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UNIVALENT HARMONIC FUNCTIONS

W. HENGARTNER AND G. SCHOBER

ABSTRACT. Several families of complex-valued, univalent, harmonic func-
tions are studied from the point of view of geometric function theory. One
class consists of mappings of a simply-connected domain onto an infinite hor-
izontal strip with a normalization at the origin. Extreme points and support
points are determined, as well as sharp estimates for Fourier coefficients and
distortion theorems. Next, mappings in |z] > 1 are considered that leave
infinity fixed. Some coefficient estimates, distortion theorems, and covering
properties are obtained. For such mappings with real boundary values, many
extremal problems are solved explicitly.

1. Introduction. Recently, J. Clunie and T. Sheil-Small [2] studied the class
Sy of all harmonic, complex-valued, orientation-preserving, univalent mappings f
defined on the open unit disk U, which are normalized at the origin by f(0) = 0
and f,(0) = 1. Such functions admit the representation

f=h+g
where

h(z) =z + Z axz® and g(z) = Z by 2"
k=2 k=1-

are analytic in U.

One shows easily that the orientation-preserving property implies that |b;] < 1.
Therefore (f — b1 f)/(1 — |b1]?) is also in Sy and one may restrict attention to the
subclass

§% = {f € Sy normalized by f(0) =0, f,(0) = 1,and f5(0) = 0}.

From [2] we have the important facts that Sy is normal and that S is compact
with respect to the topology of locally uniform convergence. In addition, let us
mention the following interesting result from {2].

LEMMA 1.1 [2, THEOREM 5.7]. A function f = h+g in Sy maps U onto a
convez domain if and only if the analytic function h — e**%g is univalent and maps
U onto a domain conver in the direction 8 for all 6, 0 < 8§ < .

In contrast to conformal mappings, harmonic mappings are not at all determined
(up to normalization) by their image domains. Therefore, it is natural to study
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2 W. HENGARTNER AND G. SCHOBER

the class Sy (D, G) of harmonic orientation-preserving univalent mappings of one
domain D onto another domain G. We shall assume that both D and G contain
the origin and that functions f € Sg(D, G) are normalized so that

f(O) = 07 fz(o) > O, and fE(O) =0

If ¢ is a conformal mapping of a domain D; onto Ds such that ¢¥(0) = 0 and
¥'(0) > 0, note that

SH(Dl, G) = SH(DQ, G) o] ’(p
For the special case D = G = U we refer to the work of G. Choquet [1], E. Heinz
[4], and R. R. Hall [3].

In the next section of this article we choose the domain G to be a strip € instead
of a disk and the domain D # C to be simply connected. Since Sy (D,{) is not
closed, we determine the extreme points and support points of its closure Sy (D, Q).
We are able to give an isomorphism between Sy (D, 1) and the familiar class P of
analytic functions f in U with positive real part and f(0) = 1. As applications we
give some coefficient estimates and distortion theorems. In particular, we refer to
Theorem 2.14.

In the third section we consider harmonic orientation-preserving univalent map-
pings defined on U = {2:|z] > 1} that map oo to co. Such mappings can be
represented by

f(z) = Alog|z| + h(z) + g(2)

where - -
hz) = az + Z axz”® and g(z2) =Bz + Z bz "
k=0 k=1

are analytic in U and |a| > |8|. Since the affine transformation

(@f — Bf —aao + Bao)/(lal* — 18]*)

is again in the class, we may restrict our attention to the family 3% of all harmonic
orientation-preserving univalent mappings which have the development

oo oo
f(z) =z+ Alog|z| + Z arz” " + Z brz~k.
k=1 k=1
We show that 3%, is compact, and by Schwarz’s lemma it follows that |A] < 2
and |b;| < 1. In contrast to the familiar analytic subclass ¥/, but similar to the class
S9,, support points of &/, need not be slit mappings. In particular, for real ~y the
function z + €*7/Z is a support point of ¥}, and maps U onto {w: |w| > 2cos(v/2)}.
In addition, since the image domain is C\{0} when v = 7, we note that harmonic
mappings need not preserve the conformal type of a domain. §3 closes with sharp
lower bounds for the diameter of C\f(U) as a function of b; and with an area
theorem. ~
Finally, in §4 we study the subclass Ly of all functions in X’ that map U
onto the complement of a real line segment. We show that functions in Xyg
can be represented, but in a nonlinear fashion, in terms of probability measures
on the unit circle. Applications include sharp coeflicient estimates and distortion
theorems, including the maximum diameter of the omitted segment.
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UNIVALENT HARMONIC FUNCTIONS 3

2. Harmonic mappings onto a strip. We shall use the strip
Q= {w:|Imw| < n/4}

and a simply-connected domain D # C containing the origin. Then Sy (D,1)
consists of harmonic orientation-preserving univalent mappings f = u + iv from D
onto () normalized by

u(0) = v(0) = 0, uy(0) = v-(0) =0, and wu.(0)=uv,(0) > 0.

In addition, we may represent f = h + g where h and ¢ are analytic in D and
have the expansions h(z) = Y ;o ax2® with a; > 0 and g(2) = Y 5o, bkz® in
a neighborhood of the origin. Since f preserves orientation, the function a(z) =
g'(2)/h'(2) satisfies |a(z)| < 1, and the normalization implies a(0) = 0.

In this section ¥p denotes the conformal mapping from D onto the unit disk
normalized by ¥p(0) = 0 and ¥},(0) > 0. Since Sy(D,?) = Su(U,Q) o Yp, it is
sufficient for many problems to consider the class Sy (U, Q). Another particularly
interesting case is D = (). Then Sy (), (1) consists of automorphisms of ().

The following lemmas prepare for an integral representation of functions in

Su(U, Q).

LEMMA 2.1. Consider the Dirichlet problem for Av = 0 i U with boundary
values v = w/4 on an open arc T of OU and v = —7n/4 on the complementary arc,
i.e., on OU\T. Then the only bounded solution with the normalizations v(0) = 0,
v£(0) =0, and vy, (0) > 0 s

F={e"0<t<n} and v(z)= %arg(ifi).

PROOF. Let I' = {e'*:¢; < t < t2}. Then the bounded solution of the Dirichlet
problem is
T 1 [t etz

v(z)=—=+= Re

: dt.
4 4/, et —z

The condition v(0) = 0 implies t; = ¢t; + m, and since

: 1 [atr >
vz(0) + vy, (0) = 3 /t. et dt = e,
1

the remaining normalization forces t; = 0 (modulo27). Thus I' and also v are as
asserted. O
For z € U and |n| = 1, define now the kernel

14nz dz
K =
(2,m) /O T 1= 2

2/(1—-2) ifn=1,
z/(1+2) ifn=-1,

1/1+m7n 1—nz 1/1—n 1—nz .
| —— —= | — _— f +1.
2<l—n>10g<1—z> 2(1+7]>10g(1+z ifn #
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4 W. HENGARTNER AND G. SCHOBER

Then for n = e~%* we define

(1.2)

uq(2) = Re K (2, e~ %)
Re{z/(1-2)} ifa=0,
Re{z/(1+ z)} fa=mn/2,

1 1— -2t 1 1 - — 21 .
§(C0t a)arg(—%) + —(tana)arg(—e—z> if0< |of < %,

1 2 1+2

as well as the family

(2.2) ?={f:f(Z)=Re K(z,mdu(n)ﬂarg(l—ﬁ),uep}

fnl=1 2 12
where P is the set of probability measures on the Borel sets of || = 1.
LEMMA 2.2. We have Su(U,Q)C 7.

PROOF. Let f € Sy(U,?). Decompose f = h + g as before so that a = ¢//#’
satisfies the hypothesis of Schwarz’s lemma. Note that u« = Re f = Re{h + g}
and v = Im f = Im{h — g}. The function v = Im f is harmonic and bounded
in U, and it has the normalizations of Lemma 2.1. Its boundary values are 7/4
and —7/4 on complementary arcs of U. Therefore Lemma 2.1 implies v{z) =
1arg((1+2)/(1 - 2)) and

1

K(2) = ¢'(2) = Zva(2) = T—-

At the same time,

W) +0'(2) = [W(2) - o' () 2222 ]

l—a(z):l—z2

p(2)

where by the Herglotz formula p(z) = flnl=
i1 € P. Therefore

u(z) = Re{/oz[h'(z) +¢'(2)] dz} = Re{/oz I;(Z_):;} = Re{/ln|=1 K(z,n)dﬂ}

and the lemma is proved. O
As a first consequence we obtain the folowing interesting result.

THEOREM 2.3. Let f = u+1iv € Sy(D,Q). Then uz(0) = v,(0) = ¥ (0) s
independent of f. In other words, we have

(1 +n2)/(1 —nz)dy for some measure

f(2) = ¥p(0)z + Z apz® + Z by 2*
k=2 k=2

for all f € Sy(D,Q). In particular, if D = U or D = 1, then the leading coefficient
s 1.

PROOF. Each f € ¥ had leading coefficient f,(0) = 1, and so each f €
Su(D,Q) = Su(U,Q) op C F oypp has leading coefficient f,(0) = ¢(0). O
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UNIVALENT HARMONIC FUNCTIONS 5

REMARK. Theorem 2.3 depends strongly on the choice of image domain 1.
Indeed, it fails for example for Sy (D,U). In fact, Hall [3] has shown for f(z) =
220:1 akzk + 2212 bkzk € SH(U U) that

% < ay < ]_
where the bounds are best possible.
The following lemma gives properties of the family 7.

LEMMA 2.4. F 4s a compact convez set of normalized univalent orientation-
preserving harmonic mappings from U into Q.

PROOF. It is evident from the definition (2.2) that ¥ is a compact convex set
of normalized harmonic functions in U. If f € 7, then Im f = Imyg 1 where
v '(z) = 2log((1+2)/(1—2)) maps U conformally onto §2. Therefore f oy maps
horizontal lines in () into themselves. In addition, if o+i7 € Q, then (3f/d7)ovq =
Rep o ¥ for some function p of positive real part. Therefore f is univalent and
orientation-preserving and maps (Q into itself. O

REMARKS. (1) There are harmonic mappings from U into (1 which are not in
7. Indeed, no conformal mapping of U onto a proper subdomain of {1 can have the
normalization of 7.

(2) Sg(U,Q) # F. For instance, if g is a unit point mass at n = 1, then

1) =Re{ 2 | + 4o g(”j)

maps U onto the half-strip {w : Rew > —1, Imw| < 7/4}. Therefore f €
ASy(U,Q).

Although functions in ¥ do not necessarily map onto (1, we shall see that they
map onto convex subdomains. Later, in Theorem 2.9, we shall be even more specific.

LEMMA 2.5. If f € ¥, then f(U) is convez.

PROOF. If f = h+ g € ¥, then by Lemmas 1.1 and 2.4 the set f(U) will be
convex if and only if the analytic functions h—e?*g are univalent and convex in the
direction 8 for all 8, 0 < 8 < 7. To show the latter, it is sufficient to show that the
functions F = i~ (h — ¢?*%g) are univalent and convex in the vertical direction.
By [5, Theorem 1] this will be the case if Re{(1 — 22)F'(2)} > 0. Thus we verify

that . )
Re{(1 — 2*)F'(2)} = —Im{e” (1 — 2)[W/(2) — €*°¢' ()]}

. 1+nz
= (sinf)Re / d
() {lmzll—ﬂz M}

is positive for 0 < § < 7. For 6 = 0 the function A — g = 3 log((1 + z)/(1 — 2)) is
univalent and convex. 0O

The next lemma gives a sufficient condition in order that f € ¥ implies f €
Su(U, ). Denote [jalloo = sup,cy la(2)].

LEMMA 2.6. If f=h+G€ F and ||¢’/h ]| < 1, then f(U) = Q and f €
Su (U, Q).

PROOF. By Lemma 2.4 and the hypothesis that || f5/f:|lcc = ||g'/F|lc <1, fis
a quasiconformal mapping of U into ). By Lemma 2.5, f(U) is convex and if it were
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6 W. HENGARTNER AND G. SCHOBER

not all of ), then df(U) would be a Jordan curve in C U {oco}. Consequently, the

quasiconformal mapping f would extend [8, Theorem 1.8.2] to a homeomorphism (in

the spherical metric) between U and f(U). However, Lemma 2.1 implies that f has

a discontinuity at either 2 =1 or z =—1. Thus f(U) = and f € Sxg(U,Q}). O
Finally, we are able to identify # as the closure of Sy (U, ).

THEOREM 2.7. Sy(U,Q)) = F and Sy(D,)) = Foyp.

PROOF. Syx(U,Q1) C ¥ by Lemma 2.2. At the same time, each f € ¥ has
a measure i € P which can be approximated by measures y,, € P so that the
corresponding functions f, = hn+gn € 7 have ||g,,/h}|lcoc = [|(Pn—1)/(Pn+1)|lco <
1. By Lemma 2.6 the functions f,, belong to Sy (U, 1) and so Sy (U, 2) = ¥ follows.
The final assertion is obvious. 0O

Theorem 2.7 is very useful for solving extremal problems on Sy (D, ). In partic-
ular, if ¢ is a real continuous convex functional on Sy (D, ), it is sufficient by the
Krein-Milman theorem to find the maximum of ¢ over the set of extreme points.

THEOREM 2.8. The set of extreme points of Sy (U, Q) is the set of functions

0ol

<a<

0o

y

1-z

(2:3) o) = vale) + s (125, -

where u,, 13 defined in (2.1). Furthermore, the image fo(U) is
(a) the half-strip {w € Q: Rew > -1} if a =0,
(b) the half-strip {w € @ : Rew < 1} if a=n/2,
(c) the interior of the triangle with vertices

(3 —a)tana + (7 — a)cot af + 1,

[(% + a) tano + acot a] + %, and

(3 —a)tana—acot o] - Z if0<a<Z, and

Vi=-1[(3+a)tana+ (7 +a)cota] — &,
sz%[(%—a)tana—acota]—%r, and
Vs=-1[(Z+a)tana+acota] +F  for—Z <a<O.

PROOF. Since Sy(U,1) = 7, one can easily identify the extreme points from
the integral representation in (2.2). In particular, the mapping

pe€ P —Re K(-,n)du
nl=1

is a linear homeomorphism, and we know that the extreme points of P are unit
point masses. Thus the extreme points are as indicated.
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UNIVALENT HARMONIC FUNCTIONS 7

Since the mappings are very elementary, it is clear that fo(U) and f,/2(U) are
the half-strips (a) and (b). Next, let 0 < @ < 7/2 and define

a 1 1 - em2iey
wi(z) = e R P
1

1-2
a 1 1—e %oy
walz) =5 — 7 — ;a8 (T) , and
1 1 1+2
w3(2) =1 ~wi(2) —we(z) = 5~ -arg (1 — z)

for z € U. Then w; is the harmonic measure of the arc {e?:0 < 8 < 2a}, wy is the
harmonic measure of the arc {€: 2a < 8 < 7}, and w3 is the harmonic measure
of the remaining arc {e*®: —m < § < 0}. It is straightforward to verify that

(2.4) fa =Viw + Vaws + Vaws,

where V1, V,, and V3 are the points in (¢). Thus f,(U) consists of all proper convex
combinations of these three points, and so (c) is verified.

Since fo(2) = f-a(Z), the case (d) follows from (c) by conjugating and replacing
aby —a. O

REMARKS. (1) The formula (2.4) is a nice potential-theoretic representation for
the functions f,. Let us give a more geometric one. Let 0 < o < 7/2 and define
8(z) to be the angle at z generated by the rays from z to 1 and from z to e*<,
Then

0(2) - 2
= — 4

sin 2a 2

1
ua(2) 7—r(tan a) [wg(z) - 5] ,
where w3 is the harmonic measure of the lower semicircle, defined earlier.

(2) For 0 < o < w/2 we have ©(r/2)-a(2) = —ta(-Z).

(3) The extreme points of Sy (D, Q) are the functions f, o ¢p for —7/2 < a <
/2.

(4) No extreme point of Sg (D, (1) belongs to Sy (D, 2)! This follows by observ-
ing that each extreme point maps to a proper subset of (1.

The next theorem describes the functions in Sy (D, Q\Su (D, ?).

THEOREM 2.9. Let f € Sy(D,Q). (a) If Re f is bounded above, then f(D) is
bounded to the right by a straight line segment.

(b) If Re f is bounded below, then f(D) is bounded to the left by a straight line
segment.

(c) If Re f is bounded neither from below nor from above, then f(D) = Q and
f € SH(Da Q)

PROOF. With no loss of generality we may assume D = U. If f € Sy(U,Q}),
then Theorem 2.7 and Lemma 2.5 imply that f(U) is a convex subset of (2. Recall
also that f o 1q maps horizontal lines into themselves. Therefore assertion (c) is
obvious.

To prove (a) we want to show that lim,_, o, uothq(z+1y) = uw*(y) is linear for |y| <
7 /4. On the boundary of the subdomain g = {z + 1y:z > 0, ly| < Yo}, Yo < 7/4,
the function u o ¥ is continuous except possibly for a jump discontinuity at oo of
amount § = u*(yo) —u*(—yo). Since the harmonic function uovq(z+1y)—1(8/y0)y
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8 W. HENGARTNER AND G. SCHOBER

is continuous on )y even at oo, the linearity of u*(y) follows, at least for |y| < yo.
Since yp is arbitrary, (a) is proved.

The statement (b) follows by applying (a) to —f(—z). O

The set H(D) of complex-valued harmonic functions in D with the topology
of locally uniform convergence forms a locally convex topological vector space. Its
topological dual space H'( D) can be represented, for example, by complex measures
with compact support in D. A support point of aset K C H(D) is a function fo € K
such that for some L € H'(D) with Re L nonconstant on K we have

Re L(fo) > Re L(f) forall f € K.
Our next theorem describes the support points of Sy (D, Q).

THEOREM 2.10. The set of support points of Sy (D,() is the set of all finite
conver combinations of extreme points of Sg(D,(), that is, the set of functions of
the form Z,ICV:I Ak(for 0 YD) where A > 0, Zszl Ak = 1, and f,, is defined in
(2.3).

PROOF. Again, with no loss of generality we may assume D = U. Corresponding
to L € H'(U) we first define a real-linear function ! on the analytic subspace of
H(U) by

z (aﬁR f) ~ Re{L(f) - L)S(0)}.

Then L(¢) = I(¢) — 1l(i¢) defines a continuous complex-linear functional L on the
analytic subspace of H(U). If f = u + iv belongs to Sy (U,(1) = 7, then

Re L(f) = l(u,) = l(l_(2)> Re L<1P_(zz)2)

for a corresponding function p € P, the family of analytic functions in U with
positive real part and p(0) = 1. In other words, fy is optimal for Re L over Sy (U, (1)
if and only if the corresponding pg is optimal for Re z(p(z) /(1 — 22)) over P. The
support points of P are known (see, e.g., [8, Theorem 1]) to be generated by finitely
discrete measures 4 € P. Thus support points of Sy (U, 1) have the indicated
form. Since our construction is reversible, the indicated functions are all support
points. O

COROLLARY 2.11. A function f =h+g in Sy(U,Q
only if a = ¢' /R’ is a finite Blaschke product and a(0) =

PROOF. Usea=(p—1)/(p+1). O

REMARKS. Note that a support point of Sy (U, ) is in Sy (U, ) if and only if
7 =1 and n = —1 are both in the support of its probability measure u.

In general, if n = 1 is not in the support of the measure u € P, then f defined
in (2.2) has Re f bounded above and so f € Sy(U,N\Sy(U, ). Indeed, if the
support of u is contained in {e¢*¥:0 < 8 < |f| < =}, then by (2.1), (2.2), and
Theorem 2.8 one has

Su(U,Q) is a support point if and
0.

1
Re f(z) < sup  uq(z)= sup = [(ﬁ - a) tana + (7 — a)cot aJ
8/2<]al<n/2 8/2<as<n/2 2 L\ 2
_(m=B), B (@2r-p8) B
= 1 tan 2 + 1 cos 7 < 0.
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UNIVALENT HARMONIC FUNCTIONS 9

Similarly, Re f is bounded below if = —1 is not in the support of u.
Unfortunately, the support of the measure u by itself is not sufficient to tell
whether Re f is bounded. For example, the measure du(n) = %|Imn|dargn is
supported on the full circle, but its corresponding function
| 1—-e ¥z 1t 14z
== —— ) dé+ <
f(z) 4/0 arg( T ) +2arg1_z

etz

maps U onto the rectangle {w € 2:|Rew| < 72/8}.
Next we shall consider coefficient problems. Let f = h + g belong to Sy (D, )
and have expansions

(2.5) h(z) = 5": axz® and g(z) = i by 2"
k=1 k=2

in a neighborhood of z = 0. By Theorem 2.3 the leading coefficient a; depends
only on D and a; = ¥/,(0). Since
W —g =4p/(1-9}),

also the differences a, — b, are independent of f and

an = bt W= PB)r, n22,

where [ ],, denotes the mth coefficient of the function in brackets.

In particular, if f € Sy(U, 1), then

by, if n is even,
(2.6) an = { b, +1/n if nis odd,
and if f € Sp(Q,Q), then
(2.7) an = by, n 22

THEOREM 2.12. If f = h + 7 belongs to Sy (U,Q) and has expansions (2.5),
then ay = 1 and

if n 1s even, if n 18 even,

1
2
2n

I~

lanl <3 741 1
2n

for n > 2. The bounds are sharp.

PROOF. If f = h+g € Sy(U,Q), then

1 nz
’
= d

if n 1s odd, if n 1s odd,

and so
28 b ZZL"} c2k—1 if nis even,
. nb. =
( ) " (n—1)/2 fni
k—1 cax if nis odd,
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10 W. HENGARTNER AND G. SCHOBER

where ¢ = fln|=1 n* du are the moments of u. Since |cx| < 1, the bounds for |b,,]

follow. Because of (2.6) the bounds for |a,| follow. Equality occurs in all cases for

the functions
142z
g 12

f(z) = Re -;-

which arise from unit measures at n = +1. 0O

REMARK. Using (2.8) and (2.6) one can describe the regions of values for coef-
ficients of functions in Sg (U, Q). The region of values of as, and by is the convex
hull of the curve

. .
-+ —ar
1

sin(kt) iz

Zkesint’
for k =1,2,3,.... Similarly, for k = 1,2,3,... the region of values of azx11 is the
convex hull of the curve

0<t < 2m,

sin(k + 1)t .

—_— 0<t<2n,
2k + 1)sint. =t=em

and the region of values of bor 1 is the convex hull of the curve

sin(kt) et
—_— 0<t<2m.
(2k+1)sinte ' st

When k£ = 1 these regions are all disks.
For automorphisms of {2 we have the following coefficient estimates.

THEOREM 2.13. Let f = h+7 belong to Sy {Q, ) and have ezpansions (2.5).
Then ay =1 and

1
(2.9) lan] = b} < ﬁCn_l forn>2
where the constants C,_1 are defined by
Loy
—— = Cr2*
1—tanz =
The bounds are sharp.

PROOF. We have already observed in Theorem 2.3 that a; = 1. Since ¥q(z) =

tanh z,
, n tanh z
= ——d
g(z) /Inl=1 1—ntanhz H

and so for n > 2

nlb,| =

?7'

Z[tanhk ne 1/ n* du
In|=1
1 n—1
< ) tanh*zl, | =) " [tan*2]. s

n
k=1 k=1

[
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UNIVALENT HARMONIC FUNCTIONS 11
where we have used the fact that the coefficients of tan z are real and nonnegative.
Because of (2.7) the same bounds are valid for na,. Equality occurs for the functions

f(2) = £iarg(1 £in(2iz)) +iIm 2,

which arise from unit point measures at 7 = F1. O
REMARK. If we use

o0

r oz Bj.z?* Ex?k

—cot—-=1-— 1

2co 5 ,; 2h)! and seczx =1+ Z 26!
to generate the Bernoulli numbers B; = ¢, By = 30, B; = é, ... and the Euler
numbers £, =1, F; =5, E3 =61,..., then the identity

1 1 1 1
1 —tanz _ 2 + Esec(2z) + 5cot(2z) — cot(4z)

allows us to identify the constants Cj in Theorem 2.13. They are

_ (64k - lﬁk)Bk _ 22k—1Ek
Coemr =g~ 4 O =g
for k =1,2,3,.... Thus the bounds (2.9) become
(64F — 16%)By, 22k-1p,
= < —— = < =
lagk| = [bok| < (2k)18% and |agkt1] = |bok+1] < @k 1)

for k=1,2,3,... in terms of the Bernoulli and Euler numbers. In particular,

lag| = [bo| < 1, lag| = |bs| < 3
lag| = |b4l_3’ las| = [bs] < %,
lag| = |bg| < 38, laz] = |br| < 32.

The next theorem is concerned with estimates of |a,| and |b,| that are valid for
all domains D.

THEOREM 2.14. Let f = h+g belong to Sy(D, Q) and have expansions (2.5).
Then a1 = ¥ (0) and for alln > 2

ool < [0+ 52| 060 and [oa] < [ 200 - 52| 0.

The bounds are sharp.

PROOF. It follows from Theorem 2.3 that ay = = ¢¥(0), and it is no loss of
generality to assume ¢5,(0) = 1. Write f = f oyp where f € Sg(U,Q) has
coefficients d,, and b, and Y¥p(2) =z + Y _pey An2™ near z =0. Then

(2.10) n =Y axmkn(A2,...,An) and by =Y bemkn(Az,...,An),
k=2

where the functions ., are polynomials with nonnegative coefficients.
By a theorem of K. Léwner (7, p. 121] the coefficients A,, are dominated by the
coeflicients of the function

¢Do( ) = 1—22—\/1—4z.

2z
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12 W. HENGARTNER AND G. SCHOBER

The function ¢¥p, is inverse to the familiar function wg;(z) = z/(1+ 2)? that maps
U onto the domain Dy consisting of the plane slit along the positive real axis from
1/4 to oco. Since ¥p, has positive coefficients and the estimates of Theorem 2.12
are sharp for the function

fo(z) =Re 7

which has positive coefficients, it follows from (2.10) that a,, and b,, are dominated
by the corresponding coefficients of fp ¢ ¢yp, = ho +gy. That is, a,, and b,, are
bounded by the corresponding coefficients of

) 1+z
2 g

1 1 - L
h"(z):z;\/mfz_él"g Z[n')2 ]z

4m o
8n '

and

B 1 11 = [ (2n)!
go(z)——————4 T Z+§10g(1_4z)_2 [4(n)2
The bounds are sharp for

1 1 1 ¢
fooun(e) = 3Re A= "3 73
Our next application concerns the extremal problems
(2.11) max[u(z) — u(—2)] and minfu(z) — u(-3)],

where z € U is fixed and f = u + v varies over Sy (U,2). Observe that v(zj =
v(-%) = Zarg((1 + 2)/(1 - 2)) for all f.

If z is purely imaginary, then 2 = —Z and the extremal problems (2.11) are
trivial. Assume therefore that Rez # 0.

Since the extremal problems (2.11) are linear, it is sufficient to find the extreme
values over the set of extreme points of Sy (U, 1), that is,

max(ug{2) — ue(~2)] and minfue(2) — ue(-%)).
After the substitutions ¢ = sin 2« and w = 212/(1 — 22) these become

1 1
- in —are(l
_max, targ(l +tw) and _min 3 arg(1l + tw),

where w is fixed, Imw # 0, and arg1 = 0.

LEMMA 2.15. For fized 0, 0 < |0] < , let ¢g(t) = Larg(1+te'?) with arg(1) =
0 and ¢o(0) = sin@. Then ¢g has the following properties.

(a) ¢ s a C™ function on R.

(b) lim;—. 100 o (t) = 0.

(c) d—9 = — 0.

(d) dr—s(t) = do(—t) for 0 <8 <7, and ¢_r_4(t) = Po(—t) for —m < 8 < 0.

(e) dg(—It]) < dol|t]) for —m/2 <8 <0 or n/2 <0 < 7, and pg{—|t]) > de(t])
for —-mr <8< -7w/20r0<6<7/2.

(f) The equation ¢j(t) = 0 has ezactly one solution t = 7(0) for 0 < |0] < .

(g) 7(6) = 7(—0) < 0 for 0 < 6] < w/2, 7(6) = 7(—0) > 0 for 7/2 < |6] < ,
and {7 /2) = 0.
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UNIVALENT HARMONIC FUNCTIONS 13

(h) If 0 < 8 < m, then ¢g 13 positive, increasing for —oco < t < 7(0), and
decreasing for 7(6) < t < co. If —w < 6 < 0, then ¢p is negative, decreasing for
—00 < t < 7(#) and increasing for T(6) < t < co.

PROOF. Properties (a), (b), (c), (d), and (e) follow easily from the definition.
In preparation for (f) note that

1 .
t2¢5(t) = —Im {m} — arg(1 + te®)

and
3+ 4tet?

m} + 2arg(l + teio).

35 (t) = Im{

So if 7 is a critical point, then

9 12
Pg(r) = 195 (r) + 2r2¢)(r) = ~Im { e } |

First restrict § € (0,7/2). If ¢p(r) = 0 for a 7 > 0, then ¢5(r) < 0 and we
would have a strict local maximum at 7. Only one such point would be possible,
and we would have ¢}(0) > 0. But ¢}(0) = —1sin26 < 0, so that a critical point
7 > 0 is not possible. Suppose next that ¢p(7) = 0 for a 7 € (—c0s§,0). Then
#3(r) > 0 and we would have a strict local minimum. This, too, is impossible since
¢y is positive, lim;_ o dg(t) = 0, and ¢y has no local maximum to the right. The
point ¢t = — cosf is not a critical point since

By (— cosf) = —(sec?) [tan (g - 0) - (% - 0)} <0.

Finally, if ¢j(7) = 0 for a 7 < —cos#, then ¢ () < 0 and we have a strict local
maximum. Only one such critical point 7 = 7(f) can appear, and so (f) is proved
for 8 € (0,7/2).

If 0 = m/2, then ¢7 »(r) = =2/(1 + 7)% < 0 at each critical point. Hence there
is only one. In fact, ¢;/2('r) =0 if and only if r = 0.

The remaining cases of (f) and properties (g) and (h) now follow by applying
properties (¢) and (d). O

On the basis of Lemma 2.15 we may conclude the following. For 0 < 8§ < 7/2,

: _ _ [ de(=|wl]) if 7(6) < —|wl|,
|tr|rél(lzlu|¢9(t) = ¢g(|w|) and max|¢g(t) = {¢o(f(9)) if 7(6) > _|w|.

[t <|w

For /2 < 8 <,

min ¢g(t) = de(—|w|) and max @g(t) =

{dm(lwl) if 7(6) > |wl,
do(7(0)) if 7(6) < |w|.

el <ol <]
For 6 = /2,
min ¢ /o(t) = ¢p/o(£|w|) and max @ ,2(t) = ¢r/2(0) = 1.
ItlSIw|¢ 72(t) = & j2(£lwl) 1t|§|w1¢ /2(t) = ¢ /2(0)
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14 W. HENGARTNER AND G. SCHOBER

THEOREM 2.16. Let f = u + v belong to Sy(U,Q) and set w = |w|e?® =
2iz/(1 — 2%). For 0 < |0} < 7 define

—12)2
A(z) = —arg 82T
we T )2 2
BE=N 2 oo 2
IT:_Z_QI(%(T( ) if 7(0) < -z

where ¢g(t) = (1/t)arg(l + te®?), ¢p(0) = sinh, and t = 7(8) is the unique solution
of the equation ¢j(t) =0. Then

(a) 2arg(l +iz) < |u(z) —u(-2)| < 2z/(1—2?) if —1<z<1,
(b) A(z) < |u(z) —u(-2)| < B(2) #Imz>0, and
(c) A(Z) < |Ju(z) —u(-2)| < B(z) + Imz<0.

PROOF. If Rez = 0, the estimates are all trivial. Assume, therefore, that
Re z # 0. We shall use the relations

1 1
= i Zarg(l + tw) =
_min - arg(1 + tw) = S lw|¢g(t) and _rlnsaél Sarg(l + tw) ax, [w|da(t),

A(z) = [wlds(—|w]) and A(Z) = |wlds(|w]),

_ J lwlge(Jwl) if 7(8) > Jw], lw|de(—|wl) if 7(0) < —|w|,
B(z)_{lwlaﬁe(r(fi)) if 7(6) < Jwl, {lwl¢e if 7(0) > —|w),

B(-z)=—-B(z) and B(-z)=—B(z),
and the extrema developed above.
First, if z = = € (0, 1), then w = (2z/(1 — 22))e*"/? and so
2arg(1 + 1) = |w|dr/2(tlw]) < u(@) —u(—2) < lwlgq/2(0) = 22/(1 - 2).
Furthermore, if z = z € (—1,0), it follows that —z € (0,1) and
2arg(l —iz) < u(—z) — u(z) < —2z/(1 — z2).

These inequalities can be written more concisely as (a).
Consider next the case z = |z[e"” with 0 <y < 7/2. Then w = 2iz/(1 - 2%) =
|w|e*® where 7/2 < @ < 7 and we have the bounds

A(2) < u(z) — u(—2) < B(2).

Furthermore, if z = |z|¢” where 7/2 < 4 < m, then we can apply these estimates
to —z:

A(-2) < u(-2) —u(z) < B(-32).
Since A(~%) = —A(z) and B(—%) = —B(z), these bounds can be written compactly

as (b).
Finally, consider the case z = [2]e*Y with —7/2 < 4 < 0. Then w = 2i2/(1-2%) =
|w|e*® where 0 < # < 7/2 and we have the bounds

A(Z) € u(z) - u(~2) < B(2).
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UNIVALENT HARMONIC FUNCTIONS 15

Furthermore, if 2 = |z|e!” where —7 < v < —m/2, then we can apply these estimates
to —Z:
A{=2) < u(-2z) —u(z) < B(-2).

Since A(—z) = —A(Z) and B(~z) = —B(Z), these bounds can be written as (¢). 0O
In each case we remark that the inequalities are sharp.

3. Harmonic mappings of U. First we find the form of harmonic mappings
of U = {z:]z| > 1} for which f(oo) = lim,_, o f(2) exists as co.

LEMMA 3.1. Let f be a complez-valued, harmonic, orientation-preserving, uni-
valent mapping of U with f{(oo) = co. Then f has the representation

f(z)=az+ Bz + Alog|z| + Z apz"* + Z b2k,
k=0 k=1

where 0 < |B] < |a|. In addition, a = f5/f, is analytic and satisfies |a(2)| < 1.
PROOF. Since f is harmonic and f(oo) = oo, it has the representation
f(2) = h(z) + g(2) + Alog 2],

where

h(z) = i arz™* and g¢(z) = i bz

k=—00 k=—o0

are analytic in U and A € C.
The orientation-preserving property implies that the Jacobian |f,|? — |fz|? is
nonnegative, and so

[fz(2)| = |g'(2) + A4/ (22)] < |fa(2)] = |W(2) + A/(22)].

If the latter were to vanish identically, then f would be constant and not univalent.

Therefore o)+ A
229'(2)+ A
a(2) = 220 (2) + A

is analytic in U and |a(z)] < 1. If la(z)| = 1 at some point, then the maximum

principle would imply ¢’(z) —e*7h/(2) = 1 (e**YA— A)/z. On the left the coefficient
of 1/z is zero. Therefore g = €>*7h + ¢, where ¢ is a constant. As a result,

eV[f(2) — €] = 2Re{e*"h(2)} + Ae" log |2|

would not cover a full neighborhood of oo. Therefore |a(z)| < 1 and |a(o0)| < 1 for
the analytic extension.

The mapping f is a quasiconformal mapping on |z} > R for each R > 1. By
the distortion theorem for such mappings (see [6, Chapter II, §3]) we have |f(z)| =
O(|2|%) as z — oo for each real number K > (1 + |a(00)])/(1 — |a(00)|). It follows
that the Fourier coefficients a_,, and b_,, are all zero for n > K. Therefore the
singular part of f at oo is of the form

—1 —1
Z arz k + Z bez~k + Alog |z].
k=—N k=—N
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16 W. HENGARTNER AND G. SCHOBER

If a_n # 0, then |b_n| < |a- | since |a(cc)] < 1 and
f(Re®) =a_nRNeNO 1+ (b_n/a_n)e 2N £ 0(1)] as R — oo.

In this case f is univalent only if N =1 and we have the conclusion of the lemma.
The alternative would be that f has the form

f(Re®) = AlogR+0(1) as R — oo,

in which case f could not cover a neighborhood of co. D

By applying an affine post-mapping to f we may normalize f so that o = 1,
B = 0, and ap = 0. Therefore let X% be the set of all harmonic, orientation-
preserving, univalent mappings

(3.1) f(2) = h(2) + g(z) + Alog |2|
of ff, where

h(z)=z+ Y axz™* and g(z) = Y bz
k=1 k=1

are analytic in U and A € C. The subclass with no logarithmic singularity will be
denoted by ¥%;:
L={fely:A=0}.

The following estimates are essentially a consequence of Schwarz’s lemma.

THEOREM 3.2. (a) If f € LYy, then |A| <2 and |by| < 1.
(b) Iffe EI}/I, then |b1| <1 and Ibzl < %(1 - ]bllz) < %
PROOF. We shall use the bounds |wp| < 1 and |w;| < 1 — Jwp|? for analytic

functions w(z) = wp + w1z~ + -+ in U that are bounded by one.
If f € ¥%; has expansion (3.1), then

2+ A 1o L2, -2
a(z) = 2o (o) + A _EAz - b1+4]A| z

1 1 1
— [2by — 5Aa1 - §Ab1 - §A|A|2] 2734

is analytic in U and |a(z)| < 1 by Lemma 3.1. The maximum principle implies that
w(z) = za(z) is also bounded by one, and so |3 4] < 1 and |b; + 1|42 < 1—|3A4)2.
The latter implies |by| < 1.

If f belongs to X%, then A =0,

a(z) = —b12_2 — 2b22_3 + ..y,

and w(z) = 2%a(z) is bounded by one. Therefore |b;| < 1 and |2b3| <1 - |b1]%2. O
The coefficient bounds in Theorem 3.2 are all sharp. Equality in (a) is attained,
for example, by the function

f(2)=2z-1/z+2log|z],

which maps U onto C\{0}. For a proof that f belongs to ¥’ see Theorem 3.7.
In the proof of part (a) we could have observed also that b; must lie in a disk of
radius 1 — 1|A|? about the point —1]A|2.
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UNIVALENT HARMONIC FUNCTIONS 17

In (b) the bound for b; is sharp for the function
f(2) = 2+ €"/3, —r<y<m,

which maps U onto the exterior of the (possibly degenerate) circle |w| = 2 cos(y/2).
In addition, the bound for b, is attained by the function

f(2) = 2+ 1/(22%).

REMARK. In contrast to the classical analytic families S and X, the functions
above show that support points of £ and £% need not be slit mappings. Further-

more, f ((7 } may not be conformally equivalent to U.
The following lemma contains a distortion estimate for a class of locally quasi-
conformal mappings.

LEMMA 3.3. Let f be a diffeomorphism of U satisfying
(a) Ifz(2)| < |2]|fz(2)] forallz €U,

(b) f(z) =2+ 0(2%) for some 3>1asz—0.
Then for all z € U we have

f(2)] 2 |21/[4(1 + |21)?].
In particular, the disk {w: |w| < {5} is contained in f(U).

PROOF. In their paper [2, Theorem 4.4] Clunie and Sheil-Small proved Lemma
3.3 for harmonic mappings f = h +§ satisfying (a) and (b). But their proof applies
equally well to the present situation. One only replaces ' by f, and ¢’ by fz. O

An immediate consequence is the following distortion theorem for the nonvan-
ishing class

20 ={f—c:fey and c & f(U)}.

THEOREM 3.4. If f(2) = z—c+Alog 2|+ Y peqakz "+ po; bz belongs

to $9;, then
If(2)] < 4(1 + |2)?/|2| forallz€ U,

F(U) contains the set {w:|w| > 16}, and |c| < 16.

PROOF. If f belongs to X%, then f(z) = 1/f(1/z) is a diffeomorphism of U
that satisfies

(a) | z(2)l/1f=(2)] = la(1/2)| < |2| for z€ U,
(b) f(z) =2~ A2%logz+ O(|2|*) as z— 0.

Therefore Lemma 3.3 applies to f , and the first two conclusions follow. In addition,

2
| —c+ AlogR| = I% f(Re®Ydf| < 4(1+ R)?/R
0

for all R > 1. Let R approach 1 to obtain |¢| <16. O
The bound for ¢ is equivalent to the following.
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18 W. HENGARTNER AND G. SCHOBER

COROLLARY 3.5. If f belongs to LYy, then f([NJ) contains the set {w: |w| > 16}.
The next result concerns compactness of our families.

THEOREM 3.6. The families £%, £%;, and £, are compact with respect to the
topology of locally uniform convergence.

PROOF. By Theorem 3.4 the families are locally uniformly bounded families
of harmonic functions, hence normal. If {f,} is a convergent sequence in one of
these families and f,, — f, then f is harmonic and f,(co) = 1. To see that f is
univalent, we use the fact that each f,, satisfies (f,.)z = a.(f,). where a,, is analytic
and satisfies |a,(2)] < 1/|z|. That is, each f, is a Kg-quasiconformal mapping in
|z| > R, R > 1, with Kp = (R + 1)/(R — 1). Limits of such mappings are either
univalent or constant. Since f,(oco) = 1, the function f is univalent. Furthermore,
the normalizations are preserved. [

In the examples following Theorem 3.2 we have seen that it is possible for the
diameter of the omitted set C\f(U) to be zero for f in Yy or I%. The following
theorem contains a sharp lower bound for this diameter depending on the coefficient

b.
THEOREM 3.7. If f € 3, then the diameter Dy of C\f(U) satisfies

Dy > 201+ by].
This estimate 1s sharp for
(3.2) f(z) =24+ b1/2+ Alog|z]
whenever |b1| < 1 and |A] < (1 — |by|2)/[1 +by], |b1] =1 and A= 0, or by = —1

and |A] < 2.

PROOF. Let Dy(R) be the diameter of f(|z| = R), R > 1, and let D}(R) =
max; =g |f(2) — f(—2)|. Then D;(R) \, Dy as R — 1 and D(R) > D}(R). Since
2
DHR 2 5 [ 1 (Re) - f(-Re)? d0
0

™

o0
=4 R+ b R7'* +]a|*R™2 + Z(|a2k+112 + |bogr1|?) R+

k=1

> 4|R+ b R7Y?,

we conclude that Dy > 2|1 + by].

For the given parameters b; and A the function (3.2) maps U onto the exterior
of the circle [w| = |1 + b1} and shows that the bound is sharp. To see that the
mapping is univalent either observe that it maps the circles |2} = R, R > 1, onto
an increasing family of (possibly nonconcentric) circles or note that it is a local
homeomorphism since its Jacobian is positive and is one-to-one on circles near
gu. O

Note that we have proved the apparently stronger bound

Dy 22, [L+b1f2 + Y (lazk1]? + b2k [?).
k=1

Corresponding to the classical area theorem is the following.
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UNIVALENT HARMONIC FUNCTIONS 19
THEOREM 3.8. If f € &% has ezpansion (3.1), then

> k(lagl? — [bk|*) < 1+ 2 Reby.
k=1
Equality occurs if and only if C\f(U) has area zero.
PROOF. The area of the omitted set is

1 - 1 - 1 -
lim —./ fdf = lim —./ hh’dz+—./ gg dz + 27 Reb
R—121 |z]=R R—1 {2’L |z|=R 21 |2|=R !

= [1 - i k(lax|? — |bx]|?) +2 Reb;

k=1

>0. O

REMARKS. (1) Since the Jacobian |f,|? — | fz|? is nonnegative, we have also

1+ > k2 (jaxl? - [be]?) > 0.
k=1

(2) In the next section we shall see that functions f € ¥’ which map U onto
complements of real line segments satisfy
a1 =1+b; and ap=0b; fork>2.

4. Mappings onto complements of real line segments. We now restrict
our attention to functions in ¥’; or L% that map U onto complements of (possibly
degenerate) real line segments. Denote

Shr = {f €Z4:C\f(U) CR} and Xfg ={fe€Z:C\f(U)CR}

where R is the real line in the complex plane. Of course, X% g C Tyg.
For f = u+tv in ¥yz we have necessarily v =0 on 8, and the normalization
at oo gives
v(z) =Imz +r(2) + (Im A) log | 2|
where r is harmonic and vanishes at infinity. Solving the Dirichlet problem for r,
we conclude that 7(z) = Im{1/z} and therefore

v(z) = Im{z + 1/2} + (Im A) log | 2|.

In the representation (3.1) it follows that Im{h(z) + ¢g(z)} = Im{2 + 1/z}. Taking
derivatives with respect to z, we obtain

R(z)—g'(z) =1—272
In Lemma 3.1 we proved that
_ 22¢'(2)+ A
()= v+ A
is analytic in U and satisfies |a(z)] < 1. Therefore p = (1 + a)/(1 — a) is analytic
and has positive real part. Since p(z) = 1 + A/z + ---, we have the Herglotz

representation
1+n/z
p(z) = / dy
(2) Ini=1 1— n/z
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20 W. HENGARTNER AND G. SCHOBER

for some probability measure u on || = 1; in addition, A = 2 fln|=1 ndu.
We will use the identities

K+ = 120 (1) - o (o) + 28| - BeA
o) |1- 5+ O

1 ] Re A
+
1
52

:/ <1+n/z [1_ N
m=1\1=n/z " 2
2 _ 142 ImA)z -
:/ <1+2n A (n + 20ilm )z n) du
Inl=1 2 22(z —n)
(2n? — 1+ 2nilm A)z —
Inl=1 22(z —n)

(ImA)J _Re A) i

4 z

du

to represent

u(2) — (Re A)log |z| = Re {h(2) + g(2)}

Wma—1+¢unw}

ot / (2n? —142—2mlmA) ndzdu
=1 Joo 2}z —n)

{
= Re {z+ " [2 (n— —71; +iImA) 1og(1— g) - -] du}
{

1 n
- _ 4 A 1—- 1 .
Re §z } /InI . 2Im{2n + A}arg ( ) du

Therefore
. 1 n
(4.1) f(z) =u(z)+w(z) =2— =+ Alog|z| —/ 21m{2n—+—A}arg<1 - —) du.
z In|=1 o
Denote

2Im{2n + A}arg(l - —) du,

A:2/I| lﬁd,u,ueP}
"7:
= fE?’:A=2/ Ndu=0;.

[nl=1

What we have derived is that

7’={f:f(z)=z—%+Alog|z]—/

[n|=1

and

Yyr CF and Xfg C 7.

The next theorem shows that we even have equality.
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THEOREM 4.1. We have £y = 7' and Xfg = 7.

PROOF. Let f € 7. Then f is harmonic in U and has the required normalization
at infinity. By reversing the steps in the derivation of (4.1) one finds that a = f5/f,
satisfies |a] < 1 in U and that

f. = (1—2%+”I:A)/(1—a).

The latter is nonzero in U since |A] < 2. Therefore f is locally univalent and

orientation-preserving.
Write

_ n _ =
f(2) = F(z) - /In|=1 2im{2n + Aarg (1- 1) dp, A =2 /m:l mdu,

where F(z) = z — 1/ + Alog|z|. Since |A| < 2, the function F belongs to %% by
Theorem 3.7. In particular, F is univalent and maps U onto C\{0}.

Since Im f = Im F, the function f o F~! carries horizontal lines into themselves.
That is, f o F~1(o + i1) = ¢(0,7) + ¢7. We shall show that d¢/3o > 0. Then it
will follow that both f o F~1 and f are univalent.

Using the Jacobian Jp = |F,|? — |F¢|%, which is positive, and the identity

oF~! _ g OImF 7
o i\ 0z F’
we compute

@_21{ (‘3‘Ref.(9F_1 __4_I dRe f OImF
90~ T\ T8z e J T U0z oz J°
Aided again by the development of (4.1), one finds that

BRef_p[ 1 iImA]

z2 z

a9z 2

for some analytic function p of positive real part, and
OlmF _ 4 1 1  4Im

oz 2 ‘

3 =

Z z
Therefore \
fole) 1 1 ImA
b‘; = J—F 1- ‘2—2 + Re Y4 > 0,

and so f is univalent. _
Finally, Im f(z) = (1 1/|2|?)Im 2 + (Im A) log 2| — 0 as |z| — 1; thus C\ f(U)
is real and f € £yg. The same proof also implies 7" C L% g. O
The following corollary is a consequence of the corresponding properties of P.

COROLLARY 4.2. YXyp 18 compact, and g s a compact conver subset. f is
a support point of L of and only of f s of the form

N
_, 1 Nk
fiz)=2z2—- 5 ’;4/\k(lmnk)arg<1 . ) ,
where A\, > 0, |nx] = 1, Zszl A =1, and ZkN=1 Ak = 0.
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REMARKS. (1) ¥ is apparently not a convex family since ImA =
-2 flnlzl Imndp appears also in the integrand. The subset of Ty consisting
of functions for which A is real is convex. One can easily develop a theory for it
that parallels the theory for £%p

(2) Let a = fz/f,. The harmomc mappings f € Ly correspond to analytic
functions a in U with |za(2)| < 1. Furthermore, mappings f € X% g correspond

to analytic functions a in U with |z2a(z)] < 1. Moreover, f is a support point of
S%g if and only if, in addition, a is a finite Blaschke product.

The function f(z) = z — 1/Z shows that the diameter Dy of C\f (U) satisfies
min Dy = min Dy = mln Dy = min Dy = 0.
= =

E’ HR
We are now concerned with max Dy.

THEOREM 4.3. The diameter Dy of C\f(U) satisfies

max Dy = ma,fo = 27.
HR E

Equalaity occurs if and only if

_ 1 1+7/z
flz)==z = +2arg<1 —i/z) .
PROOF. Let f = u+ 1w € ¥yp, 21, 22 € ﬁ, and |1 = |n2| = 1. Since
Im{f(2x)} — 0 as 2k — 7k, the diameter is Dy = sup,,, ., A(71,72), where
A(n1,m2) = limsuplu(z1) — u(z2)]

2Nk
: n/z1

= hmsup/ —2Im{2n + A}arg(————) du
ze—me Jinl=1 { 1-n/z

The functions arg((1 —n/21)/(1 — n/22)) of n are bounded as 2z — 7, and so by
Fatou’s lemma we may estimate A(ny,72) above by interchanging limsup and .

Next, the points 77; and 7, partition the circle |n| = 1 into disjoint arcs I; and
I, which we index so that arg((1 — n/n1)/(1 — n/n2)) has a constant value « for 7
on the interior of I; and « + 7 for 1 on the interior of Is. Then

A{ny,me) < —2a/ Im{2n + A} du — 2(a + 7r)/ Im{2n + A} du.
I, I3

We have tacitly included the points ny and 7, in the appropriate arcs Iy or I in
order to bound the limit superior.
Since fin!=1 Im{2n + A} du = 0, it follows that

Ay, m2) < —27r/ Im{2n + A} dp = —471'/ Imndy — 2rp(l3)Im A
12 12

=drp(l2) [ Imndp—[1—p(lz)] [ Imndu
I I

< ar{p(L)p(ly) + [1 — p(h)]u(l2)}
= 8nz(l — x)
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where z = p(l2). Since z(1 — z) < 1/4, we have A(n1,7n2) < 27. Therefore the
diameter satisfles Dy < 27.

Equality can occur only if z = p(ly) = 1/2 and 1 — z = u(J;) = 1/2 and also
only if the measure is concentrated at £7. Thus equality occurs only if the measure
has mass 1/2 at each of the points £¢. This yields the indicated extremal function,
which maps U onto the complement of the real interval [—, 7). Since the extremal
function belongs even to £% g, the maximum of Dy over Ly is also 2r. O

Our next theorem answers the question of how far the endpoints of the omitted
slit can move.

THEOREM 4.4. If f € Ty and f(U) = C\[a,b], then we have
—Re<a<0<b< Ry

where Ry = maxg<z<r 2zsinz = 2zgsinzg ~ 3.6394 and o ~ 2.0288. The equality
b = Ry occurs for the function

_ 1 . 1+e /2
fo(z) =2- 5™ 2(cos zg) log |z| — 2(sin zg)arg (m> ,

and the equality a = — Ry occurs for —fo(—z). The equalities a = 0 and b = 0
occur, for example, for f(z) =2z —1/z.
PROOF. If f € ¥}y g, then the mean values

1 27

— f(Re®)df = AlogR -0 asR—1,
27(' 0

and so it is clear that a < 0 < b. Write

f(2) = F(z) - / 2Im{2y + Aarg(l — n/z) dy

Ini=1
where
F(z)=2z-1/z + Alog|z|.

The function F belongs to X% by Theorem 3.7 and C\F(U) = {0}. If F(z)
approaches the origin on the positive real axis, then z approaches a point €' with
cos 3 > 0; in addition, Im A = —2 sin 8. It follows from the proof of Theorem 4.1
that the tip of the slit

— i (1) = 4 i —n/F~Y(t)) dy.
b= lim foF~(t)=—4 lim |m:l(lmn sin B)arg(1l —n/F~*(t)) du

On the interval (3, 8+ 2r) the function arg(1 — e*® /e*#) = 2(6 — 8+ mr) for some
odd integer m. Therefore

B+2m B+2m
b< —2/ (sinf —sin3)(8 — 8+ mm)dii = —2/ (sin8 — sin 3)0 dji
B B

for an appropriate probability measure ji on [3, 3 + 2x]|. Thus

B+2w
b< sup max —2/ O(sin @ — sin 3) du
-n/2<B<n/2H€ U
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where P is the set of probability measures on [3, 3 + 27] with the constraint

fﬂ+2ﬂ sinf du = sin 8.

Since finitely discrete probability measures are weakly dense in P, we consider
the Lagrangian

N
= -2 Z AkOi(sin 8y —sin 3) — (Z Ak — 1) (Z Ak sin @y — sinﬁ) ,

k=1 k=1
where we assume that A > 0. Differentiation with respect to Ay gives
AL
(4.2) v —20,(sin by, —sin3) — B — Csinf = 0.
k

If we denote M = maxp, —2 fﬂww 0(sin #—sin 3) du, then the sum E,Icvzl AOL /Oy
=0 becomes M = B + Csmﬂ Using this to eliminate B in (4.2), we obtain
(4.3) (C + 20,)(sin b, — sin ) = —M.

We may restrict our attention to 3 for which M > 0. In this case we have
C + 20, # 0 and sin 8 # sin 8. In particular, the endpoints 3 and 8 + 27 are not
values for ;..

Differentiation of L with respect to 8 gives

-1 0L
—)—‘;—g—é; = (C + 20;) cos O + 2(sin by — sin3) = 0.
Together with (4.3), this implies
4.4 sin @ — sin 8)? = L M cosby.
2

From this it follows that cos 6, > 0. In addition, since the functions (z —sin 3)2 and

%M v/1 — 22 are concave in opposite directions, there are at most two values for

z = sin 0 that satisfy (4.4). Furthermore, since cos 8y > 0, there are at most two

values 6 in (8, 3 + 27) that satisfy (4.4). If there were only one value ;, then the

constraint would force sin§; = sin 3 and M = 0. Thus there are exactly two values

#; and 85, which we may index so that sin#; < sin 3 < sinf; and 0 < 8; — 85 < 27.
If A=)y, thensin8 = Asin#y + (1 — A)sin s and (4.3) for k = 1,2 becomes

(1 =X)(C + 26,)(sinfy —sindy) = M
- )\(C + 202)(8111 92 — sin 01) =M.

Therefore we have
M = 2)\(1 - A)(el - 02)(sin92 - sin01)

= —4A(1 - A)(6; — 02) cos (@) sin (01 ; 02)

< max 8A\(1— A)zsinz
0<A<1
0<z<m

= max 2zsinz = 2zgsin zg.
0<z<r

Thus b < Ry = 2z sin zg. Equality occurs for the function fy given in the statement
of the theorem because fo(1) = Rp.
The inequality — Ry < a follows by applying what has been proved to — f(—z). O
For the class L}z the endpoints of the omitted slit cannot move as far as in
Theorem 4.4.
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THEOREM 4.5. If f € ¥/ and f(U) = C\[a,b], then we have
—r<a<0<b< .
Both equalities a = —m and b = 7 occur for the function
f(z2)=2z—-1/z+2arg((1+1/2)/(1 —¢/2)).

PROOF. The proof begins as in Theorem 4.4, except that now 8 = 0 and we
have the additional constraint f027r cos@du = 0. Consider therefore the Lagrangian

N N N N
L= —ZZAkaSinOk -B (Z e — 1) - CZAksinek —DZ)\kCOSBk,
k=1

k=1 k=1 k=1
where all A, > 0. As before,
(4.5) OL/ON, = =20 sinf, — B — C'sin — Dcosfy =0,

and if M denotes the maximum of our functional, then the sum Y5, Ae@L/3Xx =
0 implies M = B. Therefore (4.5) becomes

(4.6) (C +20i)sinby + DcosOp = —M
for each k.
If 6y # 0,27, then differentiation of L with respect to ) gives
(4.7 —tor = (C + 26x)cosb; + (2 — D)sinfy = 0.
Ak OO
Using (4.6) to eliminate C in (4.7}, we obtain the quadratic equation
(4.8) 2co8? 0, + Mcosf, +D—-2=0

in cos 8y for 8; # 0, 2.

If either endpoint 0 or 27 were to satisfy (4.6), then D = —M and equation (4.8)
would imply that cos 8y, equals 1 or —1 — M/2 for 8y, # 0, 2. Since we may assume
M > 0, there could be no 6, # 0,27 and so the constraint Zszl Apcosf =0
would be violated. Thus neither endpoint is possible, and (4.7) and (4.8) are valid
for all k.

It takes more than one 0 to satisfy the constraints. If there are only two, we
may index them so that 8, = ; + m. Substituting both into (4.7) and adding the
two equations, we find that cosf; = 0 or §; = /2 and 02 = 37/2. In this case the
constraints require that A\; = A2 = 1/2, and we are led to the extremal function
and bound indicated in the statement of the theorem.

It remains to eliminate the case of three or more points ;. In this case the
quadratic equation (4.8) requires that two of them have the same cosine, say #;
and f; = 2z — #;. Substituting both of these points into (4.6) and subtracting, or
into (4.7) and adding, we find that C = —2x. Therefore equation (4.7) becomes

2(6y — w)cot Oy =D — 2

for each 6 # w. Since the solution ——i—M - %\/M"’ — 8D + 16 of the quadratic
equation (4.8) must be at least —1, we also have D > M. Thus

20, —micot e > M -2>7—-2>0
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or B = m. As a result, cos ), is negative for all k, and so the constraint

N
Z Acosf, =0

k=1

is not satisfied. O
If f = u+ v belongs to £y g, then v(z) — v(—%) = 0. Therefore we may obtain
a measure of distortion for f by considering u(z) — u(—=z).

THEOREM 4.6. Ifz€ U and Re z > 0, then

(a) .
max[u(z) - u(-2)] = max{u(z) ~ u(~2)] = 2(Re 2) (1 - Tz%) + 4arg<i hs Zﬁ) ,

’
EHR HR

(b) g’lin [u(z) —u(-2)] = g}l,in [u(z) — u(—%)] = 2(Re 2) (1 - |—»;1l—2) _

HR HR
For each z, the mazima in (a) are achieved if and only if f(z) = 2 — 1/2 +
2 arg((1 +¢/2)/(1 — i/2)). In (b) the first minimum is achieved if and only if
f(z) = 2—=1/z + Alog|z| with —2 < A < 2 and the second one if and only if
f(z)=2—-1/z.
PROOF. Since

u(z) — u(~2) = 2(Re 2) (1 - |“zl'g’2") - /|m=1 2Im{2n + A}argG - Z;;) d

for f = u+1v € XyR, we have to find the maximum and minimum of
27 _ 10
I= —4/0 (sin @ — sin ﬂ)arg(i—:;—eg) di,

where sin8 = foz "sin@dji, over probability measures i on [0,27]. If w =
2iz/(1 — 2%), then Imw < 0 and

1-¢€f/z 1 2isiné 1 .

up to an integer mulitple of 2x. Therefore

27
I= —4/ (sin @ — sin B)arg(1 + wsin#) dji
(4.9) 0

1
= —4/ (z — zg)arg(l + zw) dfz,
-1

where zg = f_ll zdji and 7 is a probability measure on |1, 1].
It is convenient to write

1 1+ zow A
I—4/1(x-—z0)arg(1+zw) dii

since the function G(z) = (z — zo)arg((1 + zew)/(1 + zw)) is nonnegative on
[~1,1]. Therefore I > 0 and u(z) — u(—2z) > 2(Re 2)(1 — 1/|2]?). Equality is
possible if and only if i is concentrated where G vanishes, that is, at = zg. Since

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



UNIVALENT HARMONIC FUNCTIONS 27

the corresponding measure u on || = 1 is concentrated where Im7 is constant,
the extremal functions in ¥;g are the ones given. Since the extremal function
f(z) = z — 1/Z belongs also to X% g, the minimum problem for X% g follows from
that for Xy

To find the maximum of I, observe that G is an increasing function of |z — zg|.
Therefore, I will be a maximum only when /i is concentrated at z = +1. If A = (1),
then z¢o = 2A — 1 and from (4.9),

I =—4[A(2 - 2)\)arg(1 +w) + (1 — A)(—2X)arg(l — w)]

1-w 1-w 1+4/z
=8\(1— — )< — =4 . .
8A( /\)arg(1+w> _2arg(1+w) arg(l_z/z>
Equality occurs if and only if i has mass A =1/2at z =1 and mass 1 — A = % at
z = —1, which corresponds to the indicated extremal function. 0O

Our final applications concern coefficient problems for £ g and X% 5. We have
already seen in Theorem 3.2 that for

f(z) =2+ Alog|z| + Z anz "+ Z bpz™m,
n=1

n=1
we have
max |A| = max|4| = 2,
h Zhr
max |by| = max |b;| = max |b;| = max|b;| = 1.
Zy A Zhr TR
Indeed, the functions f(z) = z — 1/Z + Alog|z| belong to ¥/yg for |A] < 2 and to
g for A=0.
From (4.1) we obtain the representations
an = — n™"Im{2n + A}du forn > 1,
n Jini=1

a1 =b+1, and
a, =b, forn>2
More convenient will be the representation
-9 27

4.1 "
(4.10) w="2

e (sinf — sinB)du for n > 1,

where sin 8 = f02 "sin@du and u is a probability measure on [0, 27].
THEOREM 4.7. If f € g, then |a1| < 2 and for all n > 2,
lan| = |bp] < 2/n.

For odd indices the inequalities are sharp, even for X g, and equality occurs if and
only if f(2) =2z—1/z2+2 arg((1 +1/2)/(1 — ¢/2)).
PROOF. Using (4.10), we have

2 2w
< in@ — si d
< (/0 I'sin sin 3| ,u)

2
=/ sin20dp—sin265 1.
0

2

n
2n

27
S/ (sin 6 — sin 8)% du
0
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Equality could occur only if sin 8 = 0 and u were concentrated where sin?6 = 1,
that is, for the function given. Equality actually does occur for the odd coefficients,
but not for the even ones. 0O

Since the extremal functions have real coefficients and belong to X% g, the fol-
lowing is obvious.

COROLLARY 4.8. For the odd coefficients we have

max |[Re a;| = max |Re a;| = 2, max |Re b;| = max|Re b;| = 1,
El EII E/ Z//
HR HR HR HR
and
max |[Re a | = max|Re a = max |[Re b | = max|Re b | = 2
S 2n4+1 —E';’;R 2n+1 —E/HR 2n+1 —2’}’“‘ 2n41] — m+1

forn=1,2,3,....

Let us consider the even coefficients for X% 5. The estimates given in Theorem
4.7 are not sharp. To simplify the development we shall consider only their real
parts. The answers will be in terms of the Chebyshev polynomials of second kind
defined by
sin[(n + 1)4]

sinf

Un(cosf) =

or
L (—1)k(n - k)

W —amy 22"

Un (.’E) =
k=0

THEOREM 4.9. For all even coefficients we have

1 2
Iznlji(]Re aon| = gl,:iclRe bop| = ” _{Iéazxg(l —z)Uzp—1(2).

PROOF. Applying the Cauchy-Schwarz inequality to (4.10), we obtain

27 2n
(nReagy,)? < (/ sin?(2nf) du) (/ sin? 0 dy — sin? ,8)
0 0
2n 2
< / sin?(2n6) du - / sin? 0 du.
0 0

From the periodicity of sin?(2n8) and sin?#@ and the monotonicity of sin?#6 on
[0,7/2], it is sufficient to estimate

/2 7/2
[ sin’(2n8) du - / sin® 8 dp,
é 4

n

where 8, = 7/2 — 7/(2n), over probability measures on [6,,,7/2).
Consider therefore the Lagrangian

N N N
L=Y )sin®(2n8;) Y Aesin’0, — B (Z Ak — 1) :
7=1 k=1 k=1
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where A\ > 0 and 0, € [én, n/2]. Differentiation with respect to Mg gives

N

N
oL = sin® O Z A; sin®(2n8;) + sin® (2n6;) Z ), sin®@; — B = 0.

(4.11) e

7=1 7j=1

The maximum M of our functional is clearly positive, and

N
Z/\k-‘?ﬁﬂM—B:o or B=2M>0.
—F o

We now show that optimal measures have no mass at the endpoints. Indeed, if
0 were B, or /2, then sin?(2n)) = 0 and (4.11) would imply

N
0<2M =A=sin’6;, ) \;sin?(2nf;) < 1

j=1

or M < . On the other hand, the measure with unit mass at 7/2 — m/(4n) shows
that M > cos?(n/(4n)) > cos?(r/4) = 1/2.
Differentiation of L with respect to ) gives

N N
(4.12) )‘—lk aa—)i = sin(26y) ]2_:1 ); sin®(2n6;) + sin(4nfy) ]Zl A;sin?8; = 0.
That is, sin{4nf;)/sin(26;) is a negative constant for all k. The function
sin(4n8)/sin(26) is positive on the interval (8,,7/2 — n/(4n)) and negative on
(7/2 — w/(4n), 7 /2). Furthermore, on (7/2 — 7/(4n),x/2) it is strictly decreasing.
Therefore, there is only one point 8, satisfying (4.12), and it lies in the interval
(/2 ~w/{4n),7/2). As a result, we have

(4.13) (nRe az,)? < sin*(2nd,)sin4,.

The function f € ¥z whose measure consists of equal point masses at n = ¢ifn
and n = e~ "~ has coefficient ag, that achieves equality in (4.13). Therefore we
have

1 . . 1 2
gq’:i(lRe Q| = ~ Ogégw [sin(2nf) - sin @] = o _max (1 — 2*)Usp_1(x)|.

Furthermore, since Us, .1 is odd, we may omit its absolute value sign. O
We now apply Theorem 4.9 to the second and fourth coefficients. One easily
verifies that
4

— g2 = — 2 = — =
_{r%azxg(l z4)U;(x) —{%aé)(ng:E(l z) g\/f; .76980.. .,

1 2 _ 2 .2
max - (1 —z*)Us(z) = “{1;3%1213(21 - 1){1~2z%)

—1<z<1 2
V41l + 4141

= M N 46425....
25\/5
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COROLLARY 4.10. We have maxy;,  |Re ap| = maxy, [|Reby| = 2V3 and

maxsy  [Re aq| = maxy,  [Re bs| = /411 + 41V/41/(25V/5).

REMARKS. If f belongs to Xyg, then so does — f(—2) and the even coefficients
change sign. Therefore we may replace |Re ag,| by Re ag, or —Re a3, in Theorem
4.9 and Corollary 4.10. A similar statement holds for by,,. )

If 0% = 7/2 + (—1)"n/(4n), then (sin®0%)Us,_(cos@%) = cos(n/(4n)) ap-
proaches one as n — 0o. As a result, max_j<z<;(1 — 22)Uszn—1(z) approaches
one as n — 00. Thus the bounds in Theorem 4.7 are asymptotically correct for the
even coefficients.

COROLLARY 4.11. We have

lim maxnRe a2, = lim maxnRe by, = 1.

n—o0 L RO Tk

In ¥% g, Theorem 4.7 gave sharp estimates for the odd coefficients. We shall
briefly consider the even coefficients.

The function
2 1—e™/3)z

flz)=2- % - ﬁarg<T’”/3/z>

belongs to £ . It arises from the measure with mass 3 at the cube roots of —1.
Its coefficients a; = by = §. Thus the bound |b;| < § in £ from Theorem 3.2 is
sharp also in %

THEOREM 4.12. We have maxsy:  Re ay = maxsy _ Re by = maxgy  |ag| =
1 HR HR HR
maxgy  |ba| = 3

The problem for higher even coefficients in X% g is more difficult. We may write
the coefficient

2n 1
nRe ag, = / sin(2n@) sinfdu = / (1 - 23 Usp_1(2) dit
0 -1

for some probability measure 4 on [—1,1]. Since the integrand is a function only
of z = cosf, the only new constraint is fi , Zdji = 0. Thus the Lagrangian to be
optimized becomes

N
Z)\k 1- .’Ek)UQn 1 xk <Z )\k e 1) -C Z )\ka.
k=1

Ic 1

Using this technique, one obtains, for example,

18 /
max Re a4—maxRe by = 8 —3——.39436....
B il 25

The optimal measure has mass (5 — v/5)/20 at the points *e'®*, where cosf; =
V/3/40(1 + /5), and mass (5 + v/5)/20 at the points +e*%2, where cosf, =

\V/3/40(1 — /5).
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