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UNITS GENERATING THE RING OF INTEGERS OF
COMPLEX CUBIC FIELDS

ROBERT F. TICHY AND VOLKER ZIEGLER

Abstract. All purely cubic fields such that their maximal order
is generated by its units are determined.

1. Introduction

In 1954 Zelinsky [15] showed that, if V is a vector space over a
division ring D, then every linear transformation can be written as
the sum of two automorphisms unless dim V = 1 and D is the field
of two elements. Later many authors investigated similar problems for
various classes of rings. This gives raise to the following definition (see
Goldsmith, Pabst and Scott [6]).

Definition 1. Let R be a ring (with identity). An element r is called
k-good if r = e1 + · · ·+ ek, with e1, . . . , ek ∈ R∗. If every element of R
is k-good we call also the ring k-good.

The unit sum number u(R) is defined as min{k : R is k − good}.
If the minimum does not exist but the units generate R additively we
set u(R) = ω. If the units do not generate R we set u(R) = ∞.

For some historic information on this topic and several examples we
refer to recent papers of Ashrafi and Vámos [1], and Vámos [14].

Endomorphism rings have been studied in great detail and also some
other classes of rings were investigated from this point of view. Which
rings of integers are k-good has been investigated by Ashrafi and Vámos
[1]. In particular, they proved that the ring of integers of quadratic
fields, complex cubic fields and cyclotomic fields Q(ζ2N ), with N ≥ 1,
are not k-good for any integer k. Jarden and Narkiewicz [9] proved
that every finitely generated integral domain of characteristic zero has
unit sum number ω or ∞. In other words, they proved that no ring of
integers has finite unit sum number. However, the question which rings
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of integers are generated by their units remains. In case of quadratic
fields Belcher [2] and Ashrafi and Vámos [1] answered independently
this question.

Similar questions arose in 1964 when Jacobson [8] asked which num-
ber fields K have the property that all algebraic integers of K can be
written as the sum of distinct units. Let us denote by U the set of
number fields that have this property. Jacobson [8] proved that the
number fields Q(

√
2) and Q(

√
5) are members of U . Some years later

Śliwa [12] proved that these two fields are the only quadratic fields with

this property. Moreover Śliwa showed that there is no field of the form
Q( 3
√

d) that lies in U . Criteria for which a number field lies in U were
given by Belcher [2, 3]. In particular Belcher [3] proved that K ∈ U
if 2 is the sum of two distinct units and the ring of integers of K is
generated by its units. By an application of this criterium Belcher [3]
characterized all cubic number fields with negative discriminant that
lie in U .

The aim of this paper is to consider which rings of integers of complex
cubic fields, in particular purely cubic fields, are generated by their
units.

Theorem 1. Let X3 − BX − C be an irreducible polynomial having
a complex root, and let α be any root of the polynomial, possibly not
complex. Let O = Z[α]. Then O is generated by its units if and only
if there exists a solution (X, Y ) to the Diophantine equation

X3 + BXY 2 − CY 3 = ±1,

such that there is a unit of Z[α] of the form Z + Xα + Y α2 with Z an
integer.

This theorem together with results of Delaunay [5] and Nagell [10]
yields:

Corollary 1. Let d be a cube-free integer and K = Q( 3
√

d) the cor-

responding purely cubic field. Then the order Z[ 3
√

d] is generated by

its units, i.e. there exist ε1, ε2 ∈ Z[ 3
√

d]∗ such that ε1 and ε2 generate

Z[ 3
√

d], if and only if d = a3 ± 1 with a ∈ Z.

As our main result we will establish the following theorem.

Theorem 2. Let d be a cube-free integer and let Od be the maximal
order of Q( 3

√
d). The ring Od is generated by its units if and only if

d is square-free, d 6≡ ±1 mod 9 and d = a3 ± 1 for some integer a or
d = 28.
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Since in general Q( 3
√

d) has no integral power basis the proof of
Theorem 2 is far from being straight forward.

2. The quadratic case revised

The aim of this section is to present the basic ideas for the proofs of
our results. For this purpose we start with the quadratic case and give
a simple proof of the result due to Ashrafi and Vámos [1], Theorems 7
and 8.

Proposition 1. Let d ∈ Z be square free, then O = Z[
√

d] is generated
by its units, if and only if d = a2 ± 1 for a ∈ Z.

Before we prove Proposition 1. We want to state and prove following
helpful lemma.

Lemma 1. If ε is a unit of some number field K with deg K = d and
some powers of ε generate the additive group of integers (or some order
of K) then then also 1, ε, . . . , εd−1.

Proof. It is enough to show that the Z-module generated by 1, ε, . . . , εd−1

contains εk for all k ∈ Z. This is easy to see since ε is an algebraic
integer, and we have εd = a0 + a1ε + · · · ad−1ε

d−1 with ai ∈ Z, with
i = 0, 1, . . . , d− 1. Now by induction we see that every positive power
of ε is a linear combination of 1, ε, . . . εd−1 with integral coefficients.
Similarly we can express ε−1, ε−2, . . . as integral linear combinations of
1, ε, . . . , εd−1. �

Proof of Proposition 1. Assume ε1, ε2 ∈ O∗ generate O. Then also 1
and ε generate O, where ε is the fundamental unit of O. Therefore we
may assume without loss of generality that 1 and ε generate O. Let
ε = x + y

√
d, then the statement that 1 and ε generate O is equivalent

to (1, 0) and (x, y) generate the lattice Z2, hence y = ±1. Since ε is a
unit we have x2− dy2 = ±1 and therefore x2− d = ±1 or d = ∓1+x2.
This shows one direction.

Now let us assume d = a2±1. Every unit ε = x+y
√

d ∈ O fulfills the
equation x2− dy2 = x2− (a2± 1)y2 = ±1 with mixed signs. Obviously
one solution is x = a and y = 1. Since (1, 0) and (a, 1) generate Z2

also 1 and ε = a +
√

d generate O. �

Proposition 2. Let d ∈ Z be square-free. Then the ring of integers of
Q(
√

d) is generated by its units if and only if the following holds:

d = a2 ± 1, d 6≡ 1 mod 4,
d = a2 ± 4, d ≡ 1 mod 4.
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Proof. Use the same method as above where
√

d is replaced by 1+
√

d
2

in
the case of d ≡ 1 mod 4. Note that the ring of integers is generated

by 1 and
√

d if d 6≡ 1 mod 4 and by 1 and 1+
√

d
2

, otherwise. �

3. The general cubic case

This section is devoted to the proof of Theorem 1 and Corollary 1.
Proof of Theorem 1. Since we assume that Q(α) has a complex em-
bedding into C the complex numbers the unit structure of Z[α] is very
simple. By Dirichlet’s unit theorem we know Z[α]∗ = 〈ζ, ε〉, where ζ is
some root of unity and ε is the fundamental unit. Since Q(α) is of de-
gree 3, the root of unity ζ can only have degree 1 or 3. Since φ(n) = 3
has no solution, ζ is of degree 1, hence ζ = −1.

With ε1, ε2, ε3 also ±ε1,±ε2,±ε3 generate Z[α]. Thus we may assume
ε1 = εk1 , ε2 = εk2 and ε3 = εk3 with k1, k2, k3 ∈ Z. Therefore we may
assume by Lemma 1 that 1, ε, ε2 generate Z[α].

Let us write ε = a + bα + cα2 then a short computation shows that

ε2 =

ã:=︷ ︸︸ ︷
a2 + 2bcC +(

b̃:=︷ ︸︸ ︷
2ab + 2bcB + c2C)α + (

c̃:=︷ ︸︸ ︷
b2 + 2ac + c2B)α2

=ã + b̃α + c̃α2.

Therefore the vectors (1, 0, 0), (a, b, c) and (ã, b̃, c̃) generate the lattice
Z3, i.e. det M = ±1 with

M =

 1 0 0
a b c

ã b̃ c̃

 .

A short computation shows

det M = bc̃− b̃c = b3 − bc2B − c3C = ±1,

and ε has the desired form.
The other direction is quite easy. Assume ε = a + bα + cα2 has the

properties described in Theorem 1 then the the vectors (1, 0, 0), (a, b, c)

and (ã, b̃, c̃) generate Z3, where ε2 = ã + b̃α + c̃α2. Hence 1, ε and ε2

generate Z[α]. �

Next we prove Corollary 1. We apply Theorem 1 with B = 0, C = d
and put α = 3

√
d. Hence O = Z[α] is generated by its units if and only

if there is a unit ε ∈ O of the form ε = a + bα + cα2, with a, b, c ∈ Z
such that b3 − dc3 = ±1. By a theorem of Delaunay [5] we know that
the equation X3 − dY 3 = ±1 has at most one solution beside except
the trivial solution X = ±1 and Y = 0. Moreover, Delaunay showed



UNITS GENERATING THE RING OF INTEGERS 5

that for a solution (X,Y ) to X3 − dY 3 = 1 the quantity X + 3
√

dY is
a fundamental unit. Assuming, b3 − dc3 = ±1 we have by the proof of
Theorem 1 that the fundamental unit satisfies ε = ±(a + b 3

√
d + c 3

√
d).

On the other hand by Delaunay [5] ε = ±(b̃ + c̃ 3
√

d), where (b̃, c̃) is the
non-trivial solution to X3 − dY 3 = 1. If (b, c) is a non-trivial solution
then we get a contradiction, therefore b = ±1 and c = 0. Hence we see
that ε = a ± 3

√
d. This yields a3 ± d = ±1 or equivalently d = a3 ± 1

for some integer a. �

4. Purely cubic fields of the first kind

The next two sections are devoted to the proof of Theorem 2.
At the beginning of the proof of Theorem 2, we remind the well

known fact (e.g. see [4, section 6.4.3]) that if d = ab2 with a, b ∈ Z
square-free and coprime, then Od is generated by 1,

3
√

ab2 and
3
√

a2b if
d 6≡ ±1 mod 9 and by 1

3
(1+a

3
√

ab2+b
3
√

a2b),
3
√

ab2 and
3
√

a2b otherwise.
In the case where d is square-free and d 6≡ ±1 mod 9, Corollary 1 yields
Theorem 2.

Let us consider now the case d 6≡ ±1 mod 9 and b 6= 1. In view of
Lemma 1, we assume that there exists a unit ε = X +Y

3
√

ab2 +Z
3
√

a2b
such that {1, ε, ε2} generates Od. Since

(1) ε2 = X2 + 2abY Z + (aZ2 + 2XY )
3
√

ab2 + (bY 2 + 2XZ)
3
√

a2b,

we have to investigate the equation det M = ±1, where

M =

 1 0 0
X Y Z

X2 + 2abY Z aZ2 + 2XY bY 2 + 2XZ

 .

Therefore (Y, Z) has to be a solution to the Diophantine equation

(2) by3 − az3 = ±1.

It is obvious that with {1, ε, ε2} also {1, ε−1, ε−2} generates the algebraic
integers (see Lemma 1). Since

ε−1 = (X2 − abY Z) + (aZ2 −XY )
3
√

ab2 + (bY 2 −XZ)
3
√

a2b

also (aZ2 − XY, bY 2 − XZ) is a solution to (2). By a theorem of
Delaunay [5] and Nagell [10] we know that (2) has at most one solution
with Y ≥ 0. Suppose (Y, Z) is such a solution, we have aZ2−XY = ±Y
and bY 2 − XZ = ±Z. Note that the signs for Y and Z must be the
same. Eliminating X from these equations yields bY 3−aZ3 = 0 which
is a contradiction. Note that Y Z 6= 0, since b 6= 1 and a 6= 1.
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5. Purely cubic fields of the second kind

Now the situation is more complicated. Since ab2 ≡ ±1 mod 9 we
have a ≡ 1 mod 3 and a ≡ ±b mod 9. Let a ≡ eb mod 9 with
e ∈ {±1}. Then with 1

3
(1 + a

3
√

ab2 + b
3
√

a2b),
3
√

ab2 and
3
√

a2b also

1,
3
√

ab2 and 1
3
(1 +

3
√

ab2 + e
3
√

a2b) is an integral basis. Therefore we
write

ε = X̃ + Ỹ
3
√

ab2 + Z̃
3
√

a2b = ξ + η
3
√

a2b + ζ
1 +

3
√

ab2 + e
3
√

a2b

3
,

hence

X̃ = ξ + ζ/3, Ỹ = η + ζ/3, Z̃ = eζ/3.

Moreover, let X = 3X̃, Y = 3Ỹ and Z = 3Z̃. We can express ε2 in the
new basis and obtain

ε2 =

ξ̃:=︷ ︸︸ ︷(
ξ2 − ebη2 + ζ2 e(2ab− b)− 1

9
+ 2ηζ

e(ab− b)

3

)
+

η̃:=︷ ︸︸ ︷(
−ebη2 + ζ2a− eb

9
+ 2ξη + 2ηζ

1− eb

3

)
3
√

ab2+

ζ̃:=︷ ︸︸ ︷(
3ebη2 + ζ2 2 + eb

3
+ 2ξζ + 2ebηζ

)
1

3
(1 +

3
√

ab2 + e
3
√

a2b).

Therefore we have to investigate the equation det M = ±1, with

M :=

 1 0 0
ξ η ζ

ξ̃ η̃ ζ̃

 .

This yields the equation

eb(3η + ζ)3 − aζ3 = ±9,

which is equivalent to

(3) bY 3 − aZ3 = e19,

where e1 ∈ {±1}. With {1, ε, ε2} also {1, ε−1, ε−2} generatesOd. There-

fore with (Y, Z) also (aZ2−XY
3

, bY 2−XZ
3

) ∈ Z × Z is a solution to the
Diophantine equation

(4) by3 − az3 = ±9.
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Let us assume (aZ2−XY
3

, bY 2−XZ
3

) fulfills (4) with e′19 on the right side,
where e′1 ∈ {±1}. As above we see that the two solutions

±
(

aZ2 −XY

3
,
bY 2 −XZ

3

)
and ± (Y, Z)

are distinct since otherwise

aZ2 −XY = ±3Y, bY 2 −XZ = ±3Z.

These two equations imply ±9 = bY 3 − aZ3 = 0,±6Y Z depending on
the signs. However each of these cases is impossible since X, Y, Z ∈ Z.
Note that 3|Z and 3|Y is impossible, since otherwise both Y and Z are
divisible by 3 and this implies 27|9, a contradiction.

On the other hand a famous result due to Siegel [11] tells us that
there is at most one solution to

|axn − byn| ≤ c

if
|ab|n/2−1 ≥ λnc

2n−2,

with

λn = 4

n
∏
p|n

p1/(p−1)

n

.

In our case this yields |ab| > 1.356 · 1013. However, by this estimate
too much cases remain to be checked individually. So we have to refine
this method.

Now we take into account that ε is a unit. Therefore we find

(5) X3 + ab2Y 3 + a2bZ3 − 3abXY Z = e227,

with e2 ∈ {±1}. Let us assume a ≥ 10. Since bY 3 − aZ3 = ±9 and
Z 6= 0 we see that Y and Z have the same sign. Without loss of
generality we may assume that Y, Z > 0. Moreover we may assume
that |ε| < 1. Since

Y
3
√

ab2 + Z
3
√

a2b ≥ 3
√

ab( 3
√

a +
3
√

b) > 3
3
√

ab > 3

> |3ε| = |X + Y
3
√

ab2 + Z
3
√

a2b|,
we have X < 0.

Let us compute the asymptotics of X and Y in terms of Z and
of X and Z in terms of Y . Since we need exact error terms we
use the so called L-notation (cf. [7]). This notations allows us to
keep track of how large the constants of the usual O-terms get. The
L-notation is defined as follows: For two functions g(t1, . . . , tk) and
h(|t1|, . . . , |tk|) and positive numbers u1, . . . , uk we write g(t1, . . . , tk) =



8 R.F. TICHY AND V. ZIEGLER

Lu1,...,uk
(h(|t1|, . . . , |tk|)) if |g(t1, . . . , tk)| ≤ h(|t1|, . . . , |tk|) for all

t1, . . . , tk with absolute value at least u1, . . . , uk respectively. Note that
all the following computations have been performed with Mathematica r©

5.0.1.
First we compute Y in terms of Z:

Y =
3

√
aZ3 + e19

b
= Z 3

√
a/b +

3e1
3
√

a/b

aZ2
−

9 3
√

a/b

a2Z5
+ O(1/Z6)

For further computations we need an L-term instead of an O-term. Let

Y + =Z 3
√

a/b +
3e1

3
√

a/b

aZ2
+ 11

3
√

a/b

a2Z5
,

Y − =Z 3
√

a/b +
3e1

3
√

a/b

aZ2
− 11

3
√

a/b

a2Z5
.

Computations show

− (b(Y +)3 − aZ3 − e19)(b(Y −)3 − aZ3 − e19) =(
1771561− 395307ζ2 − 263538e1ζ

3 − 14520ζ4

+ 39204e1ζ
5 + 38475ζ6 + 11610e1ζ

7 + 360ζ8
)
/(a10Z30),

where ζ = aZ3. This quantity is positive if ζ > 28.66, in particular if
a ≥ 29 and Z ≥ 1. This shows

(6) Y (a, b, Z) = Z 3
√

a/b +
3e1

3
√

a/b

aZ2
+ L29,1,1

(
11

3
√

a/b

a2Z5

)
.

Similarly we obtain

(7) Z(a, b, Y ) = Y 3
√

b/a +
3e1

3
√

b/a

bY 2
+ L29,1,1

(
11

3
√

b/a

b2Y 5

)
.

Now let us compute X. Remember that

p1 := bY 3 − aZ3 − e19 = 0,(8)

p2 := X3 + ab2Y 3 + a2bZ3 − 3abXY Z − e227 = 0.(9)

We compute the Groebner basis of the ideal generated by p1 and p2

with respect to the lexicographic term order such that X ≺ Z ≺ Y .
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The first component of the Groebner basis is

p3 :=729a3b3e1 − 6561a2b2e2 + 19683abe1 − 19683e2 + 243a2b2X3

− 1458abe1e2X
3 + 2187X3 + 27abe1X

6 − 81e2X
6 + X9

+ 486a4b3Z3 − 2916a3b2e1e2Z
3 + 4374a2bZ3

− 135a3b2e1X
3Z3 − 324a2be2X

3Z3 + 6a2bX6Z3

+ 108a5b3e1Z
6 − 324a4b2e2Z

6 − 15a4b2X3Z6 + 8a6b3Z9.

Since p3 is a polynomial of degree 3 in terms of X3, it has either 1 or 3
real roots. Because p3 comes from a Groebner basis with lexicographic
order the solutions of p3 for some fixed Z are the same as those of p2

with (Y, Z) a fixed solution to p1, with the same Z. Since the constant
term is positive (remember Y, Z ≥ 1 and a ≥ 10) either all roots of p2

are negative or only one is negative. The fact that the coefficient of X2

of p2 is zero shows that not all three roots can be negative. Therefore
we deduce that there is exactly one negative root of p3 for positive Z.
If we compute the asymptotics of the solutions to p3 in terms of Z we
find that one asymptotic has the form

−2Z
3
√

a2b +
3− 3abe1

a4/3b2/3Z2
+

6 + 9abe1(abe1 − 1)

a10/3b5/3Z5
+ O(1/Z6).

Indeed this is the desired approximation to X. Let us compute

−p3(X
+, Z)p3(X

−, Z) =
229582512Z96a68b36 + · · ·

Z90a60b30
,

where the rest of the numerator is a polynomial of lower degree (in
each variable) and

X+ = −2Z
3
√

a2b +
3− 3abe1

a4/3b2/3Z2
+ 2

6 + 9ab(ab + 1)

a10/3b5/3Z5
,

X− = −2Z
3
√

a2b +
3− 3abe1

a4/3b2/3Z2
− 2

6 + 9ab(ab + 1)

a10/3b5/3Z5
.

Since the numerator is positive for a ≥ 41, b ≥ 1 and Z ≥ 1, we deduce
(10)

X(a, b, Z) = −2Z
3
√

a2b +
3− 3abe1

a4/3b2/3Z2
+ L41,1,1

(
2
6 + 9ab(ab + 1)

a10/3b5/3Z5

)
.

Similarly we obtain
(11)

X(a, b, Y ) = −2Y
3
√

ab2 +
3 + 3abe1

a2/3b4/3Y 2
+ L51,1,4

(
2
6 + 9ab(ab + 1)

a5/3b10/3Y 5

)
.

Because of the form of the L-terms we assume from now on a ≥ 51,
b ≥ 1, Y ≥ 4 and Z ≥ 1.



10 R.F. TICHY AND V. ZIEGLER

If we substitute (6) and (10) in aZ2−XY
3

, and (7) and (11) in bY 2−XZ
3

we obtain

Y ′ :=
aZ2 −XY

3
= aZ2 +

3e1

Z
− 1

abZ
+

3

aZ4
− 3e1

a2bZ4
+

L51,1,1

(
40

3aZ4
+

4

a3b2Z4
+

6

a2bZ4
+

29

a2Z7
+

12

a4b2Z7
+

29

a3bZ7

)
,

(12)

and

Z ′ :=
bY 2 −XZ

3
= bY 2 − 3e1

Y
− 1

abY
+

3

bY 4
+

3e1

ab2Y 4
+

L51,1,4

(
40

3bY 4
+

4

a2b3Y 4
+

6

ab2Y 4
+

29

b2Y 7
+

12

a2b4Y 7
+

29

ab3Y 7

)
,

(13)

respectively. Note that Z ′ = bY 2 + R1, where R1 is small if Y, a, b are
large. Remember that we assume Y ≥ 4, a ≥ 51 and b ≥ 1. In the case
of (13) we see that |R1| < 0.822. Since Z ′ is an integer also R1 has
to be an integer, hence R1 = 0 and Z ′ = bY 2. Similar, if we assume
Z ≥ 4, a ≥ 51 and b ≥ 1 we obtain Y ′ = aZ2 + R2, with |R2| < 0.757.
Hence R2 = 0 and Y ′ = aZ2. If Z = 2 then Y ′ = aZ2 + e13/2 + R3.
From (12) we compute |R3| < 0.031 if a ≥ 51 and b ≥ 1. But this
implies that Y ′ is not an integer and we have a contradiction. In the
case of Z = 1 we find Y ′ = a + 3e1 + R4, with |R4| < 0.355 if a ≥ 51
and b ≥ 1, hence Y ′ = a + 3e1. Since (Y ′, Z ′) is a solution to (4) and
Y ′ = a + 3e1 and Z ′ = bY 2 we obtain
(14)
b(a+3e1)

3−a(bY 2)−9e′1 = a3b+9a2be1+27ab+27be1−9e′1−ab3Y 6 = 0

and therefore b|9. Since ab2 ≡ ±1 mod 9 we find b = 1. Now (14) has
the following form:

a3 + 9a2e1 + 27a + 27e1 − 9e′1 − aY 6 = 0.

This is a|18 or a|36. Since we assume a ≥ 51 we have a contradiction.
Now, if we assume Y ≥ 4, a ≥ 51 and b ≥ 1, then we have Y ′ = aZ2

and Z ′ = bY 2. Moreover, we obtain ba3Z6 − ab3Y 6 = ±9, hence ba|9,
which is again a contradiction to a ≥ 51.

6. Small a

We still have to consider the case a ≤ 50 or Y ≤ 3. In this section
we want to exclude the case a ≤ 50. Since ab2 ≡ ±1 mod 9 we have
a ≡ 1 mod 3 and b ≡ ±a mod 9. Since we assume a and b square-free,
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gcd(a, b) = 1 and a > b ≥ 1, there are only finitely many possibilities
left for the pair (a, b).

For all possible pairs (a, b) we will solve the Diophantine equation
bY 3 − aZ3 = ±9 with Z > 0. If an equation has more than two solu-
tions, the quantity d = ab2 is a possible candidate to fulfill Theorem 2.
In particular we prove the following lemma.

Lemma 2. Let 0 < b < a ∈ Z, a ≤ 50, a and b square-free and
gcd(a, b) = 1, with ab2 ≡ ±1 mod 9, then (a, b) ∈ P with

P ={(46, 37), (46, 35), (46, 19), (46, 17), (46, 1), (43, 38), (43, 34),

(43, 29), (43, 11), (43, 7), (43, 2), (37, 35), (37, 26), (37, 17),

(37, 10), (37, 1), (34, 29), (34, 11), (34, 7), (31, 23), (31, 22),

(31, 14), (31, 13), (31, 5), (22, 13), (22, 5), (19, 17), (19, 10),

(19, 1), (13, 5), (10, 1), (7, 2)}.
Moreover all solutions (Y, Z) ∈ Z × Z to by3 − az3 = ±9 with Z > 0
and (a, b) ∈ P are listed in table 1.

Table 1. Solutions (Y, Z) to by3 − az3 = ±9, with Z > 0.

a b Y Z Y Z
46 37 1 1
43 34 1 1
31 22 1 1
31 5 2 1
22 13 1 1
19 10 1 1
10 1 1 1
7 2 -1 1 2 1

Proof. The first part of the lemma is clear. The second part of the
lemma is due to a computation in PARI [13]. In particular we solved
all Thue equations of the form

Y ′3 − ab2Z3 = (bY )3 − ab2Z3 = 9b2,

with (a, b) ∈ P and only considered solutions (Y ′, Z) such that b|Y ′.
Indeed all solutions have this property. The computation took only a
few seconds on a common work station. �

Lemma 2 tells us that the only candidate is d = 7 · 22 = 28. From
(5) we obtain e2 = 1 and X = −1. Hence ξ = η = 0 and ζ = −1.
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Therefore ε = −1
3
(1 + 3

√
28− 3

√
98) and ε2 = −3 + 3

√
28. Since (1, θ1 :=

3
√

28, θ2 := 1
3
(1+ 3

√
28− 3

√
98)) is a Z-basis of O28, we have ε = −θ2 and

ε2 = θ1 − 3. Moreover we have

M :=︷ ︸︸ ︷ 1 0 0
0 0 −1
−3 1 0

  1
θ1

θ2

 =

 1
ε
ε2

 .

Since det M = 1 also 1, ε, ε2 is a Z-basis of O28 and therefore O28 is
generated by its units.

7. The case Y = 1

We are left to check the case Y ≤ 3. Since 3 - Y we have to consider
the cases Y = 1 and Y = 2. Because of the section above we may
assume a ≥ 51. First we consider the case Y = 1. From (3) we get

b− aZ3 = ±9

or Z3 = b∓9
a

. Since a > b and a ≥ 51 we deduce Z = 1 and a = b− 9.
If we substitute this in (5) we obtain

81b + 27b2 + 2b3 − 27e2 − 27bX − 3b2X + X3 = 0.

If we put X = ξ′ + b and η = b we obtain

−27e2 + ξ′3 + 81η − 27ξ′η + 3ξ′2η = 0,

hence 3|ξ′. If we put ξ′ = 3ξ we get the Diophantine equation

(15) −e2 + ξ3 + 3η − 3ξη + ξ2η = 0.

If we solve (15) for η we obtain

η =− ξ3 − e2

ξ2 − 3ξ + 3
= −ξ − 3− 6

ξ
+
−9 + e2

ξ2
+ O

(
1

ξ3

)
=− ξ − 3− L5

(
8

ξ

)
,

i.e if ξ ≥ 9 then η = −ξ − 3. But η = −ξ − 3 yields 6ξ = 9 +
e2. Since ξ ∈ Z, this is a contradiction. So we compute for each ξ
with −8 ≤ ξ ≤ 8 the quantity η. In the case of e2 = 1 we find the
solutions (ξ, η) = (1, 0), (2,−7), (4,−9) and in the case of e2 = −1 we
find (ξ, η) = (−3, 0), (1,−2), (−3,−9). Note that η = b > 0. None of
these solutions yields a proper b.
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8. The case Y = 2

Now we discuss the case Y = 2, this is 8b − aZ3 = ±9 or Z3 =
(8b ∓ 9)/a. Since 8b ∓ 9 is odd also Z must be odd. Since a ≥ 51
we also have Y ≥ Z > 0, hence Z = 1. Therefore a = 8b + 9e1 with
e1 = ±1. If we put Y = 2, Z = 1 and a = 8b + 9e1 into (5) we get

128b3 − 27e2 + 216b2e1 + 81b− 48b2X − 54be1X + X3 = 0.

If we use the transformation indicated by X = ξ′ + 4b and b = η, we
get

−27e2 + ξ′3 + 81η − 54e1ξ
′η + 12ξ′2η = 0.

Note that 3|ξ′, hence we put ξ′ = 3ξ and obtain

(16) −e2 + ξ3 + 3η − 6e1ξη + 4ξ2η = 0.

We solve (16) for η and obtain

η =− ξ3 − e2

4ξ2 − 6e1ξ + 3
= −ξ

4
− 3e1

8
− 3

8ξ
+

8e2 − 9e1

32ξ2
+ O

(
1

ξ3

)
=− ξ

4
− 3e1

8
+ L6

(
1

2ξ

)
= −2ξ + 3e1

8
+ L6

(
1

2ξ

)
.

We see that η cannot be an integer if ξ ≥ 6. So we compute for each
ξ with −6 ≤ ξ ≤ 6 the quantity η. We find that the only integral
solutions are

(ξ, η) = (3, 0), (6,−1) if e1 = e2 = 1,

(ξ, η) = (−3, 0), (3,−2) if e1 = −e2 = 1,

(ξ, η) = (3, 0), (−3, 2) if e1 = −e2 = −1,

(ξ, η) = (−3, 0), (−6, 1) if e1 = e2 = −1.

So we are reduced to b = 2 and e1 = −1 or b = 1 and e1 = −1. Hence
a = 7 or a = −1. Thus the only proper pair is (a, b) = (7, 2), which
has been found above.
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[14] P. Vámos. 2-good rings. The Quarterly Journal of Mathematics, 56(3):417–430,

2005.
[15] D. Zelinsky. Every linear transformation is a sum of nonsingular ones. Proc.

Am. Math. Soc., 5:627–630, 1954.

R.F. Tichy
Institute of Computational Number Theory and Analysis, Graz Uni-

versity of Technology
Steyrergasse 31,
A-8010 Graz, Austria
E-mail address: tichy@tugraz.at

V. Ziegler
Institute of Mathematics, University of Natural Resources and Ap-

plied Life Sciences, Vienna
Gregor-Mendelstr. 31,
A-1180 Vienna, Austria
E-mail address: ziegler@finanz.math.tugraz.at


