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UNIVALENT ANALYTIC FUNCTIONS

AND THE POINCARE METRIC

BY SHINJI YAMASHITA

Abstract

Let Ω be a hyperbolic domain in the complex plane C, let p® be the
density of the Poincare metric in Ω, and let βΩ~l/pΩ For g analytic in Ω
we set ||#||β= sup βa(w) \ g ( w ) |, w^Ω. Let S(Ω) be the family of functions
/ analytic and univalent in Ω. Criteria in terms of the partial derivatives of
βo for Ω to satisfy sup \\fv/f'\\Q< -}-<*>, where / ranges over S ( Ω ) , are given.
For example, sup ββ(w) \ (βΩ)ww(w) l<-f°°, w^Ω. If f^S(Ω) is isolated in
the sense that there is an ε>0 such that Q<\\fff/f'—gv/g'\\Ω<e for no g^
S ( Ω ) , then C\f(Ω) is of zero area. The domain Ω is simply connected if
sup βα(w) I ( β o ) w w ( w ) 1^1, w<=Ω, and Ω is convex (hence simply connected)
if and only if sup | (βo)w(w) 1 = 1, w<=Ω.

1. Introduction.

By Ω we always mean a subdomain of the complex plane C={\z\< + °o}
such that the complement contains at least two points. Let p® be the density
of the Poincare metric pΩ(w)\dw\ in Ω so that p D(w}—(l—\w\2Yl if w is in the
disk D={\z\<l}. We shall call βΩ—l/pΩ the weight function which appears in

Il/l|β=supj3β(u;)|/(u;)|
w<=Ω

for / analytic in Ω. For g analytic in Ω and locally univalent in Ω, namely,
g'(w)Φ§ at each w^Ω, we set λ(g)=g"/gf. Let S(Ω) be the family of functions
/ analytic and univalent in Ω. We shall call Ω of finite type if

α(fl)= sup \\λ(f)\\Ω

is finite. We have α(£?)<;8 for each simply connected Ω} α(D)=6 and α(D\{0})
= + oo; see [6, Theorem 2] and [13, Theorem 1 and p. 452].

We begin with weight function criteria for Ω to be of finite type. For a
complex function g(w) of w — u-\-lv^Ω we recall the definition of the partial
derivatives :
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gw=2~\gu-igv) and gw=2~1(gu

If g is real-valued and of C2 further, then we have

ΰj^gw and (g^

THEOREM 1. The following are equivalent, where β—βo for simplicity.

(1.1) Ω is of finite type.
(1.2) βw is bounded in Ω.
(1.3) ββww is bounded in Ω.

(1.4) ββww is bounded in Ω.

Note that B. G. Osgood proved essentially (1.2)=φ(l.l), and it is not difficult
to observe that (1.1)=X1.2) [13, Theorem 5]. For the completeness we include
the proof of (1.1)4^(1.2).

For / nonconstant and meromorphic in Ω we define the Schwarzian deriva-
tive of / by

It is known that if / is meromorphic and univalent in β, then

w<=Ω

see [4, Theorem 1] by a rotation of the Riemann sphere the meromorphic case
is reduced to the analytic case. The notation \\σ(f)\\$ will be used also for /
analytic and locally univalent in Ω. We shall prove

THEOREM 2. // / is analytic and locally univalent in Ω of finite type, then

where 8/e^K<lQ/3 and c(Ω)^0 is a constant with

(1.5)
w&Ω

This is an β-analogue of the P. L. Duren, H. S. Shapiro and A. L. Shields
estimate in D :

see [6, p. 251]. Thus, for example, if Ω is of finite type, then \\σ(f)\\% becomes
smaller as P(/)||β becomes smaller.

In view of (1.2) and (1.5), the quantity ω(Ω)=s\ιp\(βQ)w(w)\, w^Ω, is im-
portant. We shall investigate this in Section 6.

Returning to general Ω we call /eS(fl) isolated if there exists ε>0 such
that Q<\\λ(f)-λ(g)\\Ω<ε for no function g^-S(Ω). A set £cC is called of full
measure if C\£ is of measure zero. The "measure" always means the two-
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dimensional Lebesgue measure.

THEOREM 3. // /eS(fl) is isolated, then f(Ω) is of full measure. The con-
verse is false if Ω is simply connected.

See [14] for the study of / meromorphic and univalent in Ω with σ(f) and
|| || Ω instead of λ(f) and || ||fl. W. P. Thurston [17, p. 191] (see [3] also) found
an Ω such that each Mόbius transformation is isolated : There exists ε>0 such
that 0<||0 (/)||B<ε for no / meromorphic and univalent in Ω. It is open to find
Ω such that S(Ω) contains an isolated point in our sense.

Let SD(Ω) be the family of f^S(Ω) with finite Dirichlet integral:

Theorem 3 shows in particular that each f^SD(Ω) is not isolated. We can
prove this fact in a somewhat stronger form in

THEOREM 4. For each f^SD(Ω) and each ε>0 we can find distinct functions
fktΞSD(Ω) (k=l, 2) such that

0<μ(/)-^(/*)b<e(έ=l,2) and /=2-'(/ι+Λ)

In the proofs of Theorems 3 and 4, X. U. Nguyen's existence theorem of
Lipschitz functions and the method of D. H. Hamilton for constructing univalent
functions are fundamental; see [12] and [7].

My esteemed colleagues, Hisao Sekigawa and Toshihiro Nakanishi gave me
invaluable informations on the paper [13]. I wish to express my sincere
gratitude to them.

2. A short survey on domains of finite type.

For each universal covering projection ψ from D onto Ω we have

(2.1) (iH*IW(*)l=fr(Hθ
at each z^D with w=φ(z); see [1, Chapter 1] for example. In particular, φ'
never vanishes in D and βs is of C°°. Set

δ(M>)=inf \w—z\, wtΞΩ, and
z<=dΩ

Osgood proved that 2b(Ω~)^a(Ω}<^b(Ω) and

(2.2) fl(fl)< + oo Φ=

see [13, the proofs of Theorems 2 and 6]. Note that if \\λ(φ)\D< + c° for a φ,
then \\λ(φ)\\D< + oo for each φ\ for the proof, see the forthcoming expression
(3.2).
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In the special case dΩ is unbounded, C. Pommerenke proved that

see [16, Corollary 1, p. 195 and (4.2) in p. 196]. Actually, Pommerenke ob-
served that the unbounded dΩ is uniformly perfect if and only if \\λ(φ)\\D< + oo.
Here dΩ is called uniformly perfect if there exists a constant 0<£^1 such that
dΩ contains a point of the set {w cr<\w— z\^r\ for each z^dΩ and each 0<r
< + oo. If dΩ contains an isolated point, then dΩ is not uniformly perfect, so
that Ω is not of finite type.

If Ω is of finite type, then the image f(Ω) by an /eS(β) is again of finite
type [13, Corollary 1, p. 457]. Actually, by the conformal invariance of the
Poincare metric one obtains

βf<a>ω=\f'(w)\β0(w), z=f(w).

Taking the logarithms of the both sides and partially differentiating them by
w we have

(2.3) (βf<ΩM={\

Therefore one obtains

sup |(/3/α?))2(<r)| ̂ 2~la(Ω)+ sup \(βΩ)w(w)\ ,

which, combined with (1.1)<=K1.2), proves the property.
Let w0^dΩ. Then f(w)=(w—wQ)~l is in S(β). Thus, Ω is of finite type if

and only if df(Ω) is uniformly perfect.

3. Proof of Theorem 1.

Taking the logarithms of the both sides of (2.1), and then partially differen-
tiating them by z, we obtain

(3.1) λ(φ}(z}=2z/(l-\z\*)+2φ'(z)(βw/β)(w}.

Although φ may not be in S(D), the computation is essentially the same as that
for (2.3). Setting Iφ(z)=φ'(z)/\φf(z)\ we now have

(3.2) (l-kla)%)U)=2{5+

Therefore,

||%)l|z>< + c>o^sup|
w<=Ω

which implies (1.1)^(1.2) in view of (2.2).
Eliminating φff(z) from (3.1) and from the right hand side of
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we have

whence

(3.3) (l-\z\*Yσ(φ)(z)=21ίφ(zγβ(w)βww(w).

It is known that \\λ(φ)\\D< + oo if and only if \\σ(φ)\\ί< + oo see [19, Theorem
2], [18], [20] and [21]. We thus have (1.1)^(1.3).

We recall the Gauss curvature identity in terms of β :

(3.4) j88Jlogj8Ξ-4 or ββwχ-βwβ-=-lm

This follows from the partial differentiation of (3.1) by z. Then, \βw\
2— βwβw

is bounded in Ω if and only if ββww is bounded in Ω.

Remark. If φ(ΞS(D\ then \\σ(φ)\\$^6. Suppose that \\σ(φ)\\$^2q. If q=l,
then φ<=S(D\ while if q<l, then ^ is the restriction of a (l+#)/(l— tf)-quasicon-
formal mapping from CVJ{ 00} onto Cw{oo}. See [8], [11] and [2]. Combining
these with (3.3) we have the obvious criteria in terms of β® for the property
of Ω. For example, //

then Ω is simply connected.
In case Ω is simply connected, we set δ(β)=||σ(/)||$, where /: Ω-*D is an

onto conformal homeomorphism δ(Ω) is independent of the choice of / and is
called the distance of Ω from a disk [9, p. 61]. We can choose f=φ~1 and we
have \\σ(φ-l)\\$=\\σ(φ)\\ί. A known result [9, Theorem 2.1, p. 63], together
with (3.3), now shows : // Ω is the image of a convex domain by a Mδbius trans-
formation, then

The equality holds for the domains specified in the cited theorem. See Proposi-
tion 2 in the forthcoming Section 6.

4. Proof of Theorem 2.

LEMMA 1. For g analytic in D we have

(4.1) sup(l-
zee

where K is an absolute constant with S/e^

This is due to M.-C. Liu [10, Theorem] he actually proved that

#^2-1(V5>iXV~5~+2)1/2=3.3301 [io, p. 207].
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For the proof of Theorem 2 we let g be a branch of log(/'«p) in D. Then,

\\g'\\D=W)\\0,

which, combined with (4.1), yields

(4.2) sup
z&D

On the other hand,

(4.3)

It then follows from (4.2) and (4.3) that

Setting

we now have (1.5) from (3.2).

5. Proofs of Theorems 3 and 4.

LEMMA 2 (X. U. Nguyen [12]). For each compact set E of positive measure,
there exists a nonconstant analytic function F in the open set Ec=(CU{oo})\E
such that F is bounded in Ec and F satisfies the Lipschitz condition in C\E :

Λ(F)= sup \F(z)-F(w)\/\z-w\< + <*>.
z,w&C\E

ZΦW

Note that, then \F'(w}\^Λ(F] for each lueCvE.

LEMMA 3. // / is analytic, bounded and bounded away from zero-
in D, then

Proof. Apply the Schwarz-Pick lemma

to h=(iH+l)/(iH-l\ where H is defined by

#=exp [ {(πι)/log (B/A)} log (f/Aft .

Proof of Theorem 3. Suppose that f(Ω) is not of full measure. Let
jBcC\/(β) be a compact set of positive measure and consider F of Lemma 2
with Λ=Λ(F). Given ε>0 we choose r>0 such that

(5.1)
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For a complex number α, 0<|α <γ, we set

ga=f+aF f.

Then ga^S(Ω) because

\ga(w)-ga(2U\^(l-rΛ)\f(w)-f(z)\>0 fθΓ W.ZΪΞΩ, WΦZ.

We shall show that

(5.2) 0<μ(/)-Jteβ)b<e,

so that / is not isolated. Set

ha = l+aF'°f and Ga = ha°φ.

Then Ga is nonconstant and

o<ι-rΛ<|Gj<ι+rΛ m D,

so that, by Lemma 3, together with (5.1), we have

0<||Gί t/Gβ | |Z )<e.

Therefore, (5.2) follows from λ(ga)-λ(f)=h'a/ha.
Suppose that Ω is simply connected and set φ—φ~l, the inverse map. Then,

for 0<p<2, each single-valued branch

is in S(Ω). Furthermore,

ll*(/p)-J(/.)b=2(2-/0 — >o as 0-*2-0.

Therefore, /2(fl) is of full measure, yet /2 is not isolated.

Corollary to Theorem 3. // β /s not of full measure, then no linear function
L(z)=Az+B (Λ^O is isolated.

Proof. Suppose that L(z)—Az-\-B is isolated. Then L(Ω) is of full measure,
so that Ω=L~1°L(Ω) is of ful l measure.

Proof of Theorem 4. Since f(Ω) is not of full measure, we can construct
ga as in the proof of Theorem 3. Set

Λ=gr and f*=g-r.

Then, ΛeS(fl) and 0<μ(/)-Λ(/,)b<ε, fe=l, 2. Since

l/ί =ι/' -li+r^ωi^d+r^l/Ί, ft=ι, 2,

it follows that fk<=SD(Ω). Apparently, f=2~1(f1+f2).
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6. The order of a locally nnivalent function.

Let g be a function analytic and locally univalent in D. The order ordD(g)
of g is the supremum of |α20)i, z^D, where a2(z) is the Taylor coefficient in
the expansion

By simple computation, we have

Set A—ordD(g\ Then ^2 for g^S(D) by the coefficient theorem. Since
for general g,

\(d/d\z\)\og{(l-\z\2)g'(z)}\^2A/(l-\z\2),

it follows from the familiar manipulation in the univalent function theory that

The minimum modulus principle for gf ', never vanishing in D9 yields that Λ^l.
Furthermore,

if \z\<A-(A2-l)ί/2, so that A=l implies g^S(D) and ^(Z)) is convex. Con-
versely, if g^S(D) and g(D) is convex, then by the coefficient theorem, \a2(z)\^l,
for g, z^D, so that A^l, or Λ=l. See [5, pp. 33, 42 and 45] and [15, pp.
116, 117 and 133].

We note that (βD)z(z)=-z by βD(z)=l-\z\2. For / analytic and locally
univalent in Ω, we set

= su
toe

and call it the order of / in Ω. It then follows from (3.1), together with
λ(f°φ)=ψ'λ(f)°φ+λ(ψ), that

(6.1) orda(f)=ordD(f°φ).

In particular, if f,(w)=w, then

(6.2)

Thus, Ω is of finite type if and only if ω(Ω)< + oo. Furthermore, 2~1c(Ω)—l<
ω(Ω)^2~ίc(Ω)Jrl] the left hand side is (1.5). in view of (β.l) it is now easy to
prove the following
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PROPOSITION 1. Let f be analytic and locally univalent in Ω. Then orάΏ(f)
— 1 if and only if f^S(Ω) and f(Ω) is convex.

"Only if". It follows from (6.1) that f°φ<ΞS(D) and f(Ω)=f φ(D) is con-
vex. For the proof of the univalency of / in Ω, we let w1^w2, both in Ω.
Then there exist z^Φz^ both in D, such that wk=ψ(xk), k=l, 2. Therefore,
f(wι)—(f°ψ)(zι)Φ(foφ)(zz)=f(wz\ Since f(Ω) is simply connected, Ω is simply
connected. "If". If f(Ω) by f^S(Ω) is convex, then Ω must be simply con-
nected. Thus, f°φ(=S(D), and ordΩ(f)=l follows from (6.1) with ordD(f°φ)=l.

As a consequence of Proposition 1 we have : // Ω is not simply connected,
then ordβ(f)>l for each f locally univalent in D. It would be of interest to have
a convex domain criterion in terms of ω(Ω).

PROPOSITION 2. A domain Ω is convex (and hence, simply connected) if and
only if ω(Ω)=l.

This is a consequence of (6.2) with φ(D}—Ω. Proposition 2 has the follow-
ing corollary : A domain Ω is convex if and only if βa is a superharmonic func-
tion in Ω. Remember that ββw*=\βw\*-l (β=βΩl see (3.4)). "Only if". It
follows from ω(Ω)=l that 4rlΔβ=βw^Q. "If". It follows from β^O that
|/3 J^l, whence α>(fl)^l, or ω(Ω)=l.

If Ω is simply connected or φ^S(D), then ordD(φ)^2, which, combined with
(6.2), shows that ω(Ω)<2. For the Koebe function K we have ordD(κ)=2. These
are observed in [13., Theorem 3, (14), p. 454].

It would be interesting to have an upper bound of a(Ω) by ω(Ω).

PROPOSITION 3. For each Ω we have

(6.3)

Actually, the same proof as that of [15, the left half of (1.11), p. 115],
together with the property of the projection φ, that is, δ(w)=d(φ(z)), w=φ(z),
teaches us that

which, combined with a(Ω)^b(Ω) observed in Section 2, yields (6.3).
In the specified case where Ω is simply connected we have a better estimate

α(β)<:8 than that in Proposition 3. In the "convex" case we have

PROPOSITION 4. // Ω is convex, then α(fl)^6.

As we observed the equality holds for Ω—D. For each w^Ω we choose a
conformal homeomorphism φ from D onto Ω such that w=φ(Q). Then, for
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Since f°φ^S(D), we have U(/°^)(0)|^4, while, since φ^S(D) and φ(D) is con-
vex, we have U(y>)(0)|^2 [5, p. 45]. This completes the proof.

PROPOSITION 5.

(6.4) sup \ω(f(Ω))-ω(Ω)\<2~ίa(Ω).

Actually, in view of (2.3) one has

l(jβ/ca>),(*)|
and

),(*)| +2~lβΩ(w)\λ(f)(w)\ .

It is now easy to have (6.4).
Propositions 3 and 5 yield

sup

If Ω is simply connected, then

(6.5) sup \ω(f(Ω))-ω(Ω)\^l]

actually since f(Ω) is simply connected, we have l^ω(Ω)^2 and
Note that ω(κ(D))—ω(D)=l. The sharp estimate (6.5) is unchanged if we further
assume that Ω is convex. The Koebe function and D again show the sharpness.

We show that the set

{ω(Ω}; Ω simply connected} = (ordD(f) f

is precisely the closed interval [1, 2], Set

Then, fa^S(D} and it suffices to prove that ordD(fa)—a. By a simple calcula-
tion we have

where

Then F(^)^α2 and the equality holds for real z.
If Ω is simply connected, then again

by (6.1). It would be an interesting problem to determine \ordβ(f); f
for Ω of finite type yet not simply connected as was remarked, this set does
not contain 1, so that (6.1) shows that this set is contained in the interval
(1, +00).
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Added in Proof. On the basis of the result of K.-J. Wirths in his paper:
Uber holomorphe Funktionen, die einer Wachsturnsbeschrankung unterliegen;
Archiυ der Mathematik 30 (1978), 606-612, the constant K in Teorem 2 should

be #=(13VT+55VU)/64=3.20204 . On the basis of the fact the author of
[12] called himself N. X. Uy in his reference in the recent paper: A removable
set for Lipschitz harmonic functions; Mschigan Mathematical Journal 37 (1990),
45-51, the precise reference of Lemma 2 should be Uy's theorem.
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