
UNIVALENCE OF BESSEL FUNCTIONS

R.  K. BROWN

1. Introduction. In 1954 M. S. Robertson [2] obtained sufficient

conditions for the univalence in the unit circle of functions

[Wiz)]1" = \z" ¿ anzA    ,        a„ = 1,
L       n=0 J

where 6i{a} ^1/2 and W(z) is a solution of the differential equation

(1.1) W"(z) + p(z)W(z) = 0, \z\   < 1.

In this paper we employ the methods of Robertson to obtain in-

formation concerning the univalence of the functions [7(2)]1/" (^^0)

and zl~"T(z) where

OO

T(z) = z«X) anz",        «fp} ^ 0,
n=-0

is a solution of the differential equation

(1.2) T"(z) + — T'(z) + q(z)T(z) =0,        \z\   <R.
z

In particular we shall first determine a radius of univalence for the

normalized Bessel functions [7>(z)]1/" for values of v belonging to the

region G defined by the inequalities 6{\v} >0, | arg »»| <7r/4. Then

we shall determine the radius of univalence of the functions z1_"7,.(z)

for values of v belonging to a subset of the closure of G. When v is real

and positive we shall determine the exact radius of star-likeness

of both of the above-mentioned classes of normalized Bessel functions.

Our results concerning the functions z1~"Jv(z) "sharpen" those of

Kreyszig and Todd [l] when v — 0 and extend their results for com-

plex values of v.

2. Preliminaries. Let

00 1

(2.1) z2p*(z) = £ p*nz", P* = -r>
„=o 4

be regular for  \z\ <R and real on the real axis.  Given any non-

negative constant C, define
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(2.2) Wc(z) = 2"* Ê an(C)z", a*Q(C) = 1,
™—o

to be the unique solution for \z\ <R of the differential equation

(2.3) W"(z) + [C[p*(z) - p*/z2] + p*o/z2} W(z) = 0

where a* is the larger root of the associated indicial equation.

We now are ready to state the following

Lemma. Let y(p), dy(p)/dp=y'(p) be real functions, continuous in

the real variable p for 0<p<R. For small values of p let

yip) - 0(P°),       y'(P) = O(p^),       8 > 1/2.
Then

\C[p2p*(p) - p*o] + P*o)f(P)-2
p

WÓ(r)
2dP - rrTTT^W' 0 < r < P,

Wc(r)

fJ n

^ f W)]2
J 0

where Wc(z) is the solution (2.2) of (2.3).

The proof of this lemma is with obvious modifications the same

as that given by Robertson [2] for the case R = 1. We will not repro-

duce it here.

With the aid of the lemma we are able to prove the following

Theorem 1. Let z2p(z) be regular for \ z\ <R and satisfy the inequal-

ity

(2.5) a{ei-'z2p(z)\ ^ cosy{C[\z\2p*(\z\) - p*] +p*o]

where C^O, \y\ Sw/2, and z2p*(z) is defined in (2.1). With p(z) chosen

in this manner we define

CO

(2.6) W(z) = z" E a»z",        «o=l,   | «|   < R,
n=0

to be the unique solution of (1.1) corresponding to the root with larger

real part of the associated indicial equation. Let Wc (z) be defined as in

(2.2). Then

(       zW'(z)\ .    .   Wc( I 2 I )
(2.7) (R<eiT -> è    a   -p-r-cos y'hW(z) )   ' ~-      ' Wc(\z\)

for all \z\ ^p<R.

Proof. If in (2.6) we have &{«} >l/2 then
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zW'(z)
I w\z) \*w.<ety

(2.8)

W(z) 2(R7e¿7Liy   ZW{Z))
(       W(z) )W(z)

W\2/> r                                       fr                                            \ W \2
| IF' |2<7p -ri    <r{ e*z2p(z)} „,_,-- ¿p

o                             J o                                    p2

for ail 0gr<i?.

This equation is known as the "Green's transform" of (1.1) and

in the form (2.8) is due to Robertson [2]. The inequality (2.7) now

follows immediately from (2.8), (2.5), and (2.4) with y(p) = W(p).

The proof for the case when (RJcc} =1/2 in (2.6) follows from the

continuity of zW'(z)/W(z) as a function of a for &.{a} >0 (see [2,

p. 258]).
We conclude this section with the definitions of the terms "star-

like" and "spiral-like."

Definition. A function/(z) = X¡n=i anz", «i^O, regular for |z| <7?

will be called spiral-like in \z\ <R if for some real constant

7(|t| =t/2) the function/(z) satisfies the inequality

I      zf'(z) )
(2.9) (Rle* ^-^-}  = 0

\       /(*) /

for all  \z\ <R. In the special case when 7 = 0 we say that/(z) is

star-like with respect to the origin in \z\ <R.

It was shown by Spaœk [3] that (2.9) is sufficient for the univa-

lence in \z\ <R of f(z) whenever/'(0)5^0.

3. Bessel's equation. In this section we state our two theorems

concerning the univalence of normalized solutions of Bessel's equa-

tion

(3.1) T"(z) + — T'(z) + H - -^) T(z) =0,        \z\  <R.

Theorem 2. Let the complex number v satisfy the inequalities Gí{p}

>0, | arg v | <7t/4. Then the normalized Bessel function [7v(z)]I/" 75

regular, univalent, and spiral-like in every circle \z\ =r<pß where

p2 = 6i{v2}, ju>0, and p„ is the smallest positive zero of the function

J/(r). In the particular case when v is real and positive the function

[7„(z) ]"" is star-like in \z\ <p¿ but is not univalent in any larger circle.

Theorem 3. Let the complex number v=x+iy satisfy one of the

following conditions :

(3.2) 0aï<l    and   y Ú x,

(3.3) x è 1    and    y2 < 2x - 1.
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Then the normalized Bessel function z^J^z) is regular, univalent,

and spiral-like in every circle \z\ =r<p* where p2= (ñ{v2j, ju>0, and

p* is the smallest positive zero of the function rJf. (r) + St\l—v]jli(r).

In the particular case when v is real the function z1~'Jv(z) is univa-

lently star-like in \z\ <p* but is not univalent in any larger circle.

4. Proof of Theorem 2. Select any v satisfying the inequalities

o\{v\>0, |arg v\ <tt/4, and consider (2.3) with p2=«i[v2\, C=l,

and

(4.1) z2p*(z) = z2+ 1/4 - /x2.

In this manner we obtain the differential equation

1
(4.2) W"(z) + W - 1/4) IF(z) = 0

whose solution Wi(z) as defined in (2.2) is

(4.3) Wi(z) = 2"T(ß+l)z"U,(z).

Next, by setting

(4.4) z2p(z) = z2+ 1/4 - p.2

in (1.1) we find that the solution W(z) oí (1.1) as defined in (2.1) is

(4.5) W(z) = 2T(v + l)zll2Jv(z).

The solutions given in (4.3) and (4.5) are valid for all finite z.

Moreover, z2p*(z) and z2p(z) as given in (4.1) and (4.4) satisfy (2.7)

for all finite values of z when 7 = 0 and C= 1. Therefore, from (2.7) it

follows that

(4.6) 6\
■zW'(z)\   > IFi'(|z|)

. IF(z) j   = Wi( I z I )

for all finite values of z. Thus, from (4.3), (4.5), and (4.6) we have

{zJi(z)\

\ JJA )

¡zJi(z)\        rJi(r)

for all finite r.

Since p, is positive it follows from (4.7) that

( zJ¿ (z)) ,    ,
(4.8) kI-TT^Ï =°> «    áfe

( J»(z) )

where p„ is the smallest positive zero of Z„' (r).
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We now define

(4.9) F,(z) = [Jr(z)]u°

where [7„(z)]1/" = (l/i') exp {Log 7,(z)} and Log represents the prin-

cipal branch of the logarithm. Then,

(zF;(z)) (zJ!(z))
(4.10) <r\-— i   = <r\-—}

X F,(z) J I J.(z) )

and it follows from (4.8) that in every circle \z\ =r<pIL the function

F,(z) is spiral-like if v is complex and is star-like if v is real and posi-

tive.

Clearly, since Ji(z) vanishes for z=pß the function [7M(z)]1/", p>0,

cannot be univalent in any circle |z| =r>pli.

This completes the proof of Theorem 2.

5. Proof of Theorem 3. If in the proof of Theorem 2 we replace

Fy(z) in (4.9) by the function

(5.1) SAß) = zi-'Mz),        (%{*} è 0,

then since

(zSi(z)) , . (zJt(z))
(5.2) <r\-— i = (R {l-p } + <R<-—}I S.(z) ) l ' I J,(z) )

it follows from (4.7) that

(zS',(z)\        mtA        ,       z7M'(z)

(ßY
(zSi(z)) . .        zJi(

(5.3) <*\-V7v\ =«{!-"} +-77( S,(z) ) 7M(z

for all finite z (|z| =r). Then, since (3.2) and (3.3) imply that the

right-hand member of (5.3) is positive for sufficiently small values of

r, it follows that

(zS!(z)) .
(5.4) «i-Tyfr £°>       M *A?,

( S,(z) )

where p* is the smallest positive zero of the function

rJi(r) + <R{1 - v}jß(r).

For non-negative real values of v the vanishing of S'y(z) for z=p*

precludes the possibility that S,(z) is univalent in any circle \z\

=r>pl.
We note here that for non-negative real values of v the p* of our

Theorem 3 is precisely the p, of [l].
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6. Remarks. We note that if T(z) =z"2~lñ=o ünZ", (R{v] ^0, satis-

fies (1.2) for \z\ <R, then the function

CO

W(z) = zl<2T(z) = z<* 2~2 anzn,        <R{a] ^ 1/2,
n—0

satisfies (1.1) with z2p(z) =z2q(z) + 1/4. Thus Theorem 1 is applicable

to an entire class of functions satisfying (1.2). In particular, therefore,

one could obtain results analogous to those of Theorems 2 and 3 for

the modified Bessel functions I,(z).

Many other results could be obtained by judicious selection of the

function q(z) subject to the conditions of Theorem 1.
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