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UNITS AND ONE-SIDED UNITS IN REGULAR RINGS
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ABSTRACT.   A ring R is unit regular if for every a e R, there is a unit

x e R such that axa = a, and one-sided unit regular if for every a G I?, there is

a right or left invertible element x £ R such that axa = a.   In this paper, unit

regularity and one-sided unit regularity are characterized within the lattice of

principal right ideals of a regular ring R (Theorem 3).  If M is an A -module and

R = End^ M is a regular ring, then R is unit regular if and only if complements

of isomorphic summands of M are isomorphic, and R is one-sided unit regular if

and only if complements of isomorphic summands of M are comparable with re-

spect to the relation "is isomorphic to a submodule of" (Theorem 2).  A class of

modules is given for whose endomorphism rings it is the case  that regularity in

conjunction with von Neumann finiteness is equivalent to unit regularity.   This

class includes all abelian torsion groups and all nonreduced abelian groups with

regular endomorphism rings.

In [1], a ring R with identity was defined to be unit regular if for every

a ER there is a unit x ER such that axa = a. The class of all unit regular rings

includes [1] all semisimple Artinian rings, all continuous von Neumann rings [7],

all strongly regular rings (in particular, all commutative regular rings [3] ). Using

the characterization (cf. [6, p. 117]) of regular group rings as the group rings of

locally finite groups, it is easy to show that all regular group rings are unit regular.

Unit regular rings are von Neumann finite [4, Proposition 1] and are elementary

divisor rings [4, Theorem 3].  Every element of a unit regular ring in which 2

is a unit is equal to the sum of two units [1, Theorem 6]. An example of a

regular ring which is not unit regular is the endomorphism ring of an infinite di-

mensional vector space [1].

In this paper, we define one-sided unit regularity and characterize both unit

regularity and one-sided unit regularity within the lattice of principal right ideals

of the ring (Theorem 3). For an ^4-module M with regular endomorphism ring R

we prove that R is unit regular if and only if any two isomorphic complemented
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82 GERTRUDE EHRLICH

submodules of M have isomorphic complements, and that R is one-sided unit

regular if and only if any two isomorphic complemented submodules of M have

comparable complements (Theorem 2).  (We call two A -modules comparable if

one of them is isomorphic to a submodule of the other.)

In response to the question posed in [4] as to whether every von Neumann

finite regular ring with identity is unit regular, we produce (Theorem 4) a class of

,4-modules, M, whose endomorphism ring R = End^ M is regular and von Neumann

finite if and only if it is unit regular. (This class of modules includes, in particular,

all nonreduced abelian groups and all reduced abelian torsion groups with regular

endomorphism rings.) Within this class, we characterize those modules whose endo-

morphism rings, if regular, are one-sided unit regular. We prove (Corollary, Theorem

1) that the endomorphism ring of any vector space is one-sided unit regular and give

examples of regular rings which are not one-sided unit regular. Finally (Theorem 5),

we prove that a one-sided unit regular ring in which 2 is invertible is generated either

by its left invertible elements or by its right invertible elements.

Notations. 1. If R is a ring,a ER, we write (Ra)r for the right annihilator of

the principal left ideal generated by a, and we write (aR)1 for the left annihilator

of the principal right ideal generated by a.

2. If X, Y are submodules of an A -module M, we write Ic Fto indicate

that X is isomorphic to a submodule of Y. (We say that two submodules X and

Y are comparable if either X EY or Y EX holds.)

3. If R is a ring, we write Rr for the right Z?-module R.

Remarks. 1.  If M is an A -module, then R = End^ M is regular if and

only if for each a ER, both Im a and Ker a are direct summands of M [9,

Corollary 3.2].

2. If M is an A -module such that R = End^ M is regular and x ER, then

(a) x is a unit in R if and only if it is an automorphism of M;

(b) x is right invertible in R if and only if it is an epimorphism of M;

(c) x is left invertible in R if and only if it is a monomorphism of M.

(Note. The regularity of R is needed to obtain the backward implications

of (b) and (c).)

3. Let M be an ,4-module such that R = End^ M is regular. Then R is

von Neumann finite if and only if M is not isomorphic to a proper submodule of

itself.  (This follows immediately from Remark 2.)

4. If R is a regular ring with identity, then the principal right (left) ideals of

R form a complemented modular, hence relatively complemented lattice   [6, p. 5],

[8, Theorem 2]. The maps aR —» (aR)1 and Ra —* (Ra)r are inverse anti-isomor-

phisms between the lattice of all principal right ideals and the lattice of all princi-

pal left ideals of R    [8, Theorem 1].

Definition. Let R be a ring with identity.  If a ER, then
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UNITS AND ONE-SIDED UNITS IN REGULAR RINGS 83

(i) a is unit regular if there is a unit x ER such that axa = a;

(ii) a is right unit regular if there is a right invertible element x ER such

that axa = a;

(iii) a is left unit regular if there is a left invertible element x ER such

that axa = a.

R is unit regular if every element of R is unit regular [1].

R is one-sided unit regular if every element of R is either right or left unit

regular.

The following lemma establishes a basic correspondence between the com-

plemented submodules of a right 4-module M with regular endomorphism ring R

and the principal right ideals of R.

Lemma 1. Let A be a ring with identity and let M be a right A-module

such that R = End¿ M is a regular ring.  Let LP(R) be the lattice of all principal

right ideals of R and let LC(M) be the set of all complemented submodules of M

Then

(1) LC(M) is a sublattice of the lattice of all submodules of M;

(2) ip: aR \—*aM (aE R) is an isomorphism of the lattice LP(R) onto the

lattice LC(M).

(3) If a ER, then Ker a = ip(Ra)r.

Proof.  We prove first that <p is a bijection of LP(R) onto LC(M). If a,

b ER and aR = bR, then clearly aM = bM.   If H is a principal right ideal of R,

then H = eR for some idempotent e ER.   Hence y(H) = eM and (1 - e)M is a

complement of eM in M, whence $(H) E LC(M). If e, f ER ate idempotents

such that eM = fM, then for each a E M, ea = fea and fa = efa, hence e =

fe, /= ef, and so eR = fR.  Thus, (¿> is an injective map of LP(R) into LC(M).

If L E LC(M), then any projection map of M onto / is an idempotent e ER

such that L = eM = <p(eR). It follows that <¿>: LP(R) —* LC(M) is a bijection.

Ife.fER are idempotents, then eR C fR if and only if eM E fM.  It remains

to be shown that LC(M) is closed under + and n. Let e, f E R he idempotents

and let g E R be an idempotent such that gR = eR + fR.  Then ge = e, gf = f,

and so eM + fM C gM.  Since g = es + ft for some s, tER, gM E eM + fM.

But then eM + fM = gM E LC(M). Finally, let e, fE R be idempotents and let

g E R be an idempotent such that eRC\fR= gR.  Then g = eg = fg, whence

gMEeMd fM.  Now,

gR = eRnfR = {R(l - e)Y n (Z?(l - f))r

= (R(l - e)+R(l -f)Y = (Z?(l -g)y.

Hence R(l - g) = R(l - e) + R(l - /), and 1 - g = x(l - e) + XI - /) for

some x, y ER. But then, for a E eM n fM, we have a = ea= fa, and (1 — g) a
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84 GERTRUDE EHRLICH

= x(l - e)ea + y(l -f)fa= 0.  Hence eM n fM C Ker(l - g).  It is trivial to

check that Ker(l - g) = gM.  We conclude that eM n fM = gM E LC(M).

Thus, LC(M) is a sublattice of the lattice of all submodules of M and y: LP(R)

—* LC(M) is a lattice isomorphism.  Finally, (3) follows from the fact that, if

a ER and/ER is an idempotent such that Ra - Rf, then Ker a = Ker/ =

(\-f)M = v(l-f)R = <p(Ra)r.

(Note. We make repeated use of the fact that LC(M), like LP(R), is a

relatively complemented lattice.)

Theorem 1. Let A be a ring with identity and let M be a right A-module

such that R = End^ M is a regular ring.  Let a ER.

I. The following statements are equivalent:

(1) a is unit regular,

(2) there is an automorphism u: M —► M such that Ima @u Ker a =M,

(3) Ker a = Coker a.

II. The following statements are equivalent:

(1) a is right unit regular,

(2) there is a monomorphism u: M —*■ M such that Im a H u Ker a = 0,

(3) Ker a C Coker a.

III. The following statements are equivalent:

(1) a is left unit regular,

(2) there is an epimorphism u: M —* M such that Ima + ii Ker a = M,

(3) there is an epimorphism u: M —*■ M such that Im a © u Ker a-M,

(4) Coker a C Ker a.

(Recall that Coker a = M/lm a, isomorphic to any complement of Im a in M.)

Proof.  I. (1) "* (2).  Suppose a is unit regular.  Let x E R he a unit such

that axa = a and letu=x~1. Then / = xa is an idempotent such that Ra = Rf.

Hence Ker a = (1 - f)M and we have M = uM = u(fM © (1 - f)M) = ufM®

u(l - f)M = Im a © u Ker a.

(2) =*■ (3). If u : M —*• M is an automorphism such that M = Im a © u Ker a,

then Coker a = Ai/Im a = « Ker a = Ker a.

(3) => (1). Suppose Ker a C Coker a. Let T be a complement of Ker a in

M, and let S he a complement of Im a in M   Then a\T is injective. Let /3: Im a

—> Tbe the isomorphism which is inverse to a\T and let ju: S —► Ker a be an iso-

morphism.  Then the map x: M —> M defined by x|Ima   = ß and x\s = p is an

automorphism of M. If r ET, then axar = aßar = ût, and if k E Ker a, then

axav. = 0 = ok . Hence axa = a, with x a unit in R.

II. (1) =*• (2).  Suppose a is right unit regular.  Let x G R be a right invert-

ible element such that axa = a and let u E R he a right inverse of x. Then u:

M —y M is a monomorphism and Imsfl« Ker a = 0.  For:  If a% = uk  (%E M,
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UNITS AND ONE SIDED UNITS IN REGULAR RINGS 85

K E Ker a), then a\ = axa% = axun = an = 0.

(2) ■» (3).  Suppose there is a monomorphism u: M —> M such that Im a Pi

u Ker a = 0.  Let Q he a submodule of M such that M = (Im a (Bu Ker a) © ß

Then w Ker a © ß is a complement of Im a in M and we have Ker a = u Ker a C

u Ker a © Q = Coker a.

(3) ■* (1). Suppose Ker a C Coker a. Let a: Ker a —► Coker a be a mono-

morphism.  Define y: M—> Mby: y\T = a\T andy\Ket a = a (T a complement

of Ker a in M). Then y is a monomorphism, hence left invertible in R.  Let x E

R be a left inverse of .y.   Then for t ET, axar = axyr = ar, and for k E Ker a,

axa« = 0 = a«. Thus axa = a, with x right invertible.

III. (1) •* (2). Suppose a is left unit regular. Let x E R he a left invertible

element such that axa = a and let u E R be a left inverse of x. Then u: M —> M

is an epimorphism and, for / = xa, we have Ra = Rf and Af = /M © (1 - /)M =

= u/ZI/ + «(1 - f)M = Im a + u Ker a.

(2) =*• (3).  Suppose M = Im a + « Ker a, where u: M —► M is an epimor-

phism.  Since u Ker a = ip(u(Ra)r), Im a O u Ker a is a complemented submodule

of M, hence of u Ker a.  Let ß be a submodule of M such that (Im aC\u Ker a)

© ß = u Ker a.   Then ß is a homomorphic image of u Ker a, and M = Im a © ß.

Hence there is an epimorphism u : M —*■ M such that u~\T = a\T (Ta comple-

ment of Ker a in M) and w|Kera is an epimorphism mapping Ker a onto ß  Thus,

M = Im a © « Ker a, with « : M —> M an epimorphism.

(3) ■*■ (4). Suppose u: M —► M is an epimorphism such that Im a © « Ker a

— M. Let L be a submodule of M such that (Ker a n Ker «) © L = Ker a. Then

Coker a s « Ker a s Ker a/(Ker a O Ker u) = L C Ker a. whence Coker a C Ker a.

(4) => (1).  Suppose Coker a C Ker a.   Let F be a complement of Ker a in

71/ and let S be a complement of Im a in Af.   Let ß : Im a —> T be the isomor-

phism which is inverse to a\T, and let a: S —* Ker a be a monomorphism. Then

there is a monomorphism x: M —->■ M such that x |Im a = |3 and x |s = a. If

rer, then axar = a/3ar = ar, and if k G Ker a, then axa/c = 0 = a«. Thus,

axa = a, with x left invertible.

Corollary. Let M be a vector space over a division ring D and let R =

Endß M.

(1) If a E R, then a is unit regular if and only if dim Ker a = dim Coker a;

a is right unit regular if and only if dim Ker a < dim Coker a; a is left unit regular

if and only if dim Coker a < dim Ker a.

(2) R is one-sided unit regular.

(3) R is unit regular if and only if M is finite dimensional.

Proof.   (1) and (2) are immediate consequences of Theorem 1.  (3) was

proved in [1].
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Theorem 2 (Cancellation Property).   Let A be a ring with identity,

Ma right A-module such that R = End^ M is a regular ring.

(1) R is unit regular if and only if, for submodules Px, P2, Qv Q2 such

that M = PX ®QX = P2 © Q2, Pj ss P2 implies Qx =s Q2 (i.e., complements of

isomorphic submodules are isomorphic).

(2) R is one-sided unit regular if and only if, for submodules PX,P2, Qx,

Q2 such that M = Px ®QX =P2®Q2,PX =s P2 implies either Qx C ß2 or Q2 E

Qx (i.e., complements of isomorphic submodules are comparable.)

Proof.  It suffices to note that, if M = Px © Qx = P2 © Q2, with Px =

P2, then there is an endomorphism a: M —► M such that P2 = Im a and Qx =

Ker a. (In fact, any isomorphism of Px onto P2 can be extended to such an endo-

morphism.) Thus, Theorem 1 applies and (1) and (2) follow immediately.

Theorem 3. I. Let R be a regular ring with identity and let a ER.   Then

(1) a is unit regular if and only if

(i) there is a unit uER such that aR © u(Ra)r = R;

(2) a is right unit regular if and only if

(ii) there is a left invertible element uER such that aR n u(Ra)r = 0;

(3) a is left unit regular if and only if

(iii) there is a right invertible element u ER such that aR + u(Ra)r = R.

II. A ring R with identity is unit regular if and only if (i) holds for each

a ER.

III. A regular ring R with identity is one-sided unit regular if and only if

either (ii) or (iii) holds for each a ER.

Proof. Apply Theorem 1 to the right 5-module Rr, noting that (a) R is

isomorphic to EndÄ (Rr) under the regular representation which associates with

each a ER the left multiplication, aL, determined by a; (b) for a ER, aR =

Im aL and (Ra)r = Ker aL ; (c) if u E R, then « is a unit if and only if uL is an

automorphism, u is right invertible if and only if uL is an epimorphism, and «

is left invertible if and only if uL is a monomorphism. (The last two assertions

are based on the regularity of R.)

Note that regularity of R need not be assumed in II since (i) implies that

every principal right ideal of R is generated by an idempotent. Note also that in

1(3), + may be replaced by ©.

(Analogous characterizations may be given within the lattice of principal left

ideals of R.)

To construct examples of regular rings which are not one-sided unit regular,

we make use of the fact that, if R is a direct sum (product) of rings R¡, then a E

R is regular, unit regular, right or left unit regular if and only if each component
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UNITS AND ONE SIDED UNITS IN REGULAR RINGS 87

a¡ of a (a¡ ER/) has the corresponding property. In particular, if Rx and R2 ate

regular rings which are not von Neumann finite and R = Rx ©F2, we may take

ax ERX right but not left invertible and a2 E R2 left but not right invertible.

Then ax is left but not right unit regular, a2 is right but not left unit regular, and

so (ax, a2) ER is neither right nor left unit regular, while R is clearly regular.

Specifically, we may take R = End G, where G is the abelian group given by:

G = H © K, with H the direct sum of infinitely many isomorphic copies of Z ,

K the direct sum of infinitely many isomorphic copies of Z    (p, q distinct

primes).  Since all subgroups of H and K ate direct summands, End H, End K

and hence End G are regular (see Remark 1, p.      ).  Since H and K are fully

invariant subgroups of G, End G = End H + End K.   By Remark 4, p.       ,

neither End H not End K is von Neumann finite.  Hence End G is not one-sided

unit regular.

Lemma 2. Let A be a ring with identity, M a right A-module such that R =

End^ M is regular. Suppose M is expressible as a direct sum of isomorphic inde-

composable submodules of M.  Then

(1) R is one-sided unit regular;

(2) R is unit regular if and only if M is a direct sum of finitely many iso-

morphic indecomposable submodules.

Proof.   (1) Let Y be an indecomposable yl-module and let { YX^j be a

family of submodules of M such that M — ©.e/ Yj, with each Y, isomorphic to

Y. Suppose that R = End^ M is regular. To prove that R is one-sided unit

regular, it suffices to prove that any two complemented submodules of M ate

comparable.

Let N he a complemented submodule of M.   By Lemma 1, there is an endo-

morphism aER such that N = Im a = S/S7 aYj. For each / S /, Ker a\Y. —

Ker a n Y, is a direct summand of M, hence of Y¡. It follows that Ker a\Y = 0
' ' i

or Ker a\Y — Y,, whence either a Y¡ = Y¡ = Y, or a Y, = 0. Thus, there is a

subset H of the index set / such that N = Im a = 2/S// aY¡, where aYj i= 0 for

/ G H.  We may choose H small enough to ensure that, for each « EH,aYh <£

2/-ei/_ ¡h\aYj.  But then N = ©/€H a F.. (For:  Suppose that, for some « G

H, Qh= aYh C\ Sew_ r,,] a V". =£ 0.  Since there are endomorphisms of M with

image aYh and £,-,=#_ rft i a 1^-, respectively, we conclude that ßA is a direct

summand of M and therefore of aYh. But then Qn = aYn, and aYhE

2j<=H- {h} a^j> contrary to the choice of H.) Thus, N is a direct sum of iso-

morphic copies of Y. Now, if Nj and N2 ate complemented submodules of M

such that Nx = ©/Gf/   Y¡, N2 = ©/eíf   Y¡ (Hx EJ,H2EJ), then either

Card Hx < Card Z/2, or Card Z/2 < Card Hx, whence either Nx EN2 or N2ENX.
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(2) If R is unit regular, then R is von Neumann finite, hence M is not isomor-

phic to a proper submodule of itself. But then the index set / is finite. Conversely,

suppose M = ©"_ j Yj (n a positive integer) where the Y. are isomorphic inde-

composable submodules of M. By Lemma 1, it follows that the right R -module

R is equal to the direct sum of the principal right ideals <p~1(Yj) (j —1, . . . , n).

Since the indecomposable submodules Yj are minimal in the lattice of complemen-

ted submodules of M, the ip-1(y.) are minimal principal, hence minimal, right

ideals in R.   It follows that R is semisimple Artinian, hence unit regular.

Theorem 4. Let A be a ring with identity and let M be a right A-module

such that M — ©,e/ M¡, where each M¡ is a fully invariant submodule, equal to

a direct sum of isomorphic indecomposable submodules. Suppose that R =

End^ M is regular. For each i E I, let R¡ = End^ M¡.  Then

(1) R is unit regular if and only if it is von Neumann finite;

(2) R is one-sided unit regular if and only ifR¡ is von Neumann finite for

all but (possibly) a single index i E I.

Proof.  First note that R = 0/e/ R¡ (cf. [2, p. 220] ), and that each Rt

is regular.

(1) We know that unit regularity implies von Neumann finiteness. Suppose

R is von Neumann finite. Then M is not isomorphic to a proper submodule of

itself.  But then each M¡ is the direct sum of finitely many isomorphic indecom-

posable summands whence, by Lemma 2, R¡ is unit regular for each i E Z.  It

follows that R is unit regular.

(2) Suppose R is one-sided unit regular. If ix, i2 El are two distinct in-

dices such that R¡   and R¡   both fail to be von Neumann finite, we may proceed

as in the examples preceding Lemma 2 to construct an endomorphism of M¡   ©

M¡   which is not one-sided unit regular, and then extend this endomorphism to

an endomorphism of M which is not one-sided unit regular. Thus, at most one

of the R¡ can fail to be von Neumann finite.

Conversely, suppose that all but possibly a single one of the R¡ are von

Neumann finite. If all of the R{ are von Neumann finite, then R is unit regular,

by part (i). If there is an index h El such that Rn is not von Neumann finite

while for all / =£ h {i El),R¡ is von Neumann finite, then Lemma 2 implies that

Rn is one-sided unit regular, while for i ¥= h  (i E I), R¡ is unit regular.  From this,

it follows easily that R is one-sided unit regular.

Corollary. Let G be an abelian group such that End G is regular. If G

is a nonreduced group, or a reduced torsion group, then R is unit regular if and

only if it is von Neumann finite.

Proof.  A reduced abelian torsion group has a regular endomorphism ring
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if and only if it is a direct sum of cyclic groups of prime order; a nonreduced

abelian group has a regular endomorphism ring if and only if it is a direct sum of

cyclic groups of prime order and full rational groups   [2, p. 243]. In either case,

Theorem 4 applies.

Remark. Despite the author's previous claims to the contrary (Notices Amer.

Math. Soc. 21 (1974), A437, Abstract #74T-A136), the general problem as to

whether every von Neumann finite regular ring is unit regular remains unsolved. (!)

In view of Theorem 2 and the fact that every ring with identity may be regard-

ed as the endomorphism ring of a module, the problem reduces to the following:

does there exist, for some ring A with identity, an .4-module M such that

(1) the image and the kernel of every endomorphism of M is a direct sum-

mand of M (i.e., End^ M is regular);

(2) M is not isomorphic to a proper submodule of itself (i.e., the regular ring

End¿ Mis von Neumann finite);

(3) M has submodules PX,P2,QX, Q2 such that M = Pl © Qx = P2 © Q2,

withPj sP2 and Qx £ Q2 (i.e., the regular ring End^ Mis not unit regular)?

(Since one-sided unit regularity and unit regularity are equivalent in a von

Neumann finite regular ring, the condition "Qx £ Q2 " in (3) may be replaced by

"Qx ) Q2 not comparable".)

Theorem 5. Let Rbea regular ring with identity such that 2 is a unit in R.

(1) IfR is unit regular, then every element ofR is equal to the sum of two

units.

(2) IfR is one-sided unit regular, then every element ofR is equal either to

the sum of two right invertible or to the sum of two left invertible elements.

(3) IfR is one-sided unit regular, then one of the following statements holds:

(a) every element ofR is equal to a sum of right invertible elements, or

(b) every element ofR is equal to a sum of left invertible elements.

(4) IfR is one-sided unit regular and R has an antiautomorphism, then every

element ofR is equal to a sum of two right invertible elements and to a sum of two

left invertible elements.

Proof. (1) was proved in [1, Theorem 6]. The key to the proof is the fact

that, if 2 is a unit in 5, then every idempotent e E R is expressible as e =

(2e — l)/2 + 1/2, the sum of two units. From this, it follows easily that every

right unit regular element is equal to the sum of two left invertible elements, and

every left unit regular element is equal to the sum of two right invertbile ele-

ments. Thus, (2) holds. To prove (3), we observe that the subsets Rx and R2

consisting, resepctively, of the sums of right invertible, and the sums of left in-

0) Added in proof.   Since this paper was written, George Bergmann has found an

example of a regular ring which is von Neumann finite but not unit regular.
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vertible elements of R form subrings of Z?. But then, by (2), if F? is one-sided

unit regular, we haveZ?=Z?jUZ?2. By a well-known exercise, it follows that

either R = Rx or R = R2. (4) is an immediate consequence of (2).

REFERENCES

1. G. Ehrlich, Unit regular rings, Portugal. Math. 27 (1968), 209-212.   MR 42 #1864.

2. L. Fuchs, Infinite abelian groups.   Vol. 2, Academic Press, New York, 1973.

3. L. Gillman and M. Henriksen, Some remarks about elementary divisor rings, Trans.

Amer. Math. Soc. 82 (1956), 362-365.    MR 18, 9.

4. M. Henriksen, On a classs of regular rings that are elementary divisor rings, Arch.

Math. (Basel) 24 (1973), 133-141.

5. I. Kaplansky, Fields and rings, The Univ. of Chicago Press, Chicago, 111., 1969.

MR 42 #4345.

6. L. A. Skornjakov, Complemented modular lattices and regular rings, Fizmatgiz,

Moscow, 1961; English transi., Oliver & Boyd, London, 1964.    MR 29 #3404; 30 #42.

7. J. von Neumann, Continuous rings and their arithmetics, Proc. Nat. Acad. Sei. U.S.A.

(1936), 707-713.
8.  -, On regular rings, Proc. Nat. Acad. Sei. U.S.A. 22 (1936), 707-713.

9. R. Ware, Endomorphism rings of projective modules, Trans. Amer. Math. Soc. 155

(1971), 233-252.    MR 43 #274.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MARYLAND, COLLEGE

PARK, MARYLAND   20742

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use


