
Unity: Experiences with a Prototype Autonomic Computing System

David M. Chess, Alla Segal, Ian Whalley, Steve R. White

IBM Thomas J. Watson Research Center

{chess,segal,inw,srwhite}@us.ibm.com

Abstract

The behavior of a system results from the behaviors

of its components, and from the interactions and

relationships among them. In order to create

computing systems that manage themselves, we will

need to design both the behaviors of the individual

elements, and the relationships that are formed among

them. This paper describes a research project called

Unity, carried out at IBM's Thomas J. Watson

Research Center, in which we explore some of the

behaviors and relationships that will allow complex

computing systems to manage themselves; to be self-

configuring, self-optimizing, self-protecting, and self-

healing. The four principle aspects of Unity that we

will examine are the overall architecture of the system,

the role of utility functions in decision-making within

the system, the way the system uses goal-driven self-

assembly to configure itself, and the design patterns

that enable self-healing within the system.

1. Introduction

The vision of autonomic computing [1] is of a world

in which computing systems manage themselves to a

far greater extent than they do today. It is a world, in

particular, where interacting sets of individual

computing elements regulate and adapt their own

behavior in order to respond to a wide range of

changing conditions with only high-level direction

from humans.

The behavior of a system results from the behaviors

of its components, and from the interactions and

relationships among them. In order to create computing

systems that manage themselves, we will need to design

both the behaviors of the individual components, and

the relationships that are formed among them. This

paper describes a research project called Unity, carried

out at IBM's Thomas J. Watson Research Center, in

which we explore some of the behaviors and

relationships that will allow complex computing

systems to manage themselves; to be self-configuring,

self-optimizing, self-protecting, and self-healing. The

four principle aspects of Unity that we will examine are

the overall architecture of the system, the role of utility

functions in decision-making within the system, the

way the system uses goal-driven self-assembly to

configure itself, and the design patterns that enable

self-healing within the system.

2. The structure of Unity

The essential structure of Unity follows that outlined

in [1] and [2]. The components that make up the Unity

system are implemented as autonomic elements; system

components that manage themselves and deliver

services to humans and to other autonomic elements. In

our approach, every component of a system is an

autonomic element. This includes computing resources

such as a database, a storage system, or a server. It also

includes higher-level elements with some management

authority, such as a workload manager or a provisioner.

And it includes elements that assist other elements in

doing their tasks, such as a policy repository, a sentinel,

a broker, or a registry. In the Unity project we are

particularly interested in the properties that all the

subtypes of autonomic elements have in common.

Each autonomic element is responsible for its own

internal autonomic behavior: for managing the

resources that it controls, and for managing its own

internal operations, including self-configuration, self-

optimization, self-protection, and self-healing. Each

element is also responsible for forming and managing

the relationships that it enters into with other

autonomic elements in order to accomplish its goals:

the external autonomic behavior that enables the

system as a whole to be self-managing.

The autonomic elements in Unity are implemented

as Java™ programs, using the Autonomic Manager

Toolset [3]. They communicate with each other using a

variety of Web Service interfaces, including both

Proceedings of the International Conference on Autonomic Computing (ICAC’04)

0-7695-2114-2/04 $20.00 © 2004 IEEE

standard OGSA [4] interfaces and additional interfaces

that we and other workers have defined for autonomic

elements. An important principle of the system is that

no other means of communication between the

elements is permitted; there are no back doors or

undocumented interfaces between the elements. This

principle allows us to completely specify the

interactions between the elements in terms of the

interfaces that they support, and the behaviors that they

exhibit through these interfaces.

Figure 1. Unity scenario

The IT scenario that the Unity system is currently

set up to address involves resource allocation between

application environments, as illustrated in Figure 1. A

finite pool of resources must be allocated between two

or more applications, where each application provides

some service for which there is a time-varying level of

external demand. The performance of each application

depends on the demand being placed on it, and the

amount of resources allocated to it. Each application is

governed by a Service Level Agreement (SLA), along

the lines described in [5], which describes the rewards

or penalties associated with various possible behaviors

of the system. The overall success of the system

depends on the performance of each application

relative to the governing SLA.

The various autonomic elements in the system must

cooperate in order to optimize the overall system

performance relative to the set of SLAs in effect. They

do this by discovering resources and forming and

maintaining relationships as we will describe, using the

defined Web Service interfaces.

3. The components of Unity

As described above, Unity is structured as a set of

individual autonomic elements. In this section we will

briefly describe each of these elements; later sections

will discuss important features of the elements in more

detail.

Each application environment in Unity is

represented by an application environment manager

element, which is responsible for the management of

the environment, for obtaining the resources that the

environment needs to meet its goals, and for

communicating with other elements on matters relevant

to the management of the environment. One key

responsibility of an application manager is to be able to

predict how an increase or decrease in the resources

allocated to the application environment would impact

the environment’s ability to meet its goals.

In the current Unity implementation, we have

written application environment managers for typical

web service requests directed to a set of servers by a

workload driver or by IBM’s WebSphere Edge Server,

for applications parallelized through IBM’s Topology

Aware Grid Services Scheduler, and for our own test

applications.

The resource arbiter element is responsible for

deciding which resources from the finite pool should be

assigned to which application environment. It does this

by obtaining from each application environment an

estimate of the impact of various possible allocations,

and calculating an optimum (or probable optimum)

allocation, as described in more detail below.

In the current Unity configuration, the resources

being allocated are individual servers. Each server is

represented by a server element, which is responsible

for (among other things) announcing the server’s

address and capabilities in such a way that possible

users of the server can see them.

Each host computer that is capable of supporting

autonomic elements is represented by an OSContainer

element, which accepts requests from other elements to

start up certain services, certain further autonomic

elements. In the current system, a host computer that is

capable both of functioning as an application server

and a host for other autonomic elements is represented

by both a server element and an OSContainer element;

it may eventually turn out to be sensible to merge these

two into one.

The registry element, based on the Virtual

Organization Registry defined in [4], enables each

element to locate the other elements with which it

needs to communicate, as described below. Its function

is analogous to registries in multi-agent systems (see

for instance [6]).

The policy repository element supports interfaces

that allow the human administrators of the system to

enter the high-level policies that guide the operation of

the system. We will describe utility-function based

policies below; other policies control simpler aspects of

Proceedings of the International Conference on Autonomic Computing (ICAC’04)

0-7695-2114-2/04 $20.00 © 2004 IEEE

the system’s operation, such as whether a particular

server is available for use or reserved for testing.

The sentinel element supports interfaces that allow

one element to ask the sentinel to monitor the

functioning of another. If the monitored element is ever

found to be unresponsive, the sentinel notifies the

element that requested the monitoring. The sentinel

takes part in the self-healing cluster pattern described

below.

Finally, the solution manager element represents

the “solution” as a whole (the entire set of application

environments, resources, and so on) to the outside

world, and is responsible for any bootstrapping and

maintenance issues that apply to the entire solution.

3.1 User interface

In addition to the autonomic elements listed above,

Unity also has a user interface that allows an

administrator to observe and direct the system. The

user interface is a web application consisting of a

number of servlets, portlets, and applets, built using

IBM’s Integrated Solutions Console, an interface

framework that is itself built on WebSphere Portal

technology. It communicates with the autonomic

elements in the system through the usual defined

programming interfaces; it has no privileged access to

any component. It would therefore be possible to create

replacement or alternative user interfaces for Unity

without altering any other part of the system.

The Unity user interface allows the user to define

high-level policies and utility functions and enter them

into the policy repository. It polls the registry and the

autonomic elements at regular intervals to obtain

current performance values for each application

environment, and allows the user to examine the

performance of the application environments in the

system and the current state of each autonomic

element.

Rather than a user interface for any single

autonomic element, the Unity UI is a system-wide

management interface; if necessary or desirable, it

would also be possible to construct user interfaces to

specific autonomic elements in the system. One of the

goals of Unity is to explore user-interface design

patterns in autonomic systems and to study, for

instance, the relationship between element-specific user

interfaces and broader system interfaces.

4. Utility functions for resource allocation

When the Unity resource arbiter needs to consider

changing the current allocation of resources, it queries

the known application environment managers. The

content of the query is essentially “There are N units of

resource that could potentially be allocated to you; for

each possible number of units 0 to N, please estimate

how well you would do if allocated that many units of

the resource”.

In order to accurately reply to this query, the

application environment manager must have two

things: it must have a model of itself that allows it to

predict with some accuracy how its behavior and

performance would change if it were given various

counterfactual amounts of resource, and it must be able

to assign a single numerical quantity to the value of that

behavior and performance.

The first of these things, the system model, is not a

current focus of Unity; we use a relatively simple ad

hoc system model most of the time, although we are

beginning to experiment with more sophisticated ones.

The second of these things, the assignment of a

value to a particular behavior and performance of the

application, uses the utility function methodology

described in [7]. Using a general utility function to

compute the value of the application performance

allows us to express a wider range of desired system

behaviors than simpler approaches using fixed goals,

and additionally allows us to choose between multiple

possible system states all of which satisfy the same set

of service level targets or agreements.

For instance, if each of two application

environments is governed by a simple SLA that

specifies a single performance-level goal, then there is

no principled way to choose between resource

allocations that result in both SLAs being met, or both

being violated. In practice, the owner of the system will

often have more detailed preferences. For instance if

the “customer” for one application is an automated

process that will work correctly as long as the minimal

SLA goal is met, whereas the customer for the other

application is a set of humans doing Web transactions,

then if there are two or more possible allocations that

are likely to meet both goals, the owner would prefer

the one that gives the best possible response time to the

human users. This is easy to represent with utility

functions; without them, it would likely require special-

purpose code in the resource arbiter.

The fact that utility functions are essentially

mathematical objects carries additional benefits. When

a high-level system policy is expressed in terms of

actions to take or specific goals to be achieved, it can

be challenging to decompose it into lower-level

policies to be used by the components of the system.

There may be no natural or automatable way to

translate actions or goals at the high level into actions

Proceedings of the International Conference on Autonomic Computing (ICAC’04)

0-7695-2114-2/04 $20.00 © 2004 IEEE

or goals at the next level down. When the higher-level

policy is a utility function, however, it may be possible

to decompose that function mathematically into utility

functions for the lower-level elements which, when

appropriately summed, yield the desired utility function

at the high level.

5. Goal-driven self-assembly

One of the goals of the autonomic computing vision

is self-configuration; autonomic elements should

configure themselves, based on the environment in

which they find themselves and the high-level tasks to

which they have been set, without any detailed human

intervention in the form of configuration files or

installation dialogs.

Within Unity, we are experimenting with a

technique that we call “goal-driven self-assembly”.

Ideally, each autonomic element, when it first begins to

execute, knows only a high-level description of what it

is supposed to be doing (“make yourself available as an

application server”, or “join policy repository cluster

17”), and the contact information (Grid Service

Handle) of the registry. In a commercial-grade version

of the technique, each element would also be provided

with the security credentials needed to prove its

identity to the other elements in the system.

When each element initializes, it contacts the

registry and issues queries to locate existing elements

that are able to supply the services that the new element

requires in order to operate. It contacts the elements

thus located, and enters into relationships as required to

obtain the needed services. Once the element has

entered into all the relationships and obtained all the

resources that it needs to function, it registers itself in

the registry, so that elements that later need the services

that it provides can in turn contact it. This process is

not confined to initialization time; if an element comes

to need a certain service later on in its lifecycle, during

operation or termination, it similarly contacts the

registry to find available suppliers.

One of the key services that elements locate through

the registry is the policy repository. The policy

repository contains, in principle, everything that an

element needs to know beyond the registry address and

its own high-level role. As one of its first actions, a

newly-initialized element locates and contacts a policy

repository, queries it for the policies governing

elements acting in its role, and uses the result of the

query to make decisions about further configuration

and subsequent operation. In the current Unity

implementation, only some of these policies are

actually stored in and retrieved from the policy

repository; we intend to increase that fraction in the

coming year.

Concretely, within Unity, the first elements to start

are the OSContainers and the registry, which are

necessary to the starting of the other elements. A

bootstrap process then starts the resource arbiter, which

(acting in its role as solution manager) decides what

other elements need to be started and contacts

OSContainers (found in the registry) to arrange for

their starting. The policy repository and sentinel

elements register with the registry immediately upon

coming up. The resource arbiter registers with the

registry, locates the existing policy repositories and

sentinels, and hires a sentinel to watch each policy

repository (as described below). Server elements locate

and contact the resource arbiter to announce

themselves as available for use, and application

environment managers contact the arbiter in order to

have servers allocated to them. None of the elements

knows in advance where the others are located, or even

in most cases how many other elements of a given kind

will prove to exist.

5.1 Issues in self-assembly

This relatively simple explanation glosses over

some potentially complex issues of bootstrapping and

circular dependency. Our current system “cheats”, in

that the resource arbiter acts as a solution manager,

contacting OSContainers to bring into being those

other elements required by the system. In a more

thoroughgoing version of self-assembly, which we

hope to achieve in the next year, each element would

be responsible for causing the instantiation of any other

elements that it requires to function, if none are already

available. This would allow for a dynamic and

decentralized bootstrapping, more in concert with the

autonomic vision. Another interesting approach would

be to retain the solution manager function, and define a

language for solution recipes which would tell the

solution manager which elements (or at least which

initial elements) to bring up to start the system

operating.

A smaller-scale bootstrapping issue is that when the

first OSContainer element comes up, there is not yet a

registry running, so it cannot perform the registration

steps described above. In our current design, each

OSContainer consults its information about where the

registry should be, and if that address turns out to be

the address of a registry that the OSContainer could

create, it creates it.

Similarly, no element will be able to contact a

policy repository until both a registry and a policy

Proceedings of the International Conference on Autonomic Computing (ICAC’04)

0-7695-2114-2/04 $20.00 © 2004 IEEE

repository have come up; this means that at a minimum

both the OSContainers and the registry must be able to

function at least temporarily without a policy

repository, and in fact all elements should have a

minimal set of default policies that suffice at least to

get them through the process of waiting for a policy

repository to appear, and correctly reporting the error if

none ever does.

Circular dependencies, and the registry as an

undesirable single point of failure, are described below,

under Future Work.

5.2 Steps toward self-assembly

The phrase “self-assembly” in “goal-driven self-

assembly” is meant to bring to mind the image of a box

of parts, which, when thrown into the air and allowed

to fall, spontaneously organize themselves into a

computer, or a motorcycle, or a toaster, according to

the expressed desires of the thrower. This is a relatively

lofty ambition; in the near term, customers may be

willing to accept, and the commercially viable

technology may support, only a milder form, in which a

human operator still specifies the essentials of the

system’s functions and relationships, and the autonomic

aspects of the system are responsible only for self-

configuration rather than for full self-assembly. But we

consider self-assembly to be the goal, and we anticipate

that eventually both customer acceptance and

technological maturation will get us there.

6. Self-healing for clusters

As we mention above, one of the goals of Unity is to

demonstrate and study self-healing clusters of

autonomic elements. For the first version of Unity, we

have implemented this style of self-healing in a single

element: the policy repository.

The purpose of a self-healing system is to provide

reliability and data integrity in the face of imperfect

underlying software and hardware. In order to provide

this reliability and integrity, we have added

functionality to the policy repository to support joining

an existing cluster of synchronized policy repositories,

and replicating data changes within that cluster.

It is also necessary for the system as a whole to

detect the failure of one of the elements making up a

cluster, and to create a new element in order to replace

the failed one. Care and consideration must be given to

where (that is to say, upon which host machine) this

new element should be create—Unity currently

assumes, for example, that two elements in the same

cluster should not be hosted on the same machine, and

that elements in a cluster should not be instantiated on

machines that have previously hosted failed elements in

that same cluster.

6.1. Policy repository clustering features

In order to support clustering, certain new

operations were added to the policy repository element.

The first of these changes is the most obvious—

whenever a new or modified piece of policy data is

received by one of the policy repositories in the cluster,

it is sent to all the other repositories in that same

cluster. In this way, each policy repository always has a

consistent (to within a few seconds) view of the

policies. It should be noted that the algorithm currently

employed for this process does not have transactional

integrity, and race conditions can lead to

desynchronization in rare conditions; we intend to

address this in the near future, probably either by

applying known algorithms for transactional integrity

and data synchronization, or by backing the policy

repository with a pre-existing product that already

features this type of data replication.

Another feature required for this self-healing pattern

is less immediately apparent—elements in the Unity

system ensure that they are apprised of changes to their

policies by subscribing to those policies in the policy

repository. In the standard OGSI [8] notification

pattern, a single OGSA service (the subscriber)

subscribes to a given Service Data Element on a single

other OGSA service (the publisher)—in our case, the

publisher would be the policy repository. In the event

of that policy repository failing, while its data is still

safe and available from the other policy repositories in

the cluster, the subscriber is left with no subscription,

and will never be notified of subsequent policy

changes. Consequently, a modified subscription system

was created, in which the subscriptions themselves

(including the identity of the subscriber, the class of

data subscribed to, and the member of the cluster

currently responsible for servicing the subscription) are

part of the data replicated between elements of the

cluster. When a member of the cluster fails, all the

subscriptions that it was servicing are still recorded in

the state data of the surviving cluster members, and by

reassigning those subscriptions to a surviving member,

the system can continue providing notifications to the

subscribers.

Proceedings of the International Conference on Autonomic Computing (ICAC’04)

0-7695-2114-2/04 $20.00 © 2004 IEEE

6.2. Sentinel features

The sentinel used in Unity is fairly simple, and is

designed explicitly for monitoring OGSA services.

When the sentinel is asked to monitor a target service,

the sentinel will thereafter periodically read some of

the standard (mandatory) Service Data Elements from

that target service in order to determine whether or not

that target service is still functioning. The sentinel

makes this discovered information (whether or not the

target is still available) available to the requesting

service via Service Data. The requesting service is

expected to either subscribe to the Service Data

Element in question, or to read it periodically by some

other means.

6.3. Creating and using the self-healing cluster

When the Unity system is initialized, the resource

arbiter determines how many policy repositories are

required (this determination is nominally made by

consulting the system policy, but due to the obvious

bootstrapping problem this policy is not stored in the

policy repository). The resource arbiter then deploys,

using the techniques described above, the required

number of policy repositories (each on different hosts,

as mentioned above). Each one is supplied with the

address of the registry, and the role that it is to perform

(including the identifier of the cluster that it should

join). As each one initializes, it consults the registry to

locate and contact the already registered members of

the cluster and thereby join the cluster itself, using a

simple serial algorithm that avoids most race

conditions. The resource arbiter also contracts with the

sentinel to monitor these policy repositories, and

subscribes to the sentinel in order to be notified of

changes to the state of the policy repositories.

From this point, whenever one of the policy

repositories receives changes to the set of policies,

those changes are communicated, as discussed above,

to the other policy repositories in the cluster. Similarly,

and also as discussed above, the policy repositories

comprising the cluster exchange information about

which elements are subscribers to the policy data, and

to which policy data those subscribers are subscribed.

Now let us assume that the sentinel determines that

one of the policy repositories in the cluster has failed—

perhaps the software has suffered a failure, perhaps the

network connection has been severed, perhaps the

machine has simply ceased to exist. The resource

arbiter will be notified (via its subscription to the

Figure 2. Part of the Unity user interface, showing the autonomic elements in the system after one member

of the policy-repository cluster has failed and been replaced.

Proceedings of the International Conference on Autonomic Computing (ICAC’04)

0-7695-2114-2/04 $20.00 © 2004 IEEE

sentinel) of this failure, and will decide what to do.

First, it will choose one of the still-functioning policy

repositories to take over the subscriptions previous

handled by the failed one, and notify all cluster

members of this reassignment of subscription

ownership. Then, typically, it will determine that it

should replace the failed policy repository—in this

case, it will examine the available hosts, and select one

upon which to deploy a replacement policy repository

(by sending a request to the corresponding

OSContainer). The policy repository is so deployed;

upon initialization it consults the registry to locate the

appropriate cluster, and joins the cluster by the process

described above—this process includes the new policy

repository receiving a copy of the current cluster state

data, including all currently stored policies and

subscriptions.

It will be evident that such clusters are not the final

word on the subject. For example, the data replication

problem is significant; a more complete solution would

likely be assisted by the use of the failover and data

replication features of a database management system.

The method is also most effective in the case of simple

single-element failures; it is not robust against network

partitions or similar problems. However, even

clustering patterns as simple as the one presented here

offer benefits beyond failure recovery.

For example, by appropriate manipulations of the

resource arbiter’s decision-making routines, all the

policy repositories in the cluster can be migrated to

new hardware and/or software using this system. By

introducing the new hardware and software, and then

causing each of the legacy policy repositories to

terminate in turn, new policy repositories will be

created on the new hardware and/or software. This

allows for routine maintenance of the underlying

operating system and hardware with no interruption in

service.

7. Properties of autonomic elements

From our experiences with Unity and our work on

the architecture of autonomic systems, we have

identified a number of properties that autonomic

elements, considered as service providers, must have to

enable system self-management. While we expect that

our understanding of these properties will grow with

further experience, we offer them here as a working

draft.

First, each autonomic element must be self-

managing—it must be responsible for configuring itself

internally, for healing over internal failures where

possible, for optimizing its own behavior, and for

protecting itself from external probing and attack. This

is fundamental to the approach that we use in Unity.

Second, each autonomic element must handle

problems locally, where possible. If one of its input

services fails to satisfy the agreed-upon SLA, it must

solve the problem by requesting resolution from the

input service or by finding another, more suitable

service.

Third, each autonomic element must be capable of

establishing relationships with the other autonomic

elements whose services it uses or who use its service,

and must abide by the relationships it establishes. As

part of this, it must advertise its own service accurately.

Otherwise, components like those we use in Unity will

be unable to form correct service dependencies.

Fourth, an autonomic element must abide by its

policies. It must refuse any proposed relationship that

would violate its existing relationships or policies.

Further details, as well as behaviors that are

recommended but not required, are available in [2].

8. Future work

Many of the features that we have implemented

once, or for a single purpose, in the current Unity

system could be usefully generalized. We currently

support a small number of application environments;

we plan to expand that number, and learn what

extensions to the existing interfaces will be required by

that wider range.

The Unity components currently self-assemble into

only one overall system; we plan to add flexibility to

the system so that the box of parts can come down to

form various different useful wholes, closer to the

ultimate dynamic vision of self-assembly. That ultimate

vision will also require standard languages and

taxonomies for services offered, dependencies, registry

queries, and so on. We would like to evaluate other

potential registry models (such as the UDDI model) for

their suitability to autonomic systems. It would also be

interesting to develop ways to do hypothetical self-

assembly, so that the box of parts could be asked “if I

were to toss you into the air and ask for an automobile,

what would the result be like?”. There are interesting

issues in self-assembly in complex environments that

may involve circular dependencies; avoiding deadlock

during self-configuration will be important.

The self-healing cluster pattern that we currently use

to increase the reliability of the policy repository

should be able to accomplish the same goal for the

other potential single points of failure in the system; the

resource arbiter, for instance, or the registry. It should

be noted that making the registry into a self-healing

Proceedings of the International Conference on Autonomic Computing (ICAC’04)

0-7695-2114-2/04 $20.00 © 2004 IEEE

cluster will require some new invention to avoid the

bootstrapping problems inherent therein.

Utility functions are a powerful and flexible way to

allow systems to manage themselves. We plan to

extend the use of utility functions in Unity from

resource allocation to the rest of the system. The self-

assembly process, for instance, could use utility

functions to decide between various alternate

configurations of the system. For instance, an element

that could potentially form a relationship with multiple

other elements to acquire a needed service could use a

utility function to decide which relationships to actually

form. System properties like the sizes of self-healing

clusters could be derived from higher-level goals (in

terms of estimated reliability, say), rather than specified

directly by policy. Behaviors, such as bringing up each

member of a self-healing cluster on a different host

system, could similarly be derived from higher-level

principles rather than hardcoded into the algorithms.

Because utility functions are so powerful and

general, there are challenges in designing user

interfaces that give human users and administrators

useful information about them and intuitive control

over them. The typical user should probably not be

given the ability to sketch an arbitrary utility curve, or

be expected to determine which of several possible

curve shapes correctly express the value of various

outcomes. Existing work on preference elicitation, such

as [9], could be usefully applied to the problem of

determining the right utility function in an autonomic

system.

Similarly, the space of possible policies and utility

functions is potentially very large, and users may need

the ability to explore, with whatever degree of accuracy

is possible, the likely effects of policy changes before

those changes are actually made. We are working with

other researchers on advanced policy and utility

function tooling that would allow this sort of

exploration.

Finally, we plan to replace some of the ad hoc

algorithms in Unity with more robust methods. The

optimization algorithm that we use in the resource

arbiter, for instance, currently assumes that switching

costs are zero: that moving a resource from one

application to another is free. This assumption is valid

only in some environments; we plan to explore more

powerful algorithms that can deal with non-zero

switching costs. And as noted above, the algorithms

that we use for state synchronization between members

of a self-healing cluster are not robust against various

race conditions, and do not have transactional integrity;

we plan to replace them with algorithms that do.

Unity has been a valuable platform for studying and

validating our ideas about autonomic systems. We

intend to expand its scope to include a wider range of

functions and products, and to illuminate more of the

large and interesting space of self-managing systems.

10. References

Java is a trademark of Sun Microsystems, Inc.

[1] Jeffrey O. Kephart, David M. Chess, “The Vision of

Autonomic Computing”, IEEE Computer 36(1): 41-50

(2003)

[2] Steve R. White, James E. Hanson, Ian Whalley, David M.

Chess, and Jeffrey O. Kephart, “An Architectural Approach

to Autonomic Computing,” submitted to International

Conference on Autonomic Computing (ICAC-04), 2004.

[3] David W. Levine et al., “A Toolkit for Autonomic

Computing”, IBM Developerworks Live, 2003.

[4] J. Nick I. Foster, C. Kesselman and S. Tuecke, “The

Physiology of the Grid: An Open Grid Services Architecture

for Distributed Systems Integration,” Open Grid Service

Infrastructure WG, Global Grid Forum, June 22, 2002.

[5] Avraham Leff, James T. Rayfield, Daniel Dias, “Meeting

Service Level Agreements In a Commercial Grid,” IEEE

Internet Computing, July/August, 2003.

[6] E. H. Durfee,D. L. Kiskis, and W.P. Birmingham, "The

Agent Architecture of the University of Michigan Digital

Library", IEE/British Computer Society Proceedings on

Software Engineering (Special Issue on Intelligent Agents)

144(1), February 1997.

[7] William E. Walsh, Gerald Tesauro, Jeffrey O. Kephart,

and Rajarshi Das, “Utility Functions in Autonomic Systems,”

submitted to International Conference on Autonomic

Computing (ICAC-04), 2004.

[8] Open Grid Services Infrastructure (OGSI) Version 1 at

http://www-unix.globus.org/toolkit/draft-ggf-ogsi-

gridservice-33_2003-06-27.pdf

[9] V. S. Iyengar, J. Lee, and M. Campbell, “Q-Eval:

Evaluating Multiple Attribute Items Using Queries,”

Proceedings of the ACM Conference on Electronic

Commerce EC'01, October 2001.

Proceedings of the International Conference on Autonomic Computing (ICAC’04)

0-7695-2114-2/04 $20.00 © 2004 IEEE

