| ≤ N .

Lemma 3.6. Suppose � is a distribution on S1 × S1 supported on the diagonal z = w

which has order N. Then there are distributions c j on S1, for j = 0, . . . , N, such that

�(z, w) =∑N
j=0 ∂

( j)
w δ(z − w)c j (w). In particular, �(z, w)(z − w)N+1 = 0.

Proof. For a distribution� onR supported on a point p with order N there are constants
cα such that � = ∑|α|≤N cα Dαδp (see [Rud91, Theorem 6.25]). The same holds for a

distribution � on S1, because this property is determined in a neighbourhood of p.
Let f, g be any smooth function on S1, and let F f,g(z, w) = f (z − w)g(w). Then

the map f �−→ �(F f,g) is a distribution on S1 of order N . As this is supported at 0,
it follows that �(F f,g) = ∑n

j=0 c j,g∂
( j)δ( f ), where δ = δ0 is the delta-distribution

supported at 0, with coefficients c j,g that depend on g.
We claim that the map g �−→ c j,g is a distribution on S1. Indeed, if we choose a

test function f such that only the j-th derivative does not vanish at 0 (among 0-th to
N -th derivatives), the map g �−→ �(F f,g) = ∑n

j=0 c j,g∂
( j)δ( f ) = c j,g f ( j)(0) is a

distribution. That is, we found distributions c j (g) = c j,g .
For any pair of test functions f and g we have�(F f,g) =∑N

j=0 c j (g) f ( j)(0), which

is to say that� coincides with
∑

c j (w)∂
( j)
w δ(z−w) on such pairs. As� is a distribution,

this equality extends to any two-dimensional test function [Trè67, Theorem 39.2]. ��
We can now establish the equivalence of Wightman and vertex algebra locality under

the hypothesis of uniformly bounded order.

Lemma 3.7. Let ϕ and ψ be adjointable fields with domain V . Suppose that ϕ, ψ , ϕ†,
and ψ† have uniformly bounded order. Then ϕ and ψ are local in the Wightman sense
if and only if they are local in the vertex algebra sense.

Proof. Since the fields have uniformly bounded order, we may invoke Lemma 3.3 to see
that the assignments ( f, g) �→ ϕ( f )ψ(g)u and ( f, g) �→ ψ(g)ϕ( f )u give continuous
bilinear maps H N (S1) × H N (S1) → V̂ for some number N which does not depend on
u. By Lemma B.1, for any u, v ∈ V we have a continuous functional Xu,v : H M (S1 ×
S1) → C determined by

Xu,v( f (z)g(w)) = 〈[ϕ( f ), ψ(g)]u, v〉
with M = 2N + 2. This is a distribution of order M + 2 as we noted in Appendix 4.
Furthermore, M is independent of u and v. From here, we proceed as in [CKLW18,
Proposition A.1].

First assume that ϕ and ψ are local in the Wightman sense. Then the distribution
Xu,v is supported on z = w, and by Lemma 3.6 we infer that (z − w)M+3Xu,v = 0.
Specializing f and g to functions of the form zk and w�, we get the same identity at the
level of formal distributions:

(z − w)M+3〈[ϕ̂(z), ψ̂(w)]u, v〉 = 0.
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As u and v were arbitrary and M did not depend on these vectors, we obtain the vertex
algebra locality condition (z − w)M+3[ϕ̂(z), ψ̂(w)] = 0.

Conversely, suppose that ϕ̂ and ψ̂ are local in the sense of vertex algebras. By [Kac98,
Corollary 2.2], we have that Xu,v is supported on the diagonal and thus [ϕ( f ), ψ(g)]u =
0 when f and g have disjoint support. ��

We note that the property of uniformly bounded order was essential in going from
Wightman locality to vertex locality in the proof of Lemma 3.7, allowing us to conclude
that M was independent of u.

3.4. From vertex algebras to Wightman fields and back. Let us prove the first of our
main results, namely that Wightman fields can be constructed from unitary Möbius
vertex algebras V . Recall from Sect. 2.4 that we define closed unbounded operators
Y (u, f ) on the Hilbert space completion H of V , and Proposition 2.9 says that the
domain of Y (u, f ) contains expressions of the form Y (vk, fk) · · · Y (v1, f1)�. LetD =
span{Y (vk, fk) · · · Y (v1, f1)� : v j ∈ V, f j ∈ C∞(S1)}. By Corollary 2.11, we have
adjointable distributions ϕu : C∞(S1) × D → H given by

ϕu( f ) = Y (u, f ) |D, (3.6)

and if u is quasi-primary then ϕ
†
u = (−1)du ϕ�u .

Theorem 3.8. Let V be a unitary Möbius vertex algebra with dim V(0) = 1, and let H
be the Hilbert space completion of V . Let S ⊂ V be a generating set for V consisting of
quasi-primary vectors, and assume that S = (−1)L0�S. Let F = {ϕu : u ∈ S}, for ϕu
as in (3.6). Then F is a Möbius-covariant Wightman field theory on H with uniformly
bounded order.

Proof. We verify that F satisfies the axioms (W2)-(W7) of a Wightman field theory,
leaving the nontrivial arguments for (W1) and (W3) for the end.

By Corollary 2.11, the ϕu are adjointable distributions and if ϕu ∈ F , then ϕ
†
u =

ϕ(−1)L0�u ∈ F as well. Hence,F satisfies the adjoint axiom (W2). As described in Sect.
2.1, we may exponentiate the positive-energy representation of Lie(Möb)C spanned
by {L−1, L0, L1} to a positive-energy representation of Möb. As (the closure of) L0
is the generator of rotations, the spectrum condition axiom (W4) is satisfied by the
definition of a unitary Möbius vertex algebra. The vacuum axiom (W5) is satisfied by
construction, and we note that D contains V since S is a generating set, and thus D
is dense. Finite-dimensionality of the L0-eigenspaces (W6) is part of the definition of
Möbius vertex algebra. The fields ϕu ∈ F satisfy the uniformly bounded order axiom
(W7) by Proposition 2.9. It remains to checkMöbius covariance (W1) and locality (W3).

We first consider Möbius covariance. From the definition of aMöbius vertex algebra,

if u is quasi-primary we have [Lk, Y (u, z)] =
(

zk+1 d
dz + (k + 1)zkdu

)
Y (u, z) for k =

−1, 0, 1, which implies that ϕu is Möbius-covariant in the vertex algebra sense. By
Lemma 3.5, it follows that if v ∈ V and γ ∈ Möb, we have

U (γ )ϕu( f )v = ϕu(βd(γ ) f )U (γ )v. (3.7)

Consider the expression

U (γ )ϕu1( f1) · · · ϕum ( fm)�,
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where f1, . . . , fm are Laurent polynomials and u1, . . . , um ∈ S. We are able to apply
the relation (3.7) repeatedly, as the vector to the right of U (γ ) is always a finite-energy
vector, yielding

U (γ )ϕu1( f1) · · · ϕum ( fm)� = ϕu1(βd1(γ ) f1) · · · ϕum (βdm (γ ) fm)�.

Since both sides are continuous in the f j by Proposition 2.9, the relation extends to all
f j ∈ C∞(S1), and we see that U (γ )ϕu( f )U (γ )∗ = ϕu(βd(γ ) f ) as operators on D,
which verifies the Möbius covariance axiom.

We give a similar proof of the locality axiom. Suppose that f1 and f2 are supported
in disjoint intervals. By Lemma 3.7, ϕu1( f1)ϕu2( f2) and ϕu2( f2)ϕu1( f1) agree as maps
V → V̂ . In fact, since V lies inside the domainD, the two agree as maps into the Hilbert
space. Thus if g1, . . . , gm are Laurent polynomials and v1, . . . , vm ∈ S we have

ϕu1( f1)ϕu2( f2)
[
ϕv1(g1) · · · ϕvm (gm)�

] = ϕu2( f2)ϕu1( f1)
[
ϕv1(g1) · · · ϕvm (gm)�

]
.

Since such expressions are continuous in the g j , by the vacuum axiom we see that
ϕu1( f1)ϕu2( f2) = ϕu2( f2)ϕu1( f1) as operators on D, completing the proof. ��

For the other direction, it is convenient to first introduce aweaker notion ofWightman
fields, which will be sufficient to construct unitary vertex algebras.

Definition 3.9. LetH be a Hilbert space carrying a SOT-continuous unitary representa-
tionU ofMöb. LetV =⊕V(n) be the finite-energy vectors, whereV(n) = ker(L0−n),
and assume that each V(n) is finite-dimensional. A quasi-Wightman field theory on V
is given by a family F of adjointable operator-valued distributions on S1 with domain
V , along with the representation U and a vector � ∈ V , such that the following hold:

(QW1) Möbius covariance: Each ϕ ∈ F is Möbius-covariant in the Wightman sense.
(QW2) Adjoint: F is closed under ϕ �→ ϕ†.
(QW3) Locality: If f, g have disjoint supports, then then ϕ1( f )ϕ2(g) = ϕ2(g)ϕ1( f ) as

maps V → V̂ .
(QW4) Spectrum condition: The generator L0 of rotations U (Rθ ) = eiθ L0 is positive.
(QW5) Vacuum: The vector � is the unique (up to scalar) vector in V that is invariant

under U , and V is spanned by expressions of the form 4 ϕ1(zn1) · · · ϕk(znk )�

where ϕ j ∈ F and n j ∈ Z.

Note that a family of fields satisfying all of the conditions of Definition 3.9 except for the
cyclicity of the vacuum yields a quasi-Wightman field theory on an appropriate subspace
ofH.

The difference between quasi-Wightman field theories andWightman field theories is
that in quasi-Wightman field theories we do not assume that the operators ϕ( f ) preserve
the domain in general. However one of our main results (Theorem 3.12) implies that this
property is automatic under the additional condition of uniformly bounded order.

We say that a quasi-Wightman field theoryF has uniformly bounded order if every
ϕ ∈ F has uniformly bounded order (Definition 3.2). The following is almost immediate.

Proposition 3.10. Let H be a Hilbert space carrying a positive-energy representation
of Möb, let V be the finite-energy vectors, and suppose that each weight space V(n) is
finite-dimensional. Let F be a Wightman field theory on H. Then F̃ = {ϕ|V : ϕ ∈ F} is
a quasi-Wightman field theory on V . If F has uniformly bounded order then so does F̃ .

4 Note that ϕ j (z
n j ) ∈ End(V) by Möbius covariance.
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Proof. Observe that V ⊂ D since dim V(n) < ∞, as described in Sect. 2.3. An ad-
jointable field remains adjointable when restricted to a dense subspace of the domain, so
in particular each ϕ|V is adjointable. Each condition of the definition of quasi-Wightman
field theory follows directly from the corresponding property of a Wightman field the-
ory. ��

We now give a converse to Theorem 3.8 by constructing a unitary Möbius vertex
algebra from a (quasi-)Wightman field theory.

Theorem 3.11. Let H be a Hilbert space carrying a positive-energy representation of
Möb, with finite-energy vectors V . Assume that the weight spaces V(n) = ker(L0 − n)

are finite-dimensional and that dim V (0) = 1. Let F be a quasi-Wightman field theory
on V with uniformly bounded order. Then there is a unique structure of a unitary Möbius
vertex algebra on V such that for every ϕ ∈ F there is a quasi-primary v ∈ V such that
ϕ( f ) = Y (v, f )|V .

Proof. We note that the uniqueness of such a vertex algebra structure is guaranteed by
the fact that the condition ϕ( f ) = Y (v, f )|V determines the modes of the generating
fields.

Recall from (3.5) that for a field ϕ ∈ F which is Möbius-covariant of degree d, the
associated point-like field is ϕ̂(z) =∑n∈Z ϕnz−n−d , where ϕn = ϕ(zn). Let

F̂ = {ϕ̂(z) : ϕ ∈ F}
be the family of point-like fields associated to F .

First, we construct an N-graded Möbius vertex algebra structure on V by showing
that F̂ satisfies the six hypotheses of TheoremA.1. The first two hypotheses of Theorem
A.1 hold by assumption. By Lemma 3.5, each field of F is Möbius-covariant in the
vertex algebra sense, and thus the fourth hypothesis holds for F̂ . By assumption, any
pair of fields in F is relatively local in the sense of Wightman fields. It follows that the
point-like fields in F̂ are relatively local in the sense of vertex operators by Lemma 3.7
and the uniformly bounded orders of the fields. This shows that the fifth condition of
Theorem A.1 is satisfied. The sixth condition, that V is generated by modes of fields
from F̂ , is immediate from the definition of quasi-Wightman field theory.

It thus remains to show the third condition, namely that ϕ̂(z)� has a removable
singularity at z = 0. That is, we must show that ϕ−n� = 0 for n ≤ d − 1. When
n < 0 the positivity of L0 implies that ϕ−n� = 0. It remains to consider the cases
n = 0, 1, . . . , d − 1. For such n, the Möbius covariance of ϕ̂ (3.2) and the Möbius
invariance of � yield that

ϕ−n� = 1
n−d [L−1, ϕ−(n−1)]� = 1

n−d L−1ϕ−(n−1)�.

Iteratively applying this identity, starting with n = 0, yields

0 = ϕ0� = ϕ−1� = · · · = ϕ−(d−1)�,

as required.
By Theorem A.1, we conclude that there exists a N-graded Möbius vertex alge-

bra structure on V such that for all ϕ ∈ F we have ϕ̂(z) = Y (vϕ, z), where vϕ =
limz→0 ϕ̂(z)�. It follows that ϕ( f )u = Y (vϕ, f )u for f a Laurent polynomial, and
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indeed for all f ∈ C∞(S1) if both sides are regarded as elements of V̂ . The vector vϕ is
quasi-primary as

L1vϕ = lim
z→0

L1Y (vϕ, z)� = lim
z→0

[L1, Y (vϕ, z)]� = lim
z→0

(z2 d
dz + 2zdϕ)Y (vϕ, z)� = 0.

It remains to show that V is unitary. The assumption thatF is invariant under † shows
that 1

2 (ϕ̂ + ϕ̂†) and 1
2i (ϕ̂ − ϕ̂†) are fields of the vertex algebra which are Hermitian. Such

fields generate V , and thus V is unitary by Proposition 2.3. ��
In summary, we have given constructions which relate the notions of unitary Möbius

vertex algebra and Möbius-covariant (quasi-)Wightman field theories with uniformly
bounded order. All of these constructions start with aHilbert spaceH carrying a positive-
energy representation of Möb. In all of the constructions, we require that the weight
spaces V(n) = ker(L0 − n) are finite-dimensional and that dim V(0) = 1. We write
V =⊕∞

n=0 V(n) for the space of finite-energy vectors. The constructions are then given
by the following steps:

1. Starting with a unitary Möbius vertex algebra V and a (−1)L0�-invariant generating
set of quasi-primary vectors S, Theorem 3.8 says that F = {ϕv : v ∈ S} is a
Möbius-covariant Wightman field theory. Here ϕv( f ) is the restriction of Y (v, f ) to
the invariant domain D generated from the vacuum by all of the smeared fields. The
resulting Wightman field theory has uniformly bounded order.

2. Given a Möbius-covariant Wightman field theory on a domain D, one may restrict
all of the distributions to the smaller domain V of finite-energy vectors, and the result
is a quasi-Wightman field theory by Proposition 3.10.

3. From a Möbius-covariant quasi-Wightman field theory F with uniformly bounded
order, Theorem 3.11 asserts the existence of a unique unitary Möbius vertex algebra
structure on V such that for every ϕ ∈ F there is a vϕ ∈ V such that ϕ( f ) =
Y (vϕ, f )|V . There is a canonical (−1)L0�-invariant generating set S = {vϕ : ϕ ∈
F}.
One may begin with a vertex algebra or (quasi-)Wightman field theory and cycle

through the above steps, returning to the original object. We have therefore proven the
following.

Theorem 3.12. Let H be a Hilbert space carrying a positive-energy representation of
Möb, and let V = ⊕∞

n=0 V(n) be the finite-energy vectors. Assume that V(n) is finite-
dimensional and dim V(0) = 1. Then the constructions of Theorem 3.8, Proposition
3.10, and Theorem 3.11 provide bijections between the following notions:

1. Unitary Möbius vertex algebra structures on V , equipped with a (−1)L0�-invariant
set of quasi-primary vectors that generate V .

2. Wightman field theories on H with uniformly bounded order.
3. Quasi-Wightman field theories on V with uniformly bounded order.

We do not have an example of a (quasi)-Wightman field theory that does not have
uniformly bounded order, and it is possible that this property is automatic. The smeared
fields arising from vertex algebras have uniformly bounded order, so one approach to
demonstrating that this property is automatic forWightmanfield theorieswouldbe to give
a proof of Theorem 3.11 which does not use the uniformly bounded order hypothesis. In
particular, the only place where this hypothesis is invoked is in the proof of Lemma 3.7
regarding locality, so it would suffice to show that the fields of a Wightman field theory
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were automatically local in the vertex algebra sense. There is a sketch of an argument
demonstrating this in [Kac98, §1.2], but it does not seem complete.5

4. The VOA Associated to a Conformal Net

In this section, we introduce an operator-algebraic formulation ofMöbius-covariant field
theory. A Möbius-covariant (Haag-Kastler) net on S1 is a triple (A, U,�), where A
associates to each open nondense nonempty connected interval I of S1 a von Neumann
algebra A(I ) on H, U is a SOT-continuous unitary representation of Möb on H, and
� ∈ H such that the following hold:

(HK1) Isotony: If I1 ⊂ I2, then A(I1) ⊂ A(I2).
(HK2) Locality: If I1 ∩ I2 = ∅, then A(I1) and A(I2) commute.
(HK3) Möbius covariance: For γ ∈ Möb, U (γ )� = � and U (γ )A(I )U (γ )∗ =

A(γ I ) for each interval I .
(HK4) Spectrum condition: The generator L0 of rotations U (Rθ ) = eiθ L0 is positive.
(HK5) Vacuum: � is the unique (up to a scalar) vector in H that is invariant under U ,

and it is cyclic for
∨

I�S1 A(I ).

While we will primarily be concerned with Möbius-covariant nets, we will also
briefly discuss diffeomorphism covariant conformal nets, which have the additional
property that U extends to a projective unitary representation of orientation-preserving
diffeomorphismsDiff(S1). This representation is required to satisfyU (γ )A(I )U (γ )∗ =
A(γ I ) and moreover U (γ ) ∈ A(I ) when γ is supported in I .

Definition 4.1. Let A be a Möbius-covariant net with vacuum Hilbert space H, and
let V = ⊕V(n) be the space of finite-energy vectors. An adjointable distribution ϕ

with domain V is affiliated with A if whenever supp( f ) ⊂ I there is an intermediate
extension ϕ( f ) ⊆ ϕaff( f ) ⊆ ϕ†( f )∗ such that ϕaff( f ) is affiliated with A(I ).

For a discussion on unbounded operators affiliated with a von Neumann algebra, see
[Ped89, §5.2]. We note that the requirement that ϕ†( f )∗ is an extension of ϕaff( f ) is the
same as requiring that the domain of ϕaff( f )∗ contains V .

We will show that the Möbius-covariant fields affiliated with A satisfy all of the ax-
ioms of a quasi-Wightman field theory except perhaps cyclicity of the vacuum (which in
turn produces a quasi-Wightman field theory on a subspace of the finite-energy vectors).
The main step is to check the locality axiom, for which we will use the following basic
lemma.

Lemma 4.2. Let X be a densely defined closed operator on a Hilbert space H, and
suppose that X is affiliated with a von Neumann algebra M ⊂ B(H). Then there exists
a sequence xn ∈ M such that xnξ → Xξ for all ξ ∈ Dom(X) and x∗

nξ → X∗ξ for all
ξ ∈ Dom(X∗).

Proof. Let fn : [0,∞) → [0,∞) be the bounded function fn(t) = min(n, t). Let
X = v |X | be the polar decomposition, with v supported on Ran(|X |), and set xn =
v fn(|X |) ∈ M. For any ξ ∈ Dom(X) = Dom(|X |) we have fn(|X |)ξ → |X | ξ , and

5 On page 11 the operator product expansion of two fields [�a(t), �b(t ′)] = ∑
j≥0 ∂( j)δ(t − t ′)� j (t ′)

is stated and it is claimed that for � j the Wightman axioms still hold, without proof. We are unable to justify
this. Cf. [Bos05] which proves a form of OPE under additional assumptions.
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thus xnξ → Xξ . We have X∗ = (v |X |)∗ = |X | v∗ since v is bounded, and thus v∗ maps
Dom(X∗) into Dom(|X |). Thus if ξ ∈ Dom(X∗) we have

x∗
nξ = fn(|X |)v∗ξ → |X | v∗ξ = X∗ξ

as desired. ��
Theorem 4.3. Let (A, U,�) be a Möbius-covariant net and let F be the family of
Möbius-covariant adjointable distributions with domain V that are affiliated with A.
Then F satisfies all of the axioms of a quasi-Wightman field theory except perhaps for
the cyclicity of the vacuum.

Proof. Wemust check thatF satisfiesDefinition 3.9. All of the conditions are immediate
except closure under † and the locality axiom.

Let ϕ ∈ F . We must show that ϕ† is affiliated withA and that it is Möbius-covariant.
Fix a function f ∈ C∞(S1) that is supported in I . Since ϕ is affiliated with A we have
extensions

ϕ( f ) ⊆ ϕaff( f ) ⊆ ϕ†( f )∗

with ϕaff( f ) affiliated with A(I ). Taking adjoints (and forgetting the closure of ϕ†( f ))
we have

ϕ†( f ) ⊆ ϕaff( f )∗ ⊆ ϕ( f )∗.

Since the adjoint ϕaff( f )∗ is an extension of ϕ†( f ) and is affiliated withA(I ), we have
shown that ϕ† is again affiliated with A (see Definition 4.1).

We now check Möbius covariance of ϕ†. By Lemma 3.5 we may check that ϕ† is
Möbius-covariant in the vertex algebra sense, namely that for all g d

dθ
∈ Lie(Möb)C we

have

[π(g d
dθ

), ϕ†( f )]u = ϕ†((d − 1) dg
dθ

f − g d f
dθ

)u,

where π is the representation of Lie(Möb)C that integrates to U . Both sides of this
condition depend continuously on f (in the topology of V̂) and thus it suffices to consider
when f is a Laurent polynomial. By Möbius covariance for ϕ (applied to f and g) we
have

[π(g d
dθ

), ϕ( f )]u = ϕ((d − 1) dg
dθ

f − g d f
dθ

)u.

Taking adjoints as endomorphisms ofV , and applying the fact thatπ(g d
dθ

)∗ = −π(g d
dθ

),
we obtain the Möbius covariance condition for ϕ†, which completes the proof that F is
†-invariant.

We now show thatF satisfies locality. Letϕ,ψ ∈ F , let I1 and I2 be disjoint intervals,
and suppose that f is supported in I1 and g is supported in I2. Choose intermediate
extensions

ϕ( f ) ⊆ ϕaff( f ) ⊆ ϕ†( f )∗, ψ(g) ⊆ ψaff(g) ⊆ ψ†(g)∗

with ϕaff( f ) and ψaff(g) affiliated withA(I ) andA(J ), respectively. Applying Lemma
4.2, we may choose a sequence xn ∈ A(I ) such that for every u ∈ V we have xnu →
ϕ( f )u and and x∗

n u → ϕ( f )∗u = ϕ†( f )u. We also choose yn ∈ A(J ) that approximate
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ψ(g) in the same manner, and observe that the xn and yn commute by the locality axiom
for A. Then for u, v ∈ V we have

〈ϕ( f )ψ(g)u, v〉 = 〈ψ(g)u, ϕ†( f )v〉 = lim
n→∞〈ynu, x∗

nv〉 =
= lim

n→∞〈xnu, y∗
nv〉 = 〈ϕ( f )u, ψ†(g)v〉 = 〈ψ(g)ϕ( f )u, v〉

which establishes locality, and completes the proof. ��
Note that any †-invariant subset of a quasi-Wightman field theory (perhaps missing

cyclicity of the vacuum) is again a quasi-Wightman field theory (perhaps missing cyclic-
ity of the vacuum). In order to apply Theorem 3.11, we are particularly interested in the
sub-theory of uniformly bounded distributions.

Definition 4.4. Let A be a Möbius-covariant net on a Hilbert space H, and let V ⊂ H
be the space of finite-energy vectors. We denote by FA the collection of all adjointable
Möbius-covariant distributions ϕ with domain V that are affiliated with A and have the
property that both ϕ and ϕ† have uniformly bounded order.

By Theorem 4.3, FA satisfies all of the axioms of a quasi-Wightman field theory
except perhaps cyclicity of the vacuum, and thus yields a quasi-Wightman field theory
on

VA = span
{
ϕ1(z

n1) · · · ϕk(z
nk )�

∣∣ϕi ∈ FA, ni ∈ Z
} ⊆ V,

provided that the L0-eigenspaces are finite-dimensional.Note that the vectorswhich span
VA are invariant underLie(Möb)C, hence, theHilbert space completion is invariant under
the action of the group Möb. This quasi-Wightman field theory has uniformly bounded
order by construction, and so by Theorem 3.12 there is a unitary Möbius vertex algebra
structure on VA. In general, we cannot guarantee that VA is not the trivial vertex algebra
{�}. However, if A is a conformal net (i.e. if A is diffeomorphism covariant), then the
associated stress-energy tensor T (z) =∑n∈Z Lnz−n−2 induces a quasi-Wightman field
affiliated with A [Car04, Appendix].

Corollary 4.5. Let A be a diffeomorphism covariant conformal net, and let T (z) =∑
n∈Z Lnz−n−2 be the associated stress-energy tensor. Suppose that the eigenspaces of

L0 are finite-dimensional. Then VA is a unitary vertex operator algebra with conformal
vector ν = L−2� and Y (ν, z) = T (z).

The following proposition shows that if the net A “comes from” a Möbius vertex
algebra (in a relatively weak sense), then that vertex algebra is the one we have con-
structed.

Proposition 4.6. Let A be a Möbius-covariant net defined on a Hilbert space H with
finite-energy vectors V . Suppose that there is a structure of a unitary Möbius vertex
algebra YV onV , with the same vacuum vector and representation ofMöb asA. Suppose
that there is a generating family of quasi-primary vectors u for which the operator-valued
distributions f �→ YV (u, f )|V are affiliated with A in the sense of Definition 4.1. Then
V = VA as unitary Möbius vertex algebras.

Proof. As inTheorem4.3,wewriteF for the collection ofMöbius-covariant, adjointable
distributionswith domainV that are affiliatedwithA, which formaquasi-Wightmanfield
theory except perhaps for cyclicity of the vacuum. The vertex algebra VA corresponds
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to the subcollection FA ⊂ F consisting of distributions ϕ such that ϕ and ϕ† have
uniformly bounded order.

Let S ⊂ V be a generating set of quasi-primary vectors for the vertex algebra V
such that the associated operator-valued distributions are affiliated with A. For u ∈ S,
let ϕu( f ) = YV (u, f )|V be the associated operator-valued distribution. By Theorem
3.8, the distributions ϕu are adjointable and Möbius-covariant, and by assumption the
ϕu are affiliated with A. Hence ϕu ∈ F . Moreover, by Proposition 2.9 the fields ϕu

and ϕ
†
u have uniformly bounded order, so ϕu ∈ FA. It follows that S ⊂ VA and

YV (u, z)|VA = YA(u, z) for u ∈ S, where YA denotes the vertex algebra structure
on VA arising from our construction. Since S generates V , we have VA = V as vertex
algebras. The representations of Lie(Möb) and the inner products of VA and V coincide
by construction. ��

Finally, as a result of our analysis of the domains of smeared vertex operators, we
are able to give a construction of conformal nets from vertex algebras under looser
assumptions than [CKLW18]. The key hypothesis will be the following.

Definition 4.7. A unitary Möbius vertex algebra V is called AQFT-local if for any
u, v ∈ V the closed operators Y (u, f ) and Y (v, g) commute strongly6 whenever f and
g have disjoint support.

Here Y (u, f ) is the closure of Y 0(u, f ), where the domain of Y 0(u, f ) is V . We have
the following analog of [CKLW18, Theorem 6.8].

Proposition 4.8. Let V be a unitary Möbius vertex algebra that is AQFT-local. Then

AV (I ) = vN({Y (v, f ) : supp( f ) ⊆ I })
defines a Möbius-covariant net, with Möbius symmetry given by the representation of
Möb obtained by integrating the representation of Lie(Möb) on V . If V is a unitary
vertex operator algebra 7 with conformal vector ν, then AV is diffeomorphism covariant
with respect to the representation of Diff(S1) obtained by integrating the coefficients of
Y (ν, z).

Proof. In the Möbius case, the only point to address is Möbius covariance. Let U :
Möb → U(H) be the representation obtained by integrating the Lk of V . By the relation
Y (L−1v, f ) = Y (v, i f ′ − dv f ), we see that AV (I ) is generated by smeared fields
Y (v, f ) with v quasi-primary. Let S ⊆ V be the set of quasi-primary vectors. Then the
domain D = {Y (vk, fk) · · · Y (v1, f1)� : v j ∈ S, f j ∈ C∞(S1)} contains V , and is
contained in the domain of anyY (v, f ) byProposition 2.9.HenceD is a core forY (v, f ).
By Theorem 3.8, we have U (γ )D = D for any γ ∈ Möb, and U (γ )Y (v, f )|DU (γ )∗ =
Y (v, βd(γ ) f )|D when v is quasi-primary with conformal dimension d. Taking closures
yields U (γ )Y (v, f )U (γ )∗ = Y (v, βd(γ ) f ), and Möbius covariance follows. If V is a
VOA, then (as in [CKLW18, Theorem 6.8]) we observe that AV is an extension of a
Virasoro net and its conformal covariance follows from [Car04, Proposition 3.7]. ��

6 Recall that two closed operators X and Y commute strongly when the von Neumann algebras vN(X) and
vN(Y ) commute. Here, vN(X) is the smallest von Neumann algebra to which X is affiliated; it is generated
by the polar partial isometry of X along with the spectral projections of |X |. We avoid the terminology
“strongly local” because in [CKLW18] “strongly local” vertex algebras are assumed to satisfy polynomial
energy bounds.

7 For definitions and details of unitary vertex operator algebras, as opposed to unitary Möbius vertex
algebras, see [CKLW18, §4,§5].
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Corollary 4.9. Let V be an AQFT-local unitary Möbius vertex algebra, and let AV
be the corresponding Möbius-covariant net. Then the unitary Möbius vertex algebra
associated to AV via Corollary 4.5 recovers V .

Proof. For every quasi-primary u ∈ V the operator Y (u, f ) is affiliated with AV (I )
when supp f ⊆ I . Thus the claimed result is an immediate consequence of Proposi-
tion 4.6. ��

There is another construction of conformal nets AV from unitary vertex operator
algebras V which have a property called “bounded localized vertex operators” [Ten19b,
Ten19c,Ten19a]. A straightforward argument shows that if V has this property then
applying Corollary 4.5 to AV recovers V , but we will omit a discussion of bounded
localized vertex operators here.

Work in progress of André Henriques and JT will show that every (diffeomorphism
covariant) conformal net is of the formAV , for both the AQFT-locality construction and
the bounded localized vertex operator construction. It would then follow that the unitary
VOA VA from Corollary 4.5 is always defined on all of V , and moreover that VA is
AQFT-local with corresponding conformal net A.

It would be interesting to know whether the dual nets of the Virasoro net with c > 1
[BSM90] or theW3-net with c > 2 [CTW21] come from vertex algebras. It is unknown
whether these dual nets are diffeomorphism covariant.
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A Generating Unitary Möbius Vertex Algebras

The following theorem gives standard criteria for a collection of fields to generate a
Möbius vertex algebra. However, standard references (e.g. [Kac98, Theorem 4.5]) pro-
vide a proof under additional hypotheses and do not treat L1-covariance. We summarize
the necessary adjustments here:

Theorem A.1. Let V be a vector space equipped with a representation {L−1, L0, L1}
of Lie(Möb)C, a collection F ⊂ End(V)[[z±1]] of formal distributions, and a choice of
vector � ∈ V such that the following hold:

http://creativecommons.org/licenses/by/4.0/
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1. V = ⊕∞
n=0 V(n) where V(n) = ker(L0 − n) and each V(n) is finite-dimensional,

with dim V(0) = 1.
2. � is Lie(Möb)-invariant.
3. For every A(z) ∈ F , A(z)� has a removable singularity at z = 0.
4. For every A(z) ∈ F , there exists a number dA ∈ Z≥0 such that

[Lk, A(z)] = (zk+1 d
dz + (k + 1)zkdA)A(z) k = −1, 0, 1.

5. For every A(z), B(w) ∈ F , (z − w)N [A(z), B(w)] = 0 for N sufficiently large.
6. V = span{A1

(n1)
· · · Ak

(nk)
� : A j ∈ F , n j ∈ Z, k ∈ Z≥0}, where A(n) denotes the

nth mode of the formal series A(z).

Then there exists a unique structure of an N-graded Möbius vertex algebra on V such
that A(z) = Y (A(z)�|z=0, z) for every A ∈ F .

Proof. Note that the uniqueness part of the conclusion is clear by the generating property
6 alongwith theBorcherds product formula [Kac98, Eq. (4.6.10)]. LetG be the collection
of formal distributions obtained by closing F ∪ {Id} under derivatives, Borcherds (n)-
products

A(n) B(z) = Resz
{
(z − w)n A(z)B(w) − (−w + z)n B(w)A(z)

}

for n ∈ Z, and linear combinations. Here (z − w)n is shorthand for the series expansion
of that function in the domain |z| > |w|, and similarly (−w + z)n is expanded in the
domain |w| > |z|. As in the proof of [Kac98, Theorem 4.5], G again satisfies properties
3 and 5 of the hypothesis, as well as the L−1-commutation relations of 4. We note that
Kac only considers (n)-products with n > 0, but that does not affect this step (most
notably Dong’s Lemma [Kac98, Lemma 3.2] has no restriction on n). By hypothesis
6, the map G → V given by A(z) �→ A(z)�|z=0 is surjective. The argument of the
uniqueness theorem [Kac98, Theorem 4.4] [God89], shows that this map is injective.
By inverting, we obtain the state-field correspondence Y of a vertex algebra such that
Y (A(z)�|z=0, z) = A(z) for every A ∈ F .

It remains to check that the fields of this vertex algebra have the correct commutation
relations with L0 and L1. From the L0-commutation relation for F and the definition
of the (n)-product, it is immediate to check the L0-commutation relation for G, and that
A(z)�|z=0 ∈ V(dA). To address the L1-commutation relation, observe that if A(z) ∈ F ,
then

L1A(z)�|z=0 = [L1, A(z)]� |z=0= (z2 d
dz + 2dAz)A(z)� |z=0= 0.

Thus, the states A(z)�|z=0 are quasi-primary, and so the fields Y (A(z)�|z=0, z) satisfy
the L1-commutation relation when A(z) ∈ F . The final step is to show that the L1-
commutation relation extends from the generating set to the entire vertex algebra, which
is the content of Lemma A.2 below. ��
Lemma A.2. Suppose that V satisfies all of the axioms of a Möbius vertex algebra,
except perhaps the commutation relation with L1. Then the set of homogeneous vectors
v ∈ V such that the L1-commutation relation

[L1, Y (v, z)] = (z2∂z + 2dvz)Y (v, z) + Y (L1v, z) (A.1)
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holds is closed under Borcherds (n)-products u(n)v. That is, if Y (u, z) and Y (v, z) satisfy
the L1-commutation relation, then

[L1, Y (u(n)v, z)] = z2∂zY (u(n)v, z) + 2du(n)vzY (u(n)v, z) + Y (L1u(n)v, z), (A.2)

where du(n)v = du + dv − n − 1.

Proof. We make use of the formula (see [Kac98, Eq (3.1.12) and (4.6.10)])

Y (u(n)v, w) = Resz
{
(z − w)nY (u, z)Y (v,w) − (−w + z)nY (v,w)Y (u, z)

}
,

(A.3)

where as before (z − w)n is shorthand for the series expansion of that function in the
domain |z| > |w|, and similarly (−w + z)n is expanded in the domain |w| > |z|. Taking
the commutator with L1, we have

[L1, Y (u(n)v, w)] = Resz

{
(z − w)n(z2∂z + w2∂w + 2duz + 2dvw)Y (u, z)Y (v,w)

− (−w + z)n(z2∂z + w2∂w + 2duz + 2dvw)Y (v,w)Y (u, z)

+ (z − w)n(Y (L1u, z)Y (v,w) + Y (u, z)Y (L1v,w))

− (−w + z)n(Y (L1v,w)Y (u, z) + Y (v,w)Y (L1u, z))
}
.

(A.4)

The terms in the final two lines yield Y ((L1u)(n)v, w) and Y (u(n)(L1v),w). Applying
commutation relations, we have that L1u(n) = (2du − n − 2)u(n+1) + (L1u)(n) + u(n)L1,
and hence

Y (L1u(n)v, w) = (2du − n − 2)Y (u(n+1)v, w) + Y ((L1u)(n)v, w) + Y (u(n)(L1v),w).

Applying this equality, we can expand terms which appear on the righthand side of
(A.2) using (A.3) as follows:

w2∂wY (u(n)v, w)

= Resz

{
−w2n(z − w)n−1Y (u, z)Y (v, w) − (−1)w2n(−w + z)n−1Y (v, w)Y (u, z)

+(z − w)nw2Y (u, z)∂wY (v, w) − (−w + z)nw2∂wY (v, w)Y (u, z)
}

,

and similarly,

2(du + dv − n − 1)wY (u(n)v, w) + (2du − n − 2)Y (u(n+1)v, w)

= Resz
{
(2duz + 2dvw − nz − nw − 2z)(z − w)nY (u, z)Y (v,w)

− (2duz + 2dvw − nz − nw − 2z)(−w + z)nY (v,w)Y (u, z)
}
.

Using the identity

w2n(z − w)n−1 + n(z + w)(z − w)n = z2n(z − w)n−1,
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and applying integration-by-parts to the expression

−Resz

{
(2z(z − w)n + z2n(z − w)n−1)Y (u, z)Y (v,w)

− (2z(−w + z)n + z2n(−w + z)n−1)(−w + z)nY (v,w)Y (u, z)
}

= Resz

{
−∂z(z

2(z − w)n)Y (u, z)Y (v,w) + ∂z(z
2(−w + z)n)Y (v,w)Y (u, z)

}

= Resz

{
(z − w)nz2∂zY (u, z)Y (v,w) − (−w + z)nz2Y (v,w)∂zY (u, z)

}
,

we have that (A.4) is equal to the right-hand side of (A.2). ��

B Remarks on Sobolev Spaces

Recall that H N (S1) can be defined as

H N (S1) =
{

f ∈ L2(S1) :
∑
n∈Z

(1 + n2)N | f̂ (n)|2 < ∞
}
.

The norm ‖ f ‖N = (1 + n2)N | f̂ (n)|2 is equivalent to the following norm

‖ f ‖N+ =
∑
n∈Z

(1 + n2 + · · · + n2N )| f̂ (n)|2,

and accordingly the Sobolev space can be written as follows:

H N (S1) =
{

f ∈ L2(S1) :
∑
n∈Z

(1 + n2 + · · · + n2N )| f̂ (n)|2 < ∞
}
.

Using this norm, the map U such that (̂U f )(n) = √
1 + n2 + · · · + n2N f̂ (n) is a unitary

from H N (S1) to L2(S1) (with H N (S1) equipped with the corresponding inner product).
Any bounded operator x on L2(S1) can be written as x̂ f (m) = ∑

n xm,n f̂ (n). As it
is bounded, there is a constant C > 0 such that |xm,n| < C . Correspondingly, any
bounded operator x on H N (S1) can be represented by components xm,n and they satisfy

|xm,n(1 + n2 + · · · + n2N )− 1
2 (1 + m2 + · · · + m2N )− 1

2 | < C for some C > 0.
Similarly, H2N+2(S1 × S1) is a subspace of L2(S1 × S1) with the norm

‖h‖22N+2+(S1×S1) =
∑
m,n

∑
k≤2N+2

k∑
�=0

m2(k−�)n2�|ĥ(m, n)|2

and the map Ũ such that ̂
(Ũ f )(m, n) =

√∑
k≤2N+2

∑k
�=0 m2(k−�)n2� f̂ (m, n) is a

unitary from H2N+2(S1 × S1) to L2(S1 × S1).
Any continuous linear functional ξ on H2N+2(S1 × S1) has the form ξ( f ) =∑
ξm,n f̂ (m, n), where

ξm,n

(∑
k≤2N+1

∑k
�=0 m2(k−�)n2�

)− 1
2
is in �2(Z × Z).

Any continuous linear functional ξ on H2N+2(S1 × S1) can be written as a linear
combination of derivatives of f ∈ L2(S1 × S1) of order no greater than 2N + 2 [Leo17,
Theorem 11.62]. Hence, ξ itself has order no greater than 2N + 4 as a distribution on
S1 × S1.
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Lemma B.1. Let B(·, ·) be a jointly continuous bilinear form on H N (S1). Then there is
a continuous linear functional B̃ on H2N+2(S1 × S1) such that B̃( f ⊗ g) = B( f, g),
where ( f ⊗ g)(w, z) = f (w)g(z).

Proof. As B is jointly continuous, by theRiesz representation theorem there is a bounded
operator x such that V ( f, g) = 〈J f, xg〉, where Ĵ f (n) = f (n) is a unitary conjugation
and x can be represented by matrix components as above, satisfying

|xm,n(1 + n2 + · · · + n2N )−
1
2 (1 + m2 + · · · + m2N )−

1
2 | < C

for some C > 0.
We claim that

(1 + n2 + · · · + n2N )
1
2 (1 + m2 + · · · + m2N )

1
2

⎛
⎝ ∑

k≤2N+2

k∑
�=0

m2(k−�)n2�

⎞
⎠

− 1
2

is in �2(Z × Z). Indeed, we only have to show that

(1 + n2 + · · · + n2N )(1 + m2 + · · · + m2N )

⎛
⎝ ∑

k≤2N+2

k∑
�=0

m2(k−�)n2�

⎞
⎠

−1

is in �1(Z × Z), and note that

∑
k≤2N+2

k∑
�=0

m2(k−�)n2� > (1 + n2 + · · · + n2(N+1))(1 + m2 + · · · + m2(N+1)),

while

(1 + n2 + · · · + n2N )(1 + m2 + · · · + m2N )

(1 + n2 + · · · + n2(N+1))(1 + m2 + · · · + m2(N+1))
<

1

n2m2

is in �1(Z × Z).
Therefore, we have that

xm,n

⎛
⎝ ∑

k≤2N+2

k∑
�=0

m2(k−�)n2�

⎞
⎠

− 1
2

∈ �2(Z × Z)

and xm,n defines a continuous linear functional B̃ on H2N+2(S1×S1) such that B̃( f, g) =∑
m,n xm,n f̂ (m)ĝ(n), which is an extension of the desired form. ��
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