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UNIVALENT ANALYTIC FUNCTIONS
AND THE POINCARE METRIC

By SHINJI YAMASHITA

Abstract

Let 2 be a hyperbolic domain in the complex plane C, let po be the
density of the Poincaré metric in 2, and let o=1/po. For g analytic in 2
we set [|gllo=sup Bo(w) |g(w)|, wsR. Let S(2) be the family of functions
f analytic and univalent in 2. Criteria in terms of the partial derivatives of
Bo for 2 to satisfy sup || f”/f'|| @< +oo, where f ranges over S(2), are given.
For example, sup fo (W) | (Bo) ww (W) | <+oo, weR. If f&S(R2) is isolated in
the sense that there is an ¢>0 such that 0<||f”/f'—g”/g’'||la<e for mo g&
S(R), then C\f(2) is of zero area. The domain 2 is simply connected if
sup Bo(w) | (Ba)ww(w) | =1, we R, and 2 is convex (hence simply connected)
if and only if sup | (Bo)w (W) =1, weQ.

1. Introduction.

By 2 we always mean a subdomain of the complex plane C=/{|z|<+ oo}
such that the complement contains at least two points. Let pp be the density
of the Poincaré metric po(w)|dw| in 2 so that pp(w)=1—|w|*)™* if w is in the
disk D={|z]<1}. We shall call 8p=1/p, the weight function which appears in

I flle= ilégﬂg(w)lf(w)l

for f analytic in 2. For g analytic in 2 and locally univalent in 2, namely,
g'(w)*0 at each weQ, we set A(g)=g”/g’. Let S(2) be the family of functions
f analytic and univalent in £. We shall call 2 of finite type if

a()= sup ANl
fesu

is finite. We have a(£2)<8 for each simply connected 2, a(D)=6 and a(D~\{0})
=+o0; see [6, Theorem 2] and [13, Theorem 1 and p. 452].

We begin with weight function criteria for 2 to be of finite type. For a
complex function g(w) of w=u-+ivef we recall the definition of the partial
derivatives :
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UNIVALENT ANALYTIC FUNCTIONS 165
8w=2"gu—igy) and gz=27"gutigu).
If g is real-valued and of C? further, then we have
guz=4"4g, (go)=gv and (g&w)=8uw.
THEOREM 1. The following are equivalent, where B=Bqo for simplicity.

(1.1) 8 is of finite type.
(L.2) B is bounded in £.
(1.3) BBuww s bounded in L.
(1.4) BBuwi is bounded in L.

Note that B.G. Osgood proved essentially (1.2)=(1.1), and it is not difficult
to observe that (1.1)=(1.2) [13, Theorem 5]. For the completeness we include
the proof of (1.1)&(1.2).

For f nonconstant and meromorphic in £ we define the Schwarzian deriva-
tive of f by

a(H)=(f"/f")Y=2"(f"/f').

It is known that if f is meromorphic and univalent in £, then

le(HlIE= sup Bo(w)la(fYw)=12;

see [4, Theorem 1]; by a rotation of the Riemann sphere the meromorphic case
is reduced to the analytic case. The notation ||g(f)|} will be used also for f
analytic and locally univalent in £. We shall prove

THEOREM 2. If f is analytic and locally univalent in 2 of finite type, then
le(OIB=NAON{K+c(@)+271A(f)lle},
where 8/e<K<10/3 and ¢(2)=0 is a constant with
(1.5) C(Q)§2{l+§légl(ﬁa)w(w)l}-

This is an Q-analogue of the P.L. Duren, H.S. Shapiro and A.L. Shields
estimate in D:

le(OIB=41ANlp+27' A )Ip)*;

see [6, p. 251]. Thus, for example, if 2 is of finite type, then |lo(f)|} becomes
smaller as ||A(f)||p becomes smaller.

In view of (1.2) and (1.5), the quantity w(2)=sup|(Bo)»(w)|, wef, is im-
portant. We shall investigate this in Section 6.

Returning to general 2 we call f&S(Q2) isolated if there exists ¢>0 such
that 0<|JA(f)—A(@)lle<e for no function g&S(2). A set ECC is called of full
measure if C\E is of measure zero. The “measure” always means the two-
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dimensional Lebesgue measure.

THEOREM 3. If f€S(R2) is isolated, then f(Q) is of full measure. The con-
verse is false if 8 is simply connected.

See [14] for the study of f meromorphic and univalent in 2 with ¢(f) and
|- I% instead of A(f) and [|-|lo. W.P. Thurston [17, p. 191] (see [3] also) found
an £ such that each Mobius transformation is isolated: There exists ¢>0 such
that 0<|a(f)|5<e for no f meromorphic and univalent in £. It is open to find
2 such that S(£) contains an isolated point in our sense.

Let SD(Q) be the family of f=S(2) with finite Dirichlet integral:

Sgg[f’(w)lzdudv<+<>0.

Theorem 3 shows in particular that each f&SD(Q) is not isolated. We can
prove this fact in a somewhat stronger form in

THEOREM 4. For each f€SD(2) and each ¢>0 we can find distinct functions
Fr€SD(2) (k=1, 2) such that

0<NAf)—ASfDlle<e (k=1,2) and f=27'(fi+fs).

In the proofs of Theorems 3 and 4, X.U. Nguyen’s existence theorem of
Lipschitz functions and the method of D.H. Hamilton for constructing univalent
functions are fundamental; see [12] and [7].

My esteemed colleagues, Hisao Sekigawa and Toshihiro Nakanishi gave me
invaluable informations on the paper [13]. I wish to express my sincere
gratitude to them.

2. A short survey on domains of finite type.
For each universal covering projection ¢ from D onto £ we have
2.1) 1—=1zP)l¢’(2)| = Balw)

at each zeD with w=¢(z); see [1, Chapter 1] for example. In particular, ¢’
never vanishes in D and B¢ is of C=. Set

o(w)= inaglw—zl, we?, and b(Q):sugﬁg(w)a(w)“.

Osgood proved that 26(2)<a(£2)<4b(2) and
(2.2) a()<+oo = [A@)p<+o0;

see [18, the proofs of Theorems 2 and 6]. Note that if |A()|p<+co for a ¢,
then [|A(p)|p<+co for each ¢; for the proof, see the forthcoming expréssion
3.2).
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In the special case 02 is unbounded, C. Pommerenke proved that
APl p<~4o0 = b(2)<+0;

see [16, Corollary 1, p. 195 and (4.2) in p. 196]. Actually, Pommerenke ob-
served that the unbounded 082 is uniformly perfect if and only if [|A(p)]p<+-co.
Here 092 is called uniformly perfect if there exists a constant 0<¢<1 such that
082 contains a point of the set {w; cr<|w—z|<r} for each z£92 and each 0<r
<400, If 02 contains an isolated point, then 02 is not uniformly perfect, so
that £ is not of finite type.

If  is of finite type, then the image f(2) by an f&S(2) is again of finite
type [13, Corollary 1, p. 457]. Actually, by the conformal invariance of the
Poincaré metric one obtains

Brax@=If'"w)Be(w), z=fw).

Taking the logarithms of the both sides and partially differentiating them by
w we have

(2.3) (Bre)L)y={1f"(w)l/ f'(w) {27 Bow)A(f Yw)+(Bo)w(w)} .
Therefore one obtains

sup 1(Brw)(2)I=271a(2)+ sup [(B)w(w)l,

22 (D) wef

which, combined with (1.1)<(1.2), proves the property.
Let woc02. Then flw)=(w—w,)" is in S(2). Thus, 2 is of finite type if
and only if 9f(2) is uniformly perfect.

3. Proof of Theorem 1.

Taking the logarithms of the both sides of (2.1), and then partially differen-
tiating them by z, we obtain

@.1) Ap)=2)=2z/(1—|2|")+2¢"(2)(Bw/ B)w).

Although ¢ may not be in S(D), the computation is essentially the same as that
for (2.3). Setting X, (2)=¢'(2)/1¢’'(z)] we now have

3.2) A—lz)ApX2)=2{Z+X(2)Bn(w)} .
Therefore,

[4(@)lp<+o0 sup [Buw(w)|<+eo,

which implies (1.1)&(1.2) in view of (2.2).
Eliminating ¢”(z) from (3.1) and from the right hand side of

Np) (2)=22"/(1—|z|")*+2¢"(2)( B/ BXw)+2¢"(2)(Bu/ Bw(w),
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we have

a(p)(2)=2¢"(2)* {(Bw/B)w(w)+(Bw/BY(w)},
whence
3.3) (1—1zI*Ya(p)2)=2X ,(2)* B(w)Bww(w).

It is known that |A(p)llp<+co if and only if [a(¢)|F<+4oo; see [19, Theorem
2], [18], [20] and [21]. We thus have (1.1)&(1.3).
We recall the Gauss curvature identity in terms of 8:

(3.4) B2dlog f=—4 or PBPRus—PLuPr=—1.

This follows from the partial differentiation of (3.1) by z. Then, [Bu|*=BwB%
is bounded in 2 if and only if BB.w is bounded in 2.

Remark. If ¢S(D), then |o(p)|$<6. Suppose that ||e(p)l3=2¢. If ¢g=1,
then ¢=S(D), while if ¢<1, then ¢ is the restriction of a (1+¢)/(1—g)-quasicon-
formal mapping from C\U{c} onto C\U{c}. See [8], [11] and [2]. Combining
these with (3.3) we have the obvious criteria in terms of 8¢ for the property
of 2. For example, if

ilégﬂg(w)l(ﬁg)ww(w)l =1,

then 2 is simply connected.

In case 2 is simply connected, we set o(2)=|a(f)||}, where f: 2—D is an
onto conformal homeomorphism; 6(£2) is independent of the choice of f and is
called the distance of 2 from a disk [9, p. 61]. We can choose f=¢™' and we
have |o(p™)E=lo(p)|5. A known result [9, Theorem 2.1, p. 63], together
with (3.3), now shows: If Q is the image of a convex domain by a Mobius trans-
formation, then

sup Ba(w)I(Ba)ww(w)I <1

The equality holds for the domains specified in the cited theorem. See Proposi-
tion 2 in the forthcoming Section 6.

4. Proof of Theorem 2.

LEMMA 1. For g analytic in D we have

4.1 sup(1—|z*?|g"(2)|=Kliglp,

2eD

where K is an absolute constant with 8/e<K<10/3.

This is due to M.-C. Liu [10, Theorem]; he actually proved that
K<2(«/ 5 +1)(+/'5 +2)1/2=3.3301 --- (10, p. 207].
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For the proof of Theorem 2 we let g be a branch of log(f’~¢) in D. Then,

g lbo=14Hlle,
which, combined with (4.1), yields
(4.2) fgg(l—Izl2)zlg/’(z)lgKlM(f)Hg.

On the other hand,
(4.3) @AY co=g"—¢" - (Af))A®).
It then follows from (4.2) and (4.3) that

la(OIE=KIA N+ 14N el @)l p+27 (1 A)]le)* -
Setting

C(Q)ngp [A@)p,

we now have (1.5) frem (3.2).

5. Proofs of Theorems 3 and 4.

LeEMMA 2 (X.U. Nguyen [12]). For each compact set E of positive measure,
there exists a nonconstant analytic function F in the open set E°=(C\U{co})NE
such that F is bounded in E° and F satisfies the Lipschitz condition in C\E:

A(F)= sup |F(2)—F(w)|/|z—w|<+o.

Note that, then |F/(w) £ AF) for each weCNE.

LEMMA 3. If f is analytic, bounded and bounded away from zero: 0<A=
|fI€£B< 4+ in D, then

17’/ fllp=(2/m)log (B/A).
Proof. Apply the Schwarz-Pick lemma
(I=1zPIn@)l/(1-]h2)H=1,  zeD,
to h=GH+1)/GH—1), where H is defined by
H=exp [{(z7)/log (B/ A)}log (f/ A)].

Proof of Theorem 3. Suppose that f(£) is not of full measure. Let
ECC~Nf(2) be a compact set of positive measure and consider F of Lemma 2
with A=A(F). Given ¢>0 we choose 7>0 such that

(5.1) rA<L(er P =1)/(e™**+1).



170 SHINJI YAMASHITA
For a complex number a, 0<|a|<7y, we set
ga=f+aF-f.
Then g,=S(2) because
1gaw)—go(2)| ZA =7 DIf(w)—f(2)|>0  for w, zeQ2, w+z.

We shall show that
(5.2) 0<NAf)—Aga)l o<,
so that f is not isolated. Set

he=1+aF'-f and G.=hgs¢.
Then G, is nonconstant and

0<1—74<|Gal<1474  in D,
so that, by Lemma 3, together with (5.1), we have

0<]IGa/Gallp<e.

Therefore, (5.2) follows from A(g.)—A(f)=h,/h,.
Suppose that £ is simply connected and set ¢=¢*, the inverse map. Then,
for 0<p=2, each single-valued branch

fr={14+¢)/A—=P)}?
is in S(Q). Furthermore,
1A(f )= Af)e=2(2—p) —>0 as p—2—0.

Therefore, f,(2) is of full measure, yet f, is not isolated.

Corollary to Theorem 3. If 2 is not of full measure, then no linear function
L(z)=Az+B (A+0 is isolated.

Proof. Suppose that L(z)=Az+B is isolated. Then L(£) is of full measure,
so that @=L"1. L(2) is of full measure.

Proof of Theorem 4. Since f(£) is not of full measure, we can construct
Zg. as in the proof of Theorem 3. Set

fi=g, and fo=g_,.
Then, f,€S(2) and 0<||A(f)—A(fp)lle<e, k=1, 2. Since
fel=1f - L2y F(DI=A+r DIf', k=12,
it follows that f,SD(£2). Apparently, f=2"(f,+f2).



UNIVALENT ANALYTIC FUNCTIONS 171

6. The order of a locally nnivalent function.

Let g be a function analytic and locally univalent in D. The order ordp(g)
of g is the supremum of |a,(2)|, zED, where ay(z) is the Taylor coefficient in
the expansion

8((€+2)/(1+28))—g(2)
(1—-]z")g'(z)

By simple computation, we have

={+a()*+ -, LeD.

ordn(g)=§ig |—Z+27(1—[21")A(g)2)! .
Set A=ordp(g). Then AZ2 for g&S(D) by the coefficient theorem. Since
for general g,
[(8/0|z2]) log {(1—[2[")g" ()} |[S2A/(1—|2"),  z<D,
it follows from the familiar manipulation in the univalent function theory that
(I—=[2D*7/A+zD* < (g'(2)/g(0)l,  z&D.

The minimum modulus principle for g’, never vanishing in D, yields that A=1.
Furthermore,

Re{l+2zA(g)(2)} =(1—2Alz|+2|*)/(1—2])>0

if |z]<A—(A2—1)"2, so that A=1 implies g&S(D) and g(D) is convex. Con-
versely, if g&S(D) and g(D) is convex, then by the coefficient theorem, |a,(2)|=1,
for g, zeD, so that A<I, or A=1. See [5, pp. 33, 42 and 45] and [15, pp.
116, 117 and 133].

We note that (8p).(2)=—Z2 by Bp(z)=1—|z[>. For f analytic and locally
univalent in 2, we set

ordo(f)= sup [(B2)w(w)+27 Bolw)A(f Y w)]
we
and call it the order of f in £. It then follows from (3.1), together with
Afo)=¢'Af)p+Ap), that
6.1) ordo(f)=ordp(f-¢).
In particular, if fo(w)=w, then

(6.2) o(d)= sup |(Be)w(w)|=0rdo(fo)=ordpp)=1.
Thus, £ is of finite type if and only if w(2)<<+oco. Furthermore, 27 ¢(2)—1<

0()=27c(2)+1; the left hand side is (1.5). In view of (6.1) it is now easy to
prove the following
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PROPOSITION 1. Let f be analytic and locally univalent in 2. Then ordo(f)
=1 if and only if f€S(Q) and () is convex.

“Only if”. It follows from (6.1) that fope=S(D) and f(2)=f-¢(D) is con-
vex. For the proof of the univalency of f in 2, we let w,#w,, both in Q.
Then there exist z;#z, both in D, such that w,=¢(x;), k=1,2. Therefore,
Sw)=(fp)z)#(fp)z)=f(ws). Since f(£2) is simply connected, £ is simply
connected. “If”. If f(Q) by f€S(2) is convex, then £ must be simply con-
nected. Thus, fopeS(D), and ordo(f)=1 follows from (6.1) with ordp(f-¢)=L.

As a consequence of Proposition 1 we have: If 2 is not simply connected,
then ordo(f)>1 for each f locally univalent in D. It would be of interest to have
a convex domain criterion in terms of w{£2).

PROPOSITION 2. A domain R is convex (and hence, simply connected) if and
only if w(2)=1.

This is a consequence of (6.2) with ¢(D)=£. Proposition 2 has the follow-
ing corollary : A domain Q is convex if and only if PBe is a superharmonic func-
tion in 2. Remember that BB,s=|8,*—1 (8=pB0; see (3.4)). “Only if”. It
follows from w()=1 that 47'48=,3=<0. “If”. It follows from B,z=<0 that
[B»I<1, whence w(2)<1, or w(2)=1.

If 2 is simply connected or p=S(D), then ordp(p)<2, which, combined with
(6.2), shows that w(£2)<2. For the Koebe function £ we have ordp(k)=2. These
are observed in [13, Theorem 3, (14), p. 454].

It would be interesting to have an upper bound of a(2) by w(2).

PROPOSITION 3. For each £ we have
(6.3) a(H<8w(2).

Actually, the same proof as that of [15, the left half of (1.11), p. 115],
together with the property of the projection ¢, that is, d(w)=d(¢(2)), w=¢(z2),
teaches us that

Bo(w)/ {20rdple)} <0(w), wel,

which, combined with a(2)<4b(2) observed in Section 2, yields (6.3).
In the specified case where £ is simply connected we have a better estimate
a($2)<8 than that in Proposition 3. In the “convex” case we have

PROPOSITION 4. If 8 is convex, then a(2)<6.

As we observed the equality holds for 2=D. For each w2 we choose a
conformal homeomorphism ¢ from D onto £ such that w=¢(0). Then, for
feS(9Q),

Ba(w)| A )w)=12(f =) 0)—Ap)O0) .
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Since fepeS(D), we have |A(f-¢)(0)|<4, while, since ¢=S(D) and ¢(D) is con-
vex, we have |A(¢)(0)|=<2 [5, p. 45]. This completes the proof.
PROPOSITION 5.
(6.4) sup |o(f(2)—w(@)£27"a(2).
Fesed

Actually, in view of (2.3) one has
[(B @) =1(Ba)w(w)| +27 Bo(w)] ACS Xw)l

I(B2)w(w) = 1(By@)(2)] 427 Bo(w) A(f Yw)l .

It is now easy to have (6.4).
Propositions 3 and 5 yield

sup lo(f(2)—w(D) <4w(2).

res@

and

If 2 is simply connected, then

(6.5) sup |o(f(2)—w(D)<1;
resed

actually since f(Q) is simply connected, we have 1<w(2)<2 and 1=Zw(f(Q2))<L2.

Note that w(k(D))—w(D)=1. The sharp estimate (6.5) is unchanged if we further

assume that £ is convex. The Koebe function and D again show the sharpness.
We show that the set

{w(2); 2 simply connected} ={ordy(f); f€S(D)}
is precisely the closed interval [1, 2]. Set
fa2)={1+2)/1-2)}*  (f0)=1, 1sa=<2).

Then, f,=S(D) and it suffices to prove that ordy(f.)=a. By a simple calcula-
tion we have

ordp(f«)=sup F(z)"/?,
zeD

where
F(z)={a*(1—|z|*+4(m 2)*} / {(1—|2]*)*+4(Im 2)*} .

Then F(z2)<a® and the equality holds for real z.
If 2 is simply connected, then again

{ordo(f); fESED}=(1, 2]

by (6.1). It would be an interesting problem to determine {ordo(f); fES(2)}
for £ of finite type yet not simply connected; as was remarked, this set does
not contain 1, so that (6.1) shows that this set is contained in the interval
(1, +oo).
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 Added in Proof. On the basis of the result of K.-J. Wirths in his paper:
Uber holomorphe Funktionen, die einer Wachstumsbeschriankung unterliegen;
Archiv der Mathematik 30 (1978), 606-612, the constant K in Teorem 2 should
be K=(13+/3 4+554/11)/64=3.20204---. On the basis of the fact the author of
[127 called himself N.X. Uy in his reference in the recent paper: A removable
set for Lipschitz harmonic functions; Mschigan Mathematical Journal 37 (1990),
45-51, the precise reference of Lemma 2 should be Uy’s theorem.

(1]
(2]
£3]
(4]
(5]
[6]
L7]
[8]

£9]
(10]
(11]
[12]
[13]
[14]
[15]
[16]
[17]
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