UNIVALENCE OF BESSEL FUNCTIONS

R. K. BROWN

1. Introduction. In 1954 M. S. Robertson [2] obtained sufficient conditions for the univalence in the unit circle of functions

$$[W(z)]^{1/\alpha} = \left[z^{\alpha} \sum_{n=0}^{\infty} a_n z^n \right]^{1/\alpha}, \qquad a_0 = 1,$$

where $\Re \{\alpha\} \ge 1/2$ and W(z) is a solution of the differential equation (1.1) W''(z) + p(z)W(z) = 0, |z| < 1.

In this paper we employ the methods of Robertson to obtain information concerning the univalence of the functions $[T(z)]^{1/\nu}$ $(\nu \neq 0)$ and $z^{1-\nu}T(z)$ where

$$T(z) = z^{\nu} \sum_{n=0}^{\infty} a_n z^n, \qquad \Re \{\nu\} \ge 0,$$

is a solution of the differential equation

(1.2)
$$T''(z) + \frac{1}{z} T'(z) + q(z)T(z) = 0, \quad |z| < R.$$

In particular we shall first determine a radius of univalence for the normalized Bessel functions $[J_{\nu}(z)]^{1/\nu}$ for values of ν belonging to the region G defined by the inequalities $\Re\{\nu\} > 0$, $|\arg \nu| < \pi/4$. Then we shall determine the radius of univalence of the functions $z^{1-\nu}J_{\nu}(z)$ for values of ν belonging to a subset of the closure of G. When ν is real and positive we shall determine the exact radius of star-likeness of both of the above-mentioned classes of normalized Bessel functions.

Our results concerning the functions $z^{1-\nu}J_{\nu}(z)$ "sharpen" those of Kreyszig and Todd [1] when $\nu \ge 0$ and extend their results for complex values of ν .

2. Preliminaries. Let

(2.1)
$$z^2 p^*(z) = \sum_{n=0}^{\infty} p_n^* z^n, \qquad p_0^* \leq \frac{1}{4},$$

be regular for |z| < R and real on the real axis. Given any non-negative constant C, define

Presented to the Society, September 3, 1959; received by the editors March 10, 1959 and, in revised form, July 8, 1959.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

(2.2)
$$W_C(z) = z^{\alpha^*} \sum_{n=0}^{\infty} a_n^*(C) z^n, \qquad a_0^*(C) = 1,$$

to be the unique solution for |z| < R of the differential equation (2.3) $W''(z) + \{C[p^*(z) - p_0^*/z^2] + p_0^*/z^2\}W(z) = 0$

where α^* is the larger root of the associated indicial equation.

We now are ready to state the following

LEMMA. Let $y(\rho)$, $dy(\rho)/d\rho = y'(\rho)$ be real functions, continuous in the real variable ρ for $0 < \rho < R$. For small values of ρ let

$$y(\rho) = O(\rho^{\delta}), \qquad y'(\rho) = O(\rho^{\delta-1}), \qquad \delta > 1/2.$$

Then

(2.4)
$$\int_{0}^{r} \{ C[\rho^{2} p^{*}(\rho) - p_{0}^{*}] + p_{0}^{*} \} y^{2}(\rho) \frac{d\rho}{\rho^{2}} \\ \leq \int_{0}^{r} [y'(\rho)]^{2} d\rho - \frac{W'_{C}(r)}{W_{C}(r)} \cdot y^{2}(r), \qquad 0 < r < R,$$

where $W_c(z)$ is the solution (2.2) of (2.3).

The proof of this lemma is with obvious modifications the same as that given by Robertson [2] for the case R=1. We will not reproduce it here.

With the aid of the lemma we are able to prove the following

THEOREM 1. Let $z^2 p(z)$ be regular for |z| < R and satisfy the inequality

(2.5)
$$\Re \{ e^{i\gamma} z^2 p(z) \} \leq \cos \gamma \{ C[|z|^2 p^*(|z|) - p_0^*] + p_0^* \}$$

where $C \ge 0$, $|\gamma| \le \pi/2$, and $z^2 p^*(z)$ is defined in (2.1). With p(z) chosen in this manner we define

(2.6)
$$W(z) = z^{\alpha} \sum_{n=0}^{\infty} a_n z^n, \quad a_0 = 1, |z| < R,$$

to be the unique solution of (1.1) corresponding to the root with larger real part of the associated indicial equation. Let $W_c(z)$ be defined as in (2.2). Then

(2.7)
$$\Re\left\{e^{i\gamma} \frac{zW'(z)}{W(z)}\right\} \geq |z| \frac{W'_c(|z|)}{W_c(|z|)} \cos \gamma$$

for all $|z| \leq \rho < R$.

PROOF. If in (2.6) we have $\Re{\alpha} > 1/2$ then

R. K. BROWN

(2.8)
$$| W(z) |^{2} \Re \left\{ e^{i\gamma} \frac{zW'(z)}{W(z)} \right\}$$
$$= r \cos \gamma \int_{0}^{r} | W' |^{2} d\rho - r \cdot \int_{0}^{r} \Re \left\{ e^{i\gamma} z^{2} p(z) \right\}_{|z|=\rho} \frac{|W|^{2}}{\rho^{2}} d\rho$$

for all $0 \leq r < R$.

This equation is known as the "Green's transform" of (1.1) and in the form (2.8) is due to Robertson [2]. The inequality (2.7) now follows immediately from (2.8), (2.5), and (2.4) with $y(\rho) = W(\rho)$.

The proof for the case when $\Re{\alpha} = 1/2$ in (2.6) follows from the continuity of zW'(z)/W(z) as a function of α for $\Re{\alpha} > 0$ (see [2, p. 258]).

We conclude this section with the definitions of the terms "starlike" and "spiral-like."

DEFINITION. A function $f(z) = \sum_{n=1}^{\infty} a_n z^n$, $a_1 \neq 0$, regular for |z| < R will be called *spiral-like* in |z| < R if for some real constant $\gamma(|\gamma| \le \pi/2)$ the function f(z) satisfies the inequality

(2.9)
$$\Re\left\{e^{i\gamma} \frac{zf'(z)}{f(z)}\right\} \ge 0$$

for all |z| < R. In the special case when $\gamma = 0$ we say that f(z) is *star-like* with respect to the origin in |z| < R.

It was shown by Špaček [3] that (2.9) is sufficient for the univalence in |z| < R of f(z) whenever $f'(0) \neq 0$.

3. Bessel's equation. In this section we state our two theorems concerning the univalence of normalized solutions of Bessel's equation

(3.1)
$$T''(z) + \frac{1}{z}T'(z) + \left(1 - \frac{\nu^2}{z^2}\right)T(z) = 0, \quad |z| < R.$$

THEOREM 2. Let the complex number ν satisfy the inequalities $\Re\{\nu\} > 0$, $|\arg \nu| < \pi/4$. Then the normalized Bessel function $[J_{\nu}(z)]^{1/\nu}$ is regular, univalent, and spiral-like in every circle $|z| = r < \rho_{\mu}$ where $\mu^2 = \Re\{\nu^2\}, \mu > 0$, and ρ_{μ} is the smallest positive zero of the function $J'_{\mu}(r)$. In the particular case when ν is real and positive the function $[J_{\nu}(z)]^{1/\nu}$ is star-like in $|z| < \rho_{\mu}$ but is not univalent in any larger circle.

THEOREM 3. Let the complex number v = x + iy satisfy one of the following conditions:

- $(3.2) 0 \leq x < 1 \quad and \quad y \leq x,$
- (3.3) $x \ge 1$ and $y^2 < 2x 1$.

[April

Then the normalized Bessel function $z^{1-\nu}J_{\nu}(z)$ is regular, univalent, and spiral-like in every circle $|z| = r < \rho_{\mu}^{*}$ where $\mu^{2} = \Re \{\nu^{2}\}, \mu > 0$, and ρ_{μ}^{*} is the smallest positive zero of the function $rJ_{\mu}'(r) + \Re \{1-\nu\}J_{\mu}(r)$. In the particular case when ν is real the function $z^{1-\nu}J_{\nu}(z)$ is univalently star-like in $|z| < \rho_{\mu}^{*}$ but is not univalent in any larger circle.

4. Proof of Theorem 2. Select any ν satisfying the inequalities $\Re\{\nu\}>0$, $|\arg \nu| < \pi/4$, and consider (2.3) with $\mu^2 = \Re\{\nu^2\}$, C=1, and

(4.1)
$$z^2 p^*(z) = z^2 + 1/4 - \mu^2$$
.

In this manner we obtain the differential equation

(4.2)
$$W''(z) + \left[1 - \frac{1}{z^2} \left(\mu^2 - \frac{1}{4}\right)\right] W(z) = 0$$

whose solution $W_1(z)$ as defined in (2.2) is

(4.3)
$$W_1(z) = 2^{\mu} \Gamma(\mu + 1) z^{1/2} J_{\mu}(z).$$

Next, by setting

(4.4)
$$z^2 p(z) = z^2 + 1/4 - \mu^2$$

in (1.1) we find that the solution W(z) of (1.1) as defined in (2.1) is

(4.5)
$$W(z) = 2^{\nu} \Gamma(\nu + 1) z^{1/2} J_{\nu}(z).$$

The solutions given in (4.3) and (4.5) are valid for all finite z. Moreover, $z^2p^*(z)$ and $z^2p(z)$ as given in (4.1) and (4.4) satisfy (2.7) for all finite values of z when $\gamma = 0$ and C = 1. Therefore, from (2.7) it follows that

(4.6)
$$\Re\left\{\frac{zW'(z)}{W(z)}\right\} \geq |z| \frac{W_1'(|z|)}{W_1(|z|)}$$

for all finite values of z. Thus, from (4.3), (4.5), and (4.6) we have

(4.7)
$$\Re\left\{\frac{zJ_{\nu}'(z)}{J_{\nu}(z)}\right\} \geq \frac{rJ_{\mu}'(r)}{J_{\mu}(r)}, \qquad |z| = r,$$

for all finite r.

Since μ is positive it follows from (4.7) that

(4.8)
$$\Re\left\{\frac{zJ'_{\mu}(z)}{J_{\mu}(z)}\right\} \ge 0, \qquad |z| \le \rho_{\mu},$$

where ρ_{μ} is the smallest positive zero of $J'_{\mu}(r)$.

1960]

We now define

(4.9)
$$F_{\nu}(z) = [J_{\nu}(z)]^{1/2}$$

where $[J_{\nu}(z)]^{1/\nu} = (1/\nu) \exp\{\text{Log } J_{\nu}(z)\}$ and Log represents the principal branch of the logarithm. Then,

(4.10)
$$\Re\left\{\frac{zF_{\nu}'(z)}{F_{\nu}(z)}\right\} = \Re\left\{\frac{zJ_{\nu}'(z)}{J_{\nu}(z)}\right\}$$

and it follows from (4.8) that in every circle $|z| = r < \rho_{\mu}$ the function $F_{\nu}(z)$ is spiral-like if ν is complex and is star-like if ν is real and positive.

Clearly, since $J'_{\mu}(z)$ vanishes for $z = \rho_{\mu}$ the function $[J_{\mu}(z)]^{1/\mu}, \mu > 0$, cannot be univalent in any circle $|z| = r > \rho_{\mu}$.

This completes the proof of Theorem 2.

5. **Proof of Theorem 3.** If in the proof of Theorem 2 we replace $F_{\nu}(z)$ in (4.9) by the function

(5.1)
$$S_{\nu}(z) = z^{1-\nu}J_{\nu}(z), \quad \Re\{\nu\} \ge 0,$$

then since

(5.2)
$$\Re\left\{\frac{zS'_{\nu}(z)}{S_{\nu}(z)}\right\} = \Re\left\{1-\nu\right\} + \Re\left\{\frac{zJ'_{\nu}(z)}{J_{\nu}(z)}\right\}$$

it follows from (4.7) that

(5.3)
$$\Re\left\{\frac{zS'_{\nu}(z)}{S_{\nu}(z)}\right\} \geq \Re\left\{1-\nu\right\} + \frac{zJ'_{\mu}(z)}{J_{\mu}(z)}$$

for all finite z (|z| = r). Then, since (3.2) and (3.3) imply that the right-hand member of (5.3) is positive for sufficiently small values of r, it follows that

(5.4)
$$\Re\left\{\frac{zS_{\nu}'(z)}{S_{\nu}(z)}\right\} \geq 0, \qquad |z| \leq \rho_{\mu}^{*},$$

where ρ_{μ}^{*} is the smallest positive zero of the function

$$rJ'_{\mu}(r) + \Re\{1-\nu\}J_{\mu}(r).$$

For non-negative real values of ν the vanishing of $S'_{\nu}(z)$ for $z = \rho^*_{\mu}$ precludes the possibility that $S_{\nu}(z)$ is univalent in any circle $|z| = r > \rho^*_{\mu}$.

We note here that for non-negative real values of ν the ρ_{μ}^{*} of our Theorem 3 is precisely the ρ_{ν} of [1].

6. **Remarks.** We note that if $T(z) = z^{\nu} \sum_{n=0}^{\infty} a_n z^n$, $\Re\{\nu\} \ge 0$, satisfies (1.2) for |z| < R, then the function

$$W(z) = z^{1/2}T(z) = z^{\alpha}\sum_{n=0}^{\infty} a_n z^n, \qquad \Re\{\alpha\} \ge 1/2,$$

satisfies (1.1) with $z^2p(z) = z^2q(z) + 1/4$. Thus Theorem 1 is applicable to an entire class of functions satisfying (1.2). In particular, therefore, one could obtain results analogous to those of Theorems 2 and 3 for the modified Bessel functions $I_r(z)$.

Many other results could be obtained by judicious selection of the function q(z) subject to the conditions of Theorem 1.

BIBLIOGRAPHY

1. E. O. A. Kreyszig and J. Todd, The radius of univalence of Bessel functions I, Notices Amer. Math. Soc. vol. 5 (1958) p. 664.

2. M. S. Robertson, Schlicht solutions of W''+pW=0, Trans. Amer. Math. Soc. vol. 76 (1954) pp. 254-274.

3. Lad. Špaček, Contribution à la théorie des fonctions univalentes, Časopis Pěst. Mat. Fys. vol. 62 (1936) pp. 12–19.

U. S. Army Signal R/D Laboratory, Fort Monmouth, New Jersey

1960]