UNIVALENCE OF BESSEL FUNCTIONS
R. K. BROWN

1. Introduction. In 1954 M. S. Robertson [2] obtained sufficient
conditions for the univalence in the unit circle of functions

© l/a

[W(z)]l/a = I:Z“ Z anz”] ’ a =1,
n=0

where & {a] =1/2 and W(2) is a solution of the differential equation

(1.1) W@ + p@WE) =0,  |z] <1

In this paper we employ the methods of Robertson to obtain in-
formation concerning the univalence of the functions [T'(z) ]/* (0)
and 2'*7(z) where

T(z) = 2 i AR (R{v}

20,
n=0
is a solution of the differential equation
1
(1.2) T"(3) + < T'(z) + ¢(5)T(k) =0, |z] <R

In particular we shall first determine a radius of univalence for the
normalized Bessel functions [J,(z) ]!/* for values of » belonging to the
region G defined by the inequalities ®{»} >0, |arg V| <w/4. Then
we shall determine the radius of univalence of the functions z'=*J,(2)
for values of » belonging to a subset of the closure of G. When » is real
and positive we shall determine the exact radius of star-likeness
of both of the above-mentioned classes of normalized Bessel functions.

Our results concerning the functions 27J,(z) “sharpen” those of
Kreyszig and Todd [1] when »2=0 and extend their results for com-
plex values of ».

2. Preliminaries. Let

hd 1
(2.1) 2p*E) = O pet’,  po S T
n=0

be regular for |z| <R and real on the real axis. Given any non-
negative constant C, define
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0

2.2) Wo(z) = 22 3 an(C)z", 2(C) = 1,

n=0
to be the unique solution for |3| <R of the differential equation
(2.3) W"(3) + {Clp*@) — po/a*] + po/2} W(z) = 0

where a* is the larger root of the associated indicial equation.
We now are ready to state the following

LeEMMA. Let y(p), dy(p)/dp=79"(p) be real functions, continuous in
the real variable p for 0 <p <R. For small values of p let

y() = 0(0®), ¥'(p) = 0(p*Y), 6> 1/2.
Then
T * * dp
fo {Clo2*(p) — po] + po}¥2(p) p_2

2.4
@4 Welr)

< e —
_fO[y(p)] P el
where Wc(2) is the solution (2.2) of (2.3).

The proof of this lemma is with obvious modifications the same
as that given by Robertson [2] for the case R=1. We will not repro-
duce it here.

With the aid of the lemma we are able to prove the following

-y2(r), 0<r <R,

THEOREM 1. Let 2*p(2) be regular for Izl <R and satisfy the inequal-
ity
(2.5 ®{enp(a)} = cosv{Cl| 5[9*(| 2]) - £o] + p}

where C=0, |'y| =7/2, and 32p*(2) is defined in (2.1). With p(z) chosen
in this manner we define

(2.6) W) = 2% ), a2, ap =1, I z| < R,
n=0

to be the unique solution of (1.1) corresponding to the root with larger
real part of the associated indicial equation. Let W () be defined as in
(2.2). Then

2.7

cos ¥

LA wé(| s])
‘R{e W) } 2 |4 We(|z])

for all |z| <p<R.
Proor. If in (2.6) we have ®{a} >1/2 then
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W’ (z)}

W) Izm{eiy W (a)

(2.8) . , IW|2
=7 COS‘)"fo l w’ I2dp —-r- f (R{e"’z?p(z)} |z)=p 7 dp
0

for all 07 <R.

This equation is known as the “Green’s transform” of (1.1) and
in the form (2.8) is due to Robertson [2]. The inequality (2.7) now
follows immediately from (2.8), (2.5), and (2.4) with y(p) = W(p).

The proof for the case when (R{oz} =1/2 in (2.6) follows from the
continuity of zW’(z)/W(z) as a function of « for (R{a} >0 (see [2,
p. 258]).

We conclude this section with the definitions of the terms “star-
like” and “spiral-like.”

DEFINITION. A function f(2) = D ., @.3" 170, regular for |z| <R
will be called spiral-like in |z| < R if for some real constant
7(|7| =w/2) the function f(z) satisfies the inequality

(2.9 (R{e" zf((:))} >0

for all |z| <R. In the special case when y=0 we say that f(2) is
star-like with respect to the origin in |z| <R.

It was shown by Spatek [3] that (2.9) is sufficient for the univa-
lence in |z| <R of f(z) whenever f'(0) =0.

3. Bessel’s equation. In this section we state our two theorems
concerning the univalence of normalized solutions of Bessel's equa-
tion

1 v
(3.1) T”(z)-I——T’(z)+<1——:>T(z)=0, |z| <R
4 2

THEOREM 2. Let the complex number v satisfy the inequalities ® {»}
>0, |argv| <w/4. Then the normalized Bessel function [J,(2)]'/” is
regular, univalent, and spiral-like in every circle Iz] =r<p, where
;/,2=(R{V2}, w>0, and p, is the smallest positive zero of the function
J!(r). In the particular case when v is real and positive the function
[7.(2) 11> is star-lLike in | 2| <p, but is not univalent in any larger circle.

THEOREM 3. Let the complex number v=x-1y satisfy one of the
following conditions:

3.2) 0=x<1 and y=ux,
3.3 x=1 and y*<2x—1.
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Then the normalized Bessel function 2'=*J,(z) is regular, univalent,
and spiral-like in every circle | z| =7 <p} where u?=@®{»?}, u>0, and
Py is the smallest positive zero of the function 7J,/ (r) + ® {1 —»} J,().
In the particular case when » is real the function 2'=J,(2) is univa-
lently star-like in | 2| <p} but is not univalent in any larger circle.

4. Proof of Theorem 2. Select any » satisfying the inequalities
®{r} >0, |arg »| <m/4, and consider (2.3) with u?=@®{»?}, C=1,
and
(4.1) 22p*(z) = 22+ 1/4 — u2

In this manner we obtain the differential equation

(4.2 @ +[1- < 6= 19w =0
whose solution Wi(2) as defined in (2.2) is
(4.3) Wi(z) = 2*T(u + 1)2'727,(2).
Next, by setting
(4.4) 2p(z) = 22+ 1/4 — u?
in (1.1) we find that the solution W(z) of (1.1) as defined in (2.1) is
(4.5) W(z) = 2T (v 4 1)2'/2],(2).

The solutions given in (4.3) and (4.5) are valid for all finite z.
Moreover, z2p*(z) and 22p(z) as given in (4.1) and (4.4) satisfy (2.7)
for all finite values of 2 when vy =0 and C=1. Therefore, from (2.7) it
follows that

zW'(z)} W{(I z| )
4.6 ® = e e
(1.6 {W(z> MR
for all finite values of z. Thus, from (4.3), (4.5), and (4.6) we have
4.7 (R{ZJVI(Z)} = i) ) | zl =7,
J(2) Ju(r)

for all finite 7.
Since u is positive it follows from (4.7) that

(R{ 2J, (2)
Ju(2)

where p, is the smallest positive zero of J, (r).

(4.8) }20, |z] = pw

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



282 R. K. BROWN [April

We now define
4.9) F,(3) = [J.()]""

where [J,(z)]"*=(1/) exp{Log J,(z)} and Log represents the prin-
cipal branch of the logarithm. Then,

2F; (3 2J) (3
(4.10) a{ ()} = a{ ()}
F,(3) J,(2)
and it follows from (4.8) that in every circle |z] =r <p, the function
F,(2) is spiral-like if » is complex and is star-like if » is real and posi-
tive.
Clearly, since J () vanishes for z=p, the function [J,(z) ]'/#, x>0,

cannot be univalent in any circle |z| =7>p,.
This completes the proof of Theorem 2.

5. Proof of Theorem 3. If in the proof of Theorem 2 we replace
F,(2) in (4.9) by the function

(5.1) S,(2) = 2177,(2), (R{v} =0,
then since
a8y (2)\ _ zJ; (2)
-2 (R{ 5.2) } -Gl (R{ 7. }
it follows from (4.7) that
A 2
-3 ‘R{ s<(z§)} 20l —v+ (:)Z)

for all finite z (]3| =7). Then, since (3.2) and (3.3) imply that the
right-hand member of (5.3) is positive for sufficiently small values of
7, it follows that

s
(5.4 af S((:} 20, |z| o8

where p is the smallest positive zero of the function
rJ ] (r) + (R{l — v}]“(r).

For non-negative real values of » the vanishing of S)(z) for z=p}
precludes the possibility that S,(z) is univalent in any circle | 2|
=r>pp.

We note here that for non-negative real values of » the p} of our
Theorem 3 is precisely the p, of [1].
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6. Remarks. We note that if T(z) =2" D .o @a2", (R{V} =0, satis-
fies (1.2) for Izl <R, then the function

W(s) = 32T (2) = 2* Z a.3", (R{a} =1/2,
n=0
satisfies (1.1) with 22p(2) =2%(z) +1/4. Thus Theorem 1 is applicable
to an entire class of functions satisfying (1.2). In particular, therefore,
one could obtain results analogous to those of Theorems 2 and 3 for
the modified Bessel functions I,(z).
Many other results could be obtained by judicious selection of the
function ¢(z) subject to the conditions of Theorem 1.
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