
1Bernstein Center for Computational Neuroscience, Tübingen, Germany
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Abstract

3D models provide a common ground for different repre-

sentations of human bodies. In turn, robust 2D estimation

has proven to be a powerful tool to obtain 3D fits “in-the-

wild”. However, depending on the level of detail, it can be

hard to impossible to acquire labeled data for training 2D

estimators on large scale. We propose a hybrid approach to

this problem: with an extended version of the recently in-

troduced SMPLify method, we obtain high quality 3D body

model fits for multiple human pose datasets. Human anno-

tators solely sort good and bad fits. This procedure leads

to an initial dataset, UP-3D, with rich annotations. With a

comprehensive set of experiments, we show how this data

can be used to train discriminative models that produce re-

sults with an unprecedented level of detail: our models pre-

dict 31 segments and 91 landmark locations on the body.

Using the 91 landmark pose estimator, we present state-of-

the art results for 3D human pose and shape estimation us-

ing an order of magnitude less training data and without

assumptions about gender or pose in the fitting procedure.

We show that UP-3D can be enhanced with these improved

fits to grow in quantity and quality, which makes the system

deployable on large scale. The data, code and models are

available for research purposes.

1. Introduction

Teaching computers to recognize and understand hu-

mans in images and videos is a fundamental task of com-

puter vision. Different applications require different trade-

offs between fidelity of the representation and inference

complexity. This led to a wide range of parameterizations

for human bodies and corresponding prediction methods

ranging from bounding boxes to detailed 3D models.

* This work was performed while J. Romero and F. Bogo were with

the MPI-IS2; P. V. Gehler with the BCCN1 and MPI-IS2.

31 Parts

United People Dataset

91 Landmarks 3D Fits Direct 3D 3D Fit Improvement

MPII HPDBLeeds Sports Pose / extended FashionPose

Label Generation

Figure 1: Lower row: validated 3D body model fits on vari-

ous datasets form our initial dataset, UP-3D, and provide la-

bels for multiple tasks. Top row: we perform experiments

on semantic body part segmentation, pose estimation and

3D fitting. Improved 3D fits can extend the initial dataset.

Learning-based algorithms, especially convolutional

neural networks (CNNs), are the leading methods to cope

with the complexity of human appearance. Their represen-

tational power has led to increasingly robust algorithms for

bounding box detection [10], keypoint detection [19, 32, 42]

and body part segmentation [7, 15, 43]. However, they are

usually applied in isolation on separate datasets and inde-

pendent from the goal of precise 3D body estimation. In

this paper we aim to overcome this separation and “unite

the people” of different datasets and for multiple tasks.

With this strategy, we attack the main problem of learning-

based approaches for complex body representations: the

lack of data. While it is feasible to annotate a small number

of keypoints in images (e.g., 14 in the case of the MPII-

HumanPose dataset [1]), scaling to larger numbers quickly

becomes impractical and prone to annotation inconsistency.

The same is true for semantic segmentation annotations:

most datasets provide labels for only a few body parts.
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In this paper, we aim to develop a self-improving, scal-

able method that obtains high-quality 3D body model fits

for 2D images (see Fig. 1 for an illustration). To form an

initial dataset of 3D body fits, we use an improved version

of the recently developed SMPLify method [4] that elevates

2D keypoints to a full body model of pose and shape. A

more robust initialization and an additional fitting objective

allow us to apply it on the ground truth keypoints of the

standard human pose datasets; human annotators solely sort

good and bad fits.

This semi-automatic scheme has several advantages.

The required annotation time is greatly reduced (Sec. 3.3).

By projecting surfaces (Sec. 4.1) or keypoints (Sec. 4.2)

from the fits to the original images, we obtain consistent

labels while retaining generalization performance. The rich

representation and the flexible fitting process make it easy

to integrate datasets with different label sets, e.g., a different

set of keypoint locations.

Predictions from our 91 keypoint model improve the

3D model fitting method that generated the annotations for

training the keypoint model in the first place. We report

state-of-the art results on the HumanEva and Human3.6M

datasets (Sec. 4.3). Further, using the 3D body fits, we de-

velop a random forest method for 3D pose estimation that

runs orders of magnitudes faster than SMPLify (Sec. 4.4).

The improved predictions from the 91 landmark model

increase the ratio of high quality 3D fits on the LSP

dataset by 9.3% when compared to the fits using 14 key-

point ground truth locations (Sec. 5). This ability for self-

improvement together with the possibility to easily integrate

new data into the pool make the presented system deploy-

able on large scale. Data, code and models are available

for research purposes on the project homepage at http:

//up.is.tuebingen.mpg.de/.

2. Related Work

Acquiring human pose annotations in 3D is a long-

standing problem with several attempts from the computer

vision as well as the 3D human pose community.

The classical 2D representation of humans are 2D key-

points [1, 6, 23, 38, 39]. While 2D keypoint prediction has

seen considerable progress in the last years and could be

considered close to being solved [19, 32, 42], 3D pose esti-

mation from single images remains a challenge [4, 36, 44].

Bourdev and Malik [5] enhanced the H3D dataset from

20 keypoint annotations for 1,240 people in 2D with relative

3D information as well as 11 annotated body part segments.

In contrast, the HumanEva [41] and Human3.6M [21]

datasets provide very accurate 3D labels: they are both

recorded in motion capture environments. Both datasets

have high fidelity but contain only a very limited level of

diversity in background and person appearance. We eval-

uate the 3D human pose estimation performance on both.

Recent approaches target 3D pose ground truth from natu-

ral scenes, but either rely on vision systems prone to fail-

ure [11] or inertial suits that modify the appearance of the

body and are prone to motion drift [44].

Body representations beyond 3D skeletons have a long

history in the computer vision community [17, 30, 31, 35].

More recently, these representations have taken new pop-

ularity in approaches that fit detailed surfaces of a body

model to images [4, 14, 16, 25, 44]. These representations

are more tightly connected to the physical reality of the hu-

man body and the image formation process.

One of the classic problems related to representations

of the extent of the body is body part segmentation. Fine-

grained part segmentation has been added to the public parts

of the VOC dataset [12] by Chen et al. [8]. Annotations

for 24 human body parts and also part segments for all

VOC object classes, where applicable, are available. Even

though hard to compare, we provide results on the dataset.

The Freiburg Sitting People dataset [33] consists of 200 im-

ages with 14 part segmentation and is tailored towards sit-

ting poses. The ideas by Shotton et al. [40] for 2.5D data

inspired our body part representation. Relatively simple

methods have proven to achieve good performance in seg-

mentation tasks with “easy” backgrounds like Human80k, a

subset of Human3.6M [20].

Following previous work on cardboard people [24]

and contour people [13], an attempt to work towards an

intermediate-level person representation is the JHMDB

dataset and the related labeling tool [22]. It relies on ‘pup-

pets’ to ease the annotation task, while providing a higher

level of detail than solely joint locations.

The attempt to unify representations for human bodies

has been made mainly in the context of human kinemat-

ics [2, 29]. In their work, a rich representation for 3D mo-

tion capture marker sets is used to transfer captures to dif-

ferent targets. The setup of markers to capture not only hu-

man motion but also shape has been explored by Loper et

al. [28] for motion capture scenarios. While they optimized

the placement of markers for a 12 camera setup, we must

ensure that the markers disambiguate pose and shape from

a single view. Hence, we use a denser set of markers.

3. Building the Initial Dataset

Our motivation to use a common 3D representation is

to (1) map many possible representations from a variety of

datasets to it, and (2) generate detailed and consistent labels

for supervised model training from it.

We argue that the use of a full human body model with a

prior on shape and pose is necessary: without the visualiza-

tion possibilities and regularization, it may be impossible to

create sufficiently accurate annotations for small body parts.

However, so far, no dataset is available that provides human

body model fits on a large variety of images.
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To fill this gap, we build on a set of human pose datasets

with annotated keypoints. SMPLify [4] presented promis-

ing results for automatically translating these into 3D body

model fits. This helps us to keep the human involvement to a

minimum. With strongly increasing working times and lev-

els of label noise for increasingly complex tasks, this may

be a critical decision to create a large dataset of 3D body

models.

3.1. Improving Body Shape Estimation

In [4], the authors fit the pose and shape parameters of

the SMPL [26] body model to 2D keypoints by minimiz-

ing an objective function composed of a data term and sev-

eral penalty terms that represent priors over pose and shape.

However, the connection length between two keypoints is

the only indicator that can be used to estimate body shape.

Our aim is to match the shape of the body model as accu-

rately as possible to the images, hence we must incorporate

a shape objective in the fitting.

The best evidence for the extent of a 3D body projected

on a 2D image is encoded by its silhouette. We define the

silhouette to be the set of all pixels belonging to a body’s

projection. Hence, we add a term to the original SMPLify

objective to prefer solutions for which the image silhouette,

S, and the model silhouette, Ŝ, match.

Let M(~θ, ~β,~γ) be a 3D mesh generated by a SMPL body

model with pose, ~θ, shape, ~β, and global translation, ~γ. Let

Π(·,K) be a function that takes a 3D mesh and projects it

into the image plane given camera parameters K, such that

Ŝ(~θ, ~β,~γ) = Π(M(~θ, ~β,~γ)) represents the silhouette pixels

of the model in the image. We compute the bi-directional

distance between S and Ŝ(·)

ES(~θ, ~β,~γ;S,K) =
∑

~x∈Ŝ(~θ,~β,~γ)

dist(~x, S)
2

+
∑

~x∈S

dist(~x, Ŝ(~θ, ~β,~γ)), (1)

where dist(~x, S) denotes the absolute distance from a point

~x to the closest point belonging to the silhouette S.

The first term in Eq. (1) computes the distance from

points of the projected model to a given silhouette, while

the second term computes the distance from points in the

silhouette to the model. We find that the second term is

noisier and use the plain L1 distance to measure its contri-

bution to the energy function while we use the squared L2

distance to measure the contribution of the first. We op-

timize the overall objective including this additional term

using OpenDR [27], just as in [4].

Whereas it would be possible to use an automatic seg-

mentation method to provide foreground silhouettes, we

decided to involve human annotators for reliability. We

also asked for six body part segmentation that we will use

Dataset Foreground 6 Body Parts AMT hours logged

LSP [23]
1000 train,

1000 test

1000 train,

1000 test
361h foreground,

LSP-extended [23] 10000 train 0 131h parts

MPII-HPDB [1]
13030 train,

2622 test
0 729h

Table 1: Logged AMT labelling times. The average fore-

ground labeling task was solved in 108s on the LSP and

168s on the MPII datasets respectively. Annotating the seg-

mentation for six body parts took on average more than

twice as long as annotating foreground segmentation: 236s.

Figure 2: Examples for six part segmentation ground truth.

White areas mark inconsistencies with the foreground seg-

mentation and are ignored.

in Sec. 4 for evaluation. We built an interactive annota-

tion tool on top of the Opensurfaces package [3] to work

with Amazon Mechanical Turk (AMT). To obtain image-

consistent silhouette borders, we use the interactive Grab-

cut algorithm [37]. Workers spent more than 1,200 hours

on creating the labels for the LSP [23] datasets as well as

the single-person part of the MPII-HumanPose [1] dataset

(see Tab. 1). There is an increase in average annotation time

of more than a factor of two comparing annotation for fore-

ground labels and six body part labels. This provides a hint

on how long annotation for a 31 body part representation

could take. Examples for six part segmentation labels are

provided in Fig. 2.

3.2. Handling Noisy Ground Truth Keypoints

The SMPLify method is especially vulnerable to missing

annotations of the four torso joints: it uses their locations for

an initial depth guess, and convergence deteriorates if this

guess is of poor quality.

Finding a good depth initialization is particularly hard

due to the foreshortening effect of the perspective projec-

tion. However, since we know that only a shortening but

no lengthening effect can occur, we can find a more reliable

person size estimate θ̂ for a skeleton model with k connec-

tions:

θ̂ = xi · argmax
y

fi(y), i = argmax
j=1,...,k

xj , (2)

where fi is the distribution over ratios of person size to the

length of connection xi. Since this is a skewed distribution,

we use a corrected mean to find the solution of the argmax
function and obtain a person size estimate. This turns out to

be a simple, yet robust estimator.

6052



LSP [23] LSP extended [23] MPII-HP [1] FashionPose [9]

45% 12% 25% 23%

Table 2: Percentages of accepted fits per dataset. The addi-

tion of the FashionPose dataset is discussed in Sec. 4.2.

3.3. Exploring the Data

With the foreground segmentation data and the ad-

justments described in the preceding sections, we fit the

SMPL model to a total of 27,652 images of the LSP,

LSP-extended, and MPII-HumanPose datasets. We use

only people marked with the ‘single person’ flag in MPII-

HumanPose to avoid instance segmentation problems. We

honor the train/test splits of the datasets and keep images

from their test sets in our new, joined test set.

In the next step, human annotators1 selected the fits

where rotation and location of body parts largely match the

image evidence. For this task, we provide the original im-

age, as well as four perspectives of renderings of the body.

Optionally, annotators can overlay rendering and image.

These visualizations help to identify fitting errors quickly

and reduce the labeling time to ∼12s per image. The pro-

cess uncovered many erroneously labeled keypoints, where

mistakes in the 3D fit were clear to spot, but not obvious in

the 2D representation. We excluded head and foot rotation

as criteria for the sorting process. There is usually not suf-

ficient information in the original 14 keypoints to estimate

them correctly. The resulting ratios of accepted fits can be

found in Tab. 2.

Even with the proposed, more robust initialization term,

the ratio of accepted fits on the LSP-extended dataset re-

mains the lowest. It has the highest number of missing key-

points of the four datasets, and at the same time the most

extreme viewpoints and poses. On the other hand, the rather

high ratio of usable fits on the LSP dataset can be explained

with the clean and complete annotations.

The validated fits form our initial dataset with 5,569

training images (of which we use a held-out validation set

of 1,112 images in our experiments) and 1,208 test images.

We denote this dataset as UPI-3D (UnitedPeople in 3D with

an added ‘I’ for “Initial”). To be able to clearly reference the

different label types in the following sections, we add an ‘h’

to the dataset name when referring to labels from human an-

notators.

Consistency of Human Labels The set of curated 3D fits

allows us to assess the distribution of the human-provided

labels by projecting them to the UPI-3D bodies. We did this

for both, keypoints and body part segments. Visualizations

can be found in Fig. 3.

1For this task, we did not rely on AMT workers, but only on few experts

in close collaboration to maintain consistency.

While keypoint locations in Fig. 3a in completely non-

matching areas of the body can be explained by self-

occlusion, there is a high variance in keypoint locations

around joints. It must be taken into account that the key-

points are projected to the body surface, and depending

on person shape and body part orientation some variation

can be expected. Nevertheless, even for this reduced set of

images with very good 3D fits, high variance areas, e.g.,

around the hip joints, indicate labeling noise.

The visualization in Fig. 3b shows the density of part

types for six part segmentation with the segments head,

torso, left and right arms and left and right legs. While the

head and lower parts of the extremities resemble distinct

colors, the areas converging to brown represent a mixture

of part annotations. The brown tone on the torso is a clear

indicator for the frequent occlusion by the arms. The area

around the hips is showing a smooth transition from torso

to leg color, hinting again at varying annotation styles.

4. Label Generation and Learning

In a comprehensive series of experiments, we analyze the

quality of labels generated from UPI-3D. We focus on labels

for well-established tasks, but highlight that the generation

possibilities are not limited to them: all types of data that

can be extracted from the body model can be used as labels

for supervised training. In our experiments, we move from

surface (segmentation) prediction over 2D- to 3D-pose and

shape estimation to a method for predicting 3D body pose

and shape directly from 2D landmark positions.

4.1. Semantic Body Part Segmentation

We segment the SMPL mesh into 31 regions, following

the segmentation into semantic parts introduced in [40] (for

a visualization, see Fig. 3d). We note that the Kinect tracker

works on 2.5D data while our detectors only receive 2D data

as input. We deliberately did not make any of our methods

for data collection or prediction dependent on 2.5D data to

retain generality. This way, we can use it on outdoor images

and regular 2D photo datasets. The Segmentation dataset

UPI-S31 is obtained by projecting the segmented 3D mesh

posed on the 6,777 images of UPI-3D.

Following [7], we optimize a multiscale ResNet101 on

a pixel-wise cross entropy loss. We train the network on

size-normalized, cutout images, which could in a produc-

tion system be provided by a person detector. Following

best practices for CNN training, we use a validation set to

determine the optimal number of training iterations and the

person size, which is around 500 pixels. This high resolu-

tion allows the CNN to reliably predict small body parts.

In this challenging setup, we achieve an intersection over

union (IoU) score of 0.4432 and an accuracy of 0.9331.

Qualitative results on five datasets are shown in Fig. 4a.
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(a) (b) (c) (d)

Figure 3: Density of human annotations on high quality body model fits for (a) keypoints and (b) six part segmentation in

front and back views. Areas of the bodies are colored with (1) hue according to part label, and (2) saturation according to

frequency of the label. Keypoints on completely ‘wrong’ bodyparts are due to self-occlusion. The high concentration of

‘head’ labels in the nose region originates from the FashionPose dataset, where the ‘head’ keypoint is placed on the nose.

The segmentation data originates solely from the six part segmentation labels on the LSP dataset. (Must be viewed in color.)

(c) Placement of the 91 landmarks (left: front, right: back). (d) Segmentation for generating the 31 part labels.

The overall performance is compelling: even the small

segments around the joints are recovered reliably. Left and

right sides of the subjects are identified correctly, and the

four parts of the head provide an estimate of head orien-

tation. The average IoU score is dominated by the small

segments, such as the wrists.

The VOC part dataset is a hard match for our predictor:

instead of providing instances of people, it consists of en-

tire scenes, and many people are visible at small scale. To

provide a comparison, we use the instance annotations from

the VOC-Part dataset, cut out samples and reduce the gran-

ularity of our segmentation to match the widely used six

part representation. Because of the low resolution of many

displayed people and extreme perspectives with, e.g., only

a face visible, the predictor often only predicts the back-

ground class on images not matching our training scheme.

Still, we achieve an IoU score of 0.3185 and 0.7208 accu-

racy over the entire dataset without finetuning.

Additional examples from the LSP, MPII-HumanPose,

FashionPose, Fashionista, VOC, HumanEva and Hu-

man3.6M datasets are shown in the supplementary mate-

rial available on the project homepage2. The model has not

been trained on any of the latter four, but the results indi-

cate good generalization behavior. We include a video to

visualize stability across consecutive frames.

4.2. Human Pose Estimation

With the 3D body fits, we can not only generate consis-

tent keypoints on the human skeleton but also on the body

surface. For the experiments in the rest of this paper, we de-

signed a 91-landmark3 set to analyze a dense keypoint set.

2http://up.is.tuebingen.mpg.de/
3We use the term ‘landmark’ to refer to keypoints on the mesh surface

to emphasize the difference to the so-far used term ‘joints’ for keypoints

located inside of the body.

We distributed the landmarks according to two criteria:

disambiguation of body part configuration and estimation

of body shape. The former requires placement of markers

around joints to get a good estimation of their configuration.

To satisfy the latter, we place landmarks in regular intervals

around the body to get an estimate of spatial extent indepen-

dent of the viewpoint. We visualize our selection in Fig. 3c

and example predictions in Fig. 4b.

In the visualization of predictions, we show a subset of

the 91 landmarks and only partially connect the displayed

ones for better interpretability. The core 14 keypoints de-

scribing the human skeleton are part of our selection to

describe the fundamental pose and maintain comparability

with existing methods.

We use a state-of-the-art DeeperCut CNN [19] for our

pose-related experiments, but believe that using other mod-

els such as Convolutional Pose Machines [42] or Stacked

Hourglass Networks [32] would lead to similar findings.

To assess the influence of the quality of our data and

the difference of the loss function for 91 and 14 key-

points, we train multiple CNNs: (1) using all human la-

bels but on our (smaller) dataset for 14 keypoints (UPI-

P14h) and (2) on the dense 91 landmarks from projections

of the SMPL mesh (UPI-P91). Again, models are trained on

size-normalized crops with cross-validated parameters. We

include the performance of the original DeeperCut CNN,

which has been trained on the full LSP, LSP-extended and

MPII-HumanPose datasets (in total more than 52,000 peo-

ple) in the comparison with the models being trained on our

data (in total 5,569 people). The results are summarized

in Tab. 3. Even though the size of the dataset is reduced

by nearly an order of magnitude, we maintain high perfor-

mance compared to the original DeeperCut CNN. Compar-

ing the two models trained on the same amount of data,

we find that the model trained on the 91 landmarks from
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(a) 31 Part Semantic Segmentation (b) 91 Keypoint Pose Estimation

(c) 3D Fitting on 91 Landmarks (d) Direct 3D Pose and Shape Prediction

Figure 4: Results from various methods trained on labels generated from the UP-3D dataset.

PCK@0.2 UPI-P14h UPI-P14 UPI-P91

DeeperCut CNN [19] 93.45 92.16 NA

Ours (trained on UPI-P14h) 89.11 87.36 NA

Ours (trained on UPI-P91) 91.15 93.24 93.54

Table 3: Pose estimation results. Even though the Deep-

erCut CNN has been trained on almost by factor ten more

examples, our model remains competitive. The third row

shows the results of our 91 landmark model evaluated on

the 14 core keypoints on human, 14 and 91 SMPL gener-

ated landmark labels. It outperforms the model trained on

the data labeled by humans (row 2 vs. 3, column 1) by more

than two score points. Fair comparisons can only be made

within offset boxes.

the SMPL data has a notable advantage of nearly six score

points on the SMPL labeled data (row 2 vs. 3, column 2).

Even when evaluating on the human labeled data, it main-

tains an advantage of two score points (row 2 vs. 3, column

1). This shows that the synthetic keypoints generalize to the

human labels, which we take as an encouraging result.

We provide the third column for giving an impression of

the performance of the additional 77 landmarks. When in-

cluding the additional landmarks in the evaluation, the score

rises compared to evaluating on the 14 core keypoints, indi-

cating their overall performance is above average. A direct

comparison to the 14 keypoint values is not valid, because

the score is averaged over results of differing ‘difficulty’.

Integrating a Dataset with a Different Label Set The

current state-of-the art pose estimators benefit from training

on all human pose estimation datasets with a similar label

set. The FashionPose dataset [9] would complement these

well, but is annotated with a different set of keypoints: the

neck joint is missing and the top head keypoint is replaced

by the nose. Due to this difference, it is usually not included

in pose estimator training.

Using our framework, we can overcome this difficulty:

we adjust the fitting objective by adding the nose to and re-

moving the top-head keypoint from the objective function.

We fit the SMPL model to the FashionPose dataset and cu-

rate the fits. The additional data enlarges our training set by

1,557 images and test set by 181 images. This forms the

full UP-3D dataset, which we use for all remaining experi-

ments.

We train an estimator on the landmarks projected from

the full UP-3D dataset. This estimator outperforms the plain

DeeperCut CNN with a small margin from 0.897 PCK@0.2

(DeeperCut) to 0.9028 PCK@0.2 (ours) on the full, human

labeled FashionPose test set.

4.3. 3D Human Pose Estimation

In this section, we analyze the impact of using the 91

predicted keypoints instead of 14 for the SMPLify 3D fit-

ting method. For the fitting process, we rely solely on the

91 predicted 2D landmarks and no additional segmentation

or gender information (in contrast to the SMPLify method

as described in [4], where gender information is used for

fitting on the 3D datasets). Segmentation information is not

required anymore to estimate body extent due to the land-

marks on the body surface.

LSP dataset On the LSP dataset, there is no ground truth

for 3D body model fitting available. To be independent of

biases towards a specific keypoint set, we rely on the ac-

quired six body part segmentation to obtain meaningful per-

formance scores (see Tab. 4).

The six-part manual segmentation annotations consist of

head, torso, left and right leg, and left and right arm (see

Fig. 2). While this representation is coarse, it provides a

good estimate of the overall quality of a fit. It takes into

account the body shape and not only keypoints, hence it is

a fair judge for pose estimators aiming for slightly different

keypoint locations.
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FB Seg. acc., f1 P Seg acc., f1

SMPLify on GT lms. 0.9176, 0.8811 0.8798, 0.6584

SMPLify on GT lms. & GT seg. 0.9217, 0.8823 0.8882, 0.6703

SMPLify on DeepCut CNN lms. [4] 0.9189, 0.8807 0.8771, 0.6398

SMPLify on our CNN lms., tr. UPI-P14h 0.8944, 0.8401 0.8537, 0.5762

SMPLify on our CNN lms., tr. UP-P14 0.8952, 0.8475 0.8588, 0.5798

SMPLify on our CNN lms., tr. UP-P91 0.9099, 0.8619 0.8732, 0.6164

DP from 14 landmarks 0.8649, 0.7915 0.8223, 0.4957

DP from 91 landmarks 0.8666, 0.7993 0.8232, 0.5102

DP from 14 lms., rotation opt. 0.8742, 0.8102 0.8329, 0.5222

DP from 91 lms., rotation opt. 0.8772, 0.8156 0.8351, 0.5304

Table 4: Scores of projected body parts of the fitted SMPL

model on the full LSP test set six part human labels (land-

marks is abbreviated to lms.). Fair comparisons can only

be made within offset boxes. ‘DP’ refers to ‘Direct Predic-

tion’ (see Sec. 4.4). The landmarks for these experiments

are always predictions from our CNN trained on UP-P91.

Unsurprisingly, the segmentation scores of the SMPLify

method improve when the segmentation term (c.f . Sec. 3.1)

is added. Due to the longer-trained pose estimator, SM-

PLify as presented in [4] still has an overall advantage on

the LSP dataset (compare rows three and four).

Training on our generated data for 14 joints and then

using SMPLify improves the scores (compare lines four

and five) thanks to cleaner data and better correspondence

of keypoints and SMPL skeleton. Using our 91 landmark

model gives a large performance boost of 3.6 f1 score

points. We do not reach the performance of the fits per-

formed on the DeepCut CNN [34] predictions, largely be-

cause of few extreme poses that our pose estimator misses

with a large influence on the final average score.

HumanEva and Human3.6M Datasets We evaluate 3D

fitting on the HumanEva and Human3.6M datasets where

3D ground truth keypoints are available from a motion cap-

ture system. We follow the evaluation protocol of SM-

PLify [4] to maintain comparability, except for subsampling

to every 5th frame. This still leaves us with a framerate of

10Hz which does not influence the scores. We do this solely

due to practical considerations, since the SMPLify fitting to

91 landmarks can take up to twice as long as fitting to 14

keypoints. We provide a summary of results in Tab. 5.

We do not use actor or gender specific body models, but

one hybrid human model, and rely on the additional land-

marks for shape inference. This makes the approach fully

automatic and deployable to any sequence without prior

knowledge. Even with these simplifications and a magni-

tude fewer training examples for our pose estimator, we

achieve an improvement of 5.4mm on average on the Hu-

manEva dataset and an improvement of 1.6mm on average

on the Human3.6M dataset (4th versus 5th row).

HumanEva Human3.6M

Zhou et al. [45] 110.0 106.7

DP from 91 landmarks 93.5 93.9

SMPLify on DeepCut CNN lms. [4] 79.9 82.3

SMPLify on our CNN lms., tr. UPI-P14h 81.1 96.4

SMPLify on our CNN lms., tr. UP-P14 79.4 90.9

SMPLify on our CNN lms., tr. UP-P91 74.5 80.7

Table 5: Average error over all joints in 3D distance (mm).

The use of a pose estimator trained on the full 91 key-

point dataset UP-P91 improves SMPLify even more. Com-

pared to the baseline model trained on UPI-P14h, per-

formance improves by 6.6mm on the simpler HumanEva

dataset, and by 15.7mm on Human3.6M. Even when train-

ing a 14 keypoint pose estimator, the higher consistency of

our generated labels helps to solve this task, which becomes

apparent comparing lines four and five.

4.4. Direct 3D Pose and Shape Prediction

The 91 landmark predictions in 2D enable a human ob-

server to easily infer the 3D shape and pose of a person:

the keypoints on the body surface provide a good hint to es-

timate person shape and in combination with the skeleton

orientation and pose can usually be identified (c.f . Fig. 4b).

This observation inspired us to explore the limits of a pre-

dictor for the 3D body model parameters directly from the

2D keypoint input. For this purpose, we use the 3D poses

and shapes from the UP-3D dataset to sample projected

landmarks with the full 3D parameterization of SMPL as

labels. We move a virtual ‘camera’ for every pose on 5 el-

evations to 36 positions around the 3D model to enhance

the training set. On this data, we experimented with multi-

layer perceptrons as well as Decision Forests. We preferred

the latter regressor, since Decision Forests are less suscep-

tible to noise. We train a separate forest to predict the axis-

angle rotation vector for each of the 24 SMPL joints, as

well as one to predict the depth. The input landmark po-

sitions are normalized w.r.t. position and scale to improve

generalization. We experimented with distance-based fea-

tures and dot-product features from the main skeleton con-

nections, but these were not as robust as plain 2D image

coordinates. It turned out to be critical to use full rotation

matrices as regression targets: the axis-angle representation

has discontinuities, adding noise to the loss function.

One Decision Forest predicts pose or shape in 0.13s4.

The predictions of all forests are independent, which means

that the full pose and shape prediction can be obtained in

between one and two orders of magnitudes faster than with

SMPLify. This could allow the use of 3D pose and shape

estimation for video applications, e.g., action recognition.

4For all timings, a test system with a 3.2Ghz six core processor and an

NVIDIA GeForce GTX970 has been used.
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Whereas the 3D model configuration does not always

match the image evidence (see Fig. 4d), it recovers the

rough pose. We provide scores in Tab. 4 and Tab. 5 with

the name ‘DP’ (Direct Prediction). We additionally add

the scores for a hybrid version, for which we predict pose

and shape using Decision Forests and take few optimization

steps to make the global rotation of the body model match

the image evidence (with varying runtime depending on the

initialization, but less than one second on our data).

The difference between the full optimization on the LSP

dataset in f1 score is 0.1062 for the 91 landmark based

method and reduces with rotation optimization to 0.086.

On the 3D datasets, the direct prediction method outper-

forms all optimization based methods except for SMPLify

that runs in the order of tens of seconds.

Together with our ResNet101-based CNN model, it is

possible to predict a full 3D body model configuration from

an image in 0.378s. The pose-predicting CNN is the compu-

tational bottleneck. Because our findings are not specific to

a CNN model, we believe that by using a speed-optimized

CNN, such as SqueezeNet [18], and further optimizations of

the direct predictor, the proposed method could reach real-

time speed.

5. Closing the Loop

With the improved results for 3D fitting, which helped to

create the dataset of 3D body model fits in the first place,

a natural question is, whether the improved fitting method

helps to enlarge the dataset.

We ran SMPLify on the 91 landmark predictions from

our pose estimator and again asked human annotators to rate

the 3D fits on all LSP images that were not accepted for

our initial dataset. Of the formerly unused 54.75% of the

data (1095 images), we found an improvement in six body

part segmentation f1 score for 308 images (c.f . Fig. 5a).

We show three example images with high improvement in

f1 score in Fig. 5, (b) to (d): improvement due to left-

right label noise, depth ambiguity and perspective resolu-

tion compared to fits on the 14 ground truth keypoints. Hu-

man annotators accepted additional 185 images, which is

an improvement of 20% over the number of accepted initial

fits and an absolute improvement of 9.3% in accepted fits of

the LSP dataset.

The most common reasons for improvement are

(1) noisy annotations, (2) better perspective resolution and

(3) the better match of keypoints to the SMPL skeleton.

An even higher ratio of improvement can be expected for

the datasets with more annotation noise, such as the LSP-

extended and MPII-HumanPose datasets. This enlarged set

of data could be used to again train estimators and continue

iteratively.
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Figure 5: Improvement of body model fits on the unused

part of the LSP dataset. Compared are fits to 91 predicted

keypoints vs. fits to 14 ground truth keypoints. (a): his-

togram of change in f1 score of projected six body part seg-

mentation agreement with human annotator ground truth.

Green color indicates that the formerly unaccepted fit to the

14 ground truth keypoints is accepted as valid when per-

formed with the 91 predicted keypoints. For each image

triple in (b), (c), (d): left: SMPLify fit to the 14 ground truth

keypoints, right: fit to the predicted 91 landmarks from our

predictor.

6. Discussion

With the presented method and dataset, we argue for a

holistic view on human related prediction tasks. By improv-

ing the representation of humans we could integrate datasets

with different annotations and approach established tasks at

a new level of detail. The presented results include high fi-

delity semantic body part segmentation into 31 parts and 91

landmark human pose estimation. This sets a new mark in

terms of levels of detail that previous work did not reach.

At the same time, it helps to improve the state-of-the art for

3D human pose estimation on the two standard benchmark

datasets HumanEva and Human3.6M.

We present a regression tree model that predicts the

3D body configuration from 2D keypoints directly. This

method runs orders of magnitude faster than optimization

based methods. This direct prediction captures the over-

all pose from simple 2D input reasonably well and we are

optimistic that it can be scaled to reach near real-time per-

formance. We show that the improved 3D fitting method

allows more good fits that enlarge the training set. Here, we

only took one iteration but are confident that a system that

iterates over the two generative and discriminative stages

can be deployed on large scale to continuously learn and

improve with very limited human feedback.
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