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Univalence Criteria for a General Integral Operator
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Abstract. In this paper the author introduces a general integral operator and determines conditions for
the univalence of this integral operator. Also, the significant relationships and relevance with other results
are also given.

1. Introduction and Preliminaries
Let A be the class of functions f(z) which are analytic in the open unit disk
U={z:|zl<1}and f(0) = f/(0)-1=0.

We denote by S the subclass of A consisting of functions f(z) € A which are univalent in U.
Miller and Mocanu [11] have considered the integral operator M, given by

[

M, (z) = if(f(u))le uldub , zelU
0

1)

for functions f(z) belonging to the class A and for some complex numbers «, a # 0. It is well known that
M,(z) € S for f(z) € " and a > 0, where " denotes the subclass of S consisting of all starlike functions

fz)inU.

In this present investigation, we introduce a general integral operator as follows:

1

1
Y 3 —ntl
Vi

- 1 Z — - 1ip- =1
*77/1,7/2,--»%4‘3(2) = (Z ,)7 —n+ 1] fu " 1_[ (fl(u))h * 1’1”
i=1 0 i=1

whereze U, fie Aand y;,p€C, (y; #0),i = 1,7 whichis a generalization of integral operator M,.
From (2),forn=1, p=1, fi=f, vy1=a, weobtain the integral operator M,.
If y; = y for each i = 1,n, from (2) we obtain the integral operator
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1- n 1
Ty p(2) = (w) f u*”ﬁl_[(ﬁ(u))?/*ﬂ‘ldu . 3)
y 0 i=1

If B = 0, from (2) we obtain the integral operator define by

Y Lon+l

n 1 2 n L ;’1 %
Ty1ysmyn0(2) = (Z )7 -—n+ 1][1—[ (fi(w)) "du . 4)
i=1 /! ) i=1

If B =1, from (2) we obtain the integral operator

1
n
Y 3--n+l

Tysrn(@) = (Z%—nu] f o TTGanFan™ (5)
i=1 0 i=1

If n =1and f; = f, from (2) we obtain the integral operator

z Y

T =12 [ty zeu ©

0

which was introduced and studied by Pescar and Breaz [17].
Iftn=1, A= y% =1landp € C—-{0,1}, from (2) we obtain the integral operator

; p
Jp(z) = f(@) du, zeU (7)

0

which was introduced Kim-Merkes [9].

From (2),forn=1, fi=f, % =1and p = 1 we obtain Alexander integral operator defined by

C fu)
g@= [ L%, (8)
Of :

Recently the problem of univalence of some generalized integral operators have discussed by many
authors such as: (see [1]-[8], [10], [15]-[17], [19] and [20]). In our paper, we consider the general integral
operator of the type (2) and obtain some sufficient conditions for this integral operator to be univalent in
U. In particular, we obtain simple sufficient conditions for some integral operators which involve special

cases n,fand y; (y; #0),1 = 1,1 of the integral operator (2).
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2. Preliminary Results

To discuss our problems for univalence of the integral operator 7y, ,,,.,,s we need the following
lemmas.

Lemma 2.1. (Pascu [14]). Let h(z) e Aand y € C. If R(y) > 0 and
1 - [zPR0)

R(y)
then the function H, (z) given by

zh" (z)
W (z)

<1, zeU

z 1y
"Hy(z)=(y fo tV‘lh’(t)dt) , zeU 9)

is in the class S.

Lemma 2.2. (Ozaki and Nunokawa [13]). Let f €A satisfy the following condition
2f'(2)
f*@)
then the function f is in the class S.

<1, zeU

Let S(p) denote the class of functions f €A which satisfies the conditions

{ flz) #0, for0<|z| <1

il

for some real p with 0 < p < 2. The class S(p) is defined by Yang and Liu [21]. Sign [18] has shown that if
f € S(p), then f satisfies

22f'(z)
)

Lemma 2.3. (General Schwarz Lemma [16]). Let f(z) be the function reqular in the disk Ur = {z € C: |z| < R}
with | f (z)( < M, M fixed. If f(z) has at z = 0 one zero with multiplicity greater than m, then

<p, forzeU

<pll*, zelU. (10)

lf@)| < 124—”1 2", zeUg (11)

the equality (in the equality (11) for z # 0) can hold only if

fla) = e,
where O is constant.
Lemma 2.4. (Caratheodory [1], [12]). Let f be analytic function in U, with f(0) = 0. If f satisfies

Rf(z) <M (12)
for some M > 0, then

A- k) |f@)|<2Mlzl, zeU. (13)
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3. Main Results

Theorem 3.1. Let y; be complex numbers R(y;) #0,6 = 3, R (Vl) -n+1>0,fi €A, fi(z) = z+ayz> +azz>+ ...,
i=1 '

i=1nlIf
/ i[(R(L) -1+
%{eie(zfxz)_l)}slyl( ) +n)’ (=T 0<5<1) (14)
fi@ a(1+yil|p-1))
or
R i60 Zfi’(z)_l)}_ |V1| , -=1, S 6>1 , 15
{e (fi(Z) <4n(1+|7/iH,3—1) (1 n, 0= ) (15)

forallz e U, O €[0,2n]and p € C, then the integral operator I, ,,.,p defined by (2) is in the class S.

Proof. The integral operator 7y, ,,,..,, s has the form

1

n p n L.‘*'ﬁ_l f %ﬂzﬂ
1 no1_ i\u Vi iz Vi
Tyyayup(@) = {[Z v " * 1] f” o H (%) du} . (16)
i=1 /! 0

i=1

We consider the function

) Z p f,(u) 7}7+/5—1
9(z) = IH(T) du (17)
0o =

analytic in U.

We have
Zg”(Z) ~ n 1 Zfi/(z)
7@ - Z}(; +F ‘1)( 5@ ‘1)‘ 19
Let us consider the function
@i(z) = e (Z;(Z) - 1), zeU, i=1,n, 6€l0,2n] (19)

and we observe that ¢;(0) = 0 forall i = 1,n.
By (14) and Lemma 2.4 for 6 € (0, 1) we obtain

o« R4
T 20— (1+ il -1))

From (15) and Lemma 2.4, for 6 € [1, o0) we have

zeU, peC,i=1,n. (20)

Izl |y

Piz)] < , zeU,BeC, i=1n. (1)
o) 2112 (1+ [y |8 - 1])
From (18) and (20) we get
1- |2 |zg"@)| _ 1- |2
> g [Faa-m A 2sOD @
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Because 1 — |z1° <1 — |z]? for 6 € (0,1), z € U from (22) we have

1- |Z|25
o

Zg" (Z)
9'(2)

<1 (23)

forallze U, 6 €(0,1).
12

For 6 € [1,00), we have —— <1 - zI*, z € U and from (18) and (21), we obtain

1— |z
0

Zg” (Z)
7'(2)

<1 (24)

forallze U, 6 €[1,00).
n . 181
From (17) we have 7'(z) = [] (@) P and using (23) and (24), by Lemma 2.1 it results that 7, ,, . 5

=
given by (2) is in the class S. [
Letting y; = y for i = 1,1 in Theorem 3.1, we have

Corollary 3.2. Let y be complex number R(y) # 0, 6 = n%(%)ﬂ >0, fi € A, fi(z) = z+ ayz® + a3z + ...,
i=1,nIf

for (29 ) < M(RG) -1+5)

, (izl,n;0<6<1)

f@ )T a(i+plp-1])
or
w Lo (F@ _ )}_ Iyl T
(G S mappoy ey

forallze U, 6 €[0,2n]and p € C, then the integral operator g defined by (3) is in the class S.

Letting § = 0 in Theorem 3.1, we have

Corollary 3.3. Let y; be complex numbers R(y;) £0,6 = Y, R (yl) -n+1>0,fi €A, fi(z) = z+ayz? +azz° +...,
i=1 !

i=1nlIf

i:1,n;0<6<1)

for (29 1) < AR G)-143)

fie) 4(1+ )

or

R {eie (ZJJ;’;S) - 1)} < ‘ﬁ (i=Tmox21),

forallz € U, O € [0,2n], then the integral operator [, ,,..,, 0 defined by (4) is in the class S.

Letting § = 1 in Theorem 3.1, we have
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Corollary 3.4. Let y; be complex numbers R(y;) # 0,0 = Y, R (yl) —n+1>0,fi € A, fi(z) = z+ayz? +azz° +...,
i=1 !

i=1,nlIf

Azf(z Vi R % —1+l

‘R{ele(f’()—l)}sllu () n>, (izl,n;0<6<1)
fi(z) 4

or

o)t (oo

forallz € U, O € [0,2n], then the integral operator [, y,,.,1 defined by (5) is in the class S.

n

Theorem 3.5. Let y; be complex numbers R(y;) #0,6 = Y, R (}%) -n+1>0,fieA,fi(z) = Z4+apZ? + a3z + ...,
i=1 '

i=1nlIf

zf!(2) 26 +1)% il o
— -1 < p =1, 25
@ ‘ =T (1) (i=1) =

forallze U, 6 €[0,2n]and B € C, then the integral operator [y, ,,., p defined by (2) is in the class S.

Proof. We observe that 7, ,,,..,,s has the form (16). Consider the function g(z) defined by (17). We define
the function ¢(z) = il

g’(z)) for all z € U. From (18) and (25) we have

26 +1)%
< = 7
[v@)] < =
forallze U.

The function 1) satisfies the condition ¢(0) = 0 and applying Lemma 2.3 we obtain

|1/1(z)| < (ZCS-F% lz|, zel.

(26)
From (26) we get

0

Zg”(Z)

L@+ )5 1 - [z
g'(z)

< 5 5 |z .

(27)
Because

max{1 — |Z|Zb |z| ¢ = ;
EE G 26 +1)%

from (27) we obtain

1- |Z|2§
0

Zg" (Z)
9'(2)

<1

(28)
, I (@) Y5 - ~
From (28) and because g'(z) = ] (7) , by Lemma 2.1 we obtain that the integral operator 7, ,....,.p
i=1
isin the class S. O
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Letting y; = y for i = 1,1 in Theorem 3.5, we have

Corollary 3.6. Let y be complex number R(y) # 0, 6 = n‘R(l;—,y)+1 >0, fi € A, fiz) = z + ayz® + a3z + ...,
i=1,nlIf

2@ | @s+n% o
o= ey

forallz € U, O €[0,2n]and p € C, then the integral operator [y, g defined by (3) is in the class S.
Letting f = 0 in Theorem 3.5, we have

Corollary 3.7. Let y; be complex numbers R(y;) £0,6 = Y, R (yl) —n+1>0,fi € A, fi(z) = z+ayz? +azz° +...,
i=1 !
i=1nlIf

2fl() 1’ _ @+ P
fi(2) B 2n (1 + |y

), <i= 1,n)

forallze U, O €[0,2n]and p € C, then the integral operator J, ,,,..,, defined by (4) is in the class S.

Letting f = 1 in Theorem 3.5, we have

Corollary 3.8. Let y; be complex numbers R(y;) # 0,0 = Y, R (%) -n+1>0,fi €A, fi(z) = z+ayz> +azz> +...,
i=1 !
i=1nlIf

zfi'(z) |)/,-|(2(5+ 1)2%1 -
m—l’<T, (1—1,11)

forallz € U, O € [0,2n], then the integral operator [, ,,...,,1 defined by (5) is in the class S.

Remark 3.9. Forn = 1in Theorem 3.1 and Theorem 3.5, we obtain Theorem 3.2 and Theorem 3.5 in [17] respectively.

Theorem 3.10. Lef the functions f; € S(p;), (i = 1,_n) which satisfy the inequality (10) with 0 < p; <2 and M; > 0

JRE— n
for i =1,n. Furthermore y; be complex numbers with A =}, 7% —n+1and R(A)> 0. If
i=1""

f@|<M; (zeU, i=1n) (29)

and
n

Z 1

- 1|0+ D41 < Ry 50)
i=1 '/t

then the integral operator [, y,..,,p defined by (2) is in the class S.

Proof. We observe that 7y, ,,,..,,s has the form (16). Consider the function g(z) defined in the formula (17).
Equation (18), yields

IR
i=1 '/ !
n l ~ szil(z) fﬁ
< ;yi+ﬁ 1’((ﬁ(z»2 - +1].
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The hypothesis will then yield | ﬁ(z)| <M; (z eU,i= L_n) . By Genaral Schwarz Lemma, we can obtain that
@) < Mi | (31)

for all z € U, i = 1,n. Therefore by using the inequality (31), we obtain

zg9” (z) 51 sz[(z)
7| < Ly 6 ( P M"”) 2
o1 2f/(2)
< L )7i+ﬁ_1((f,-(z))Z_llMiJrMiH}

Since f € S(p;), in view of (30), using (10), (32) may be written as

Zg”(Z)

g'(2) Z L +p-1 (Mipi 2> +M; + 1) @)

TV

i

= |l

%+5—1(Mﬁn+D+DS9“A>

1— |Z|29&(A))
R(A)

IA
i

On multiplying (33) by , the following inequality is obtained

1— |Z|2?§(A)
R(A)

zg"'(2)
9'(2)

<1-z2P2N <1 zeU).

So, according to the Lemma 2.1, the integral operator 7, ,,,...,, s belongs to the class S. [T
Letting y; = y for i = 1,1 in Theorem 3.10, we have

Corollary 3.11. Let the functions f; € S(p;), (z’ = L_n) which satisfy the inequality (10) with 0 < p; < 2 and M; > 0

- 1 —_
or i = 1,n. Furthermore y be complex number with argy = 0 and R w > 0. ]
f Y p 294 >

|fi(Z)| <M; (z eEU,i= L_n)

and

1+~ 1) Z (Mi(pi + 1)+1) <ncos 0+ (1 -n)y|
P

then the integral operator [, g defined by (3) is in the class S.
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