
TRANSACTIONS OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 299, Number 1, January 1987 

UNIVALENT HARMONIC FUNCTIONS 

W. HENGARTNER AND G. SCHOBER 

ABSTRACT. Several families of complex-valued, univalent, harmonic func-
tions are studied from the point of view of geometric function theory. One 
class consists of mappings of a simply-connected domain onto an infinite hor-
izontal strip with a normalization at the origin. Extreme points and support 
points are determined, as well as sharp estimates for Fourier coefficients and 
distortion theorems. Next, mappings in /z/ > 1 are considered that leave 
infinity fixed. Some coefficient estimates, distortion theorems, and covering 
properties are obtained. For such mappings with real boundary values, many 
extremal problems are solved explicitly. 

1. Introduction. Recently, J. Clunie and T. Sheil-Small [2] studied the class 
SH of all harmonic, complex-valued, orientation-preserving, univalent mappings f 
defined on the open unit disk U, which are normalized at the origin by f(O) = 0 
and fz(O) = 1. Such functions admit the representation 

f=h+g 

where 
00 00 

h(z) = z + L ak zk and g(z) = L bkzk 
k=2 k=l· 

are analytic in U. 
One shows easily that the orientation-preserving property implies that Ibil < 1. 

Therefore (f - bd)/(l - Ib1 12 ) is also in SH and one may restrict attention to the 
subclass 

S~ = {f E SH normalized by f(O) = 0, fz(O) = 1, and h(O) = O}. 

From [2] we have the important facts that S H is normal and that S~ is compact 
with respect to the topology of locally uniform convergence. In addition, let us 
mention the following interesting result from [2]. 

LEMMA 1.1 [2, THEOREM 5.7]. A function f = h + 9 in SH maps U onto a 
convex domain if and only if the analytic function h - e2iO 9 is univalent and maps 
U onto a domain convex in the direction B for all B, 0 ~ B < 7r. 

In contrast to conformal mappings, harmonic mappings are not at all determined 
(up to normalization) by their image domains. Therefore, it is natural to study 
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2 W. HENGARTNER AND G. SCHOBER 

the class SH(D, G) of harmonic orientation-preserving univalent mappings of one 
domain D onto another domain G. We shall assume that both D and G contain 
the origin and that functions J E SH(D, G) are normalized so that 

J(O) = 0, Jz(O) > 0, and h(O) = o. 
If '0 is a conformal mapping of a domain Dl onto D2 such that '0(0) 
'0' (0) > 0, note that 

SH(Dl, G) = SH(D2 , G) 0 '0. 

o and 

For the special case D = G = U we refer to the work of G. Choquet [1], E. Heinz 
[4], and R. R. Hall [3]. 

In the next section of this article we choose the domain G to be a strip 0 instead 
of a disk and the domain D =f. C to be simply connected. Since SH(D, 0) is not 
closed, we determine the extreme points and support points of its closure SH(D, 0). 
We are able to give an isomorphism between SH(D, 0) and the familiar class P of 
analytic functions J in U with positive real part and J(O) = 1. As applications we 
give some coefficient estimates and distortion theorems. In particular, we refer to 
Theorem 2.14. 

In the third section we consider harmonic orientation-preserving univalent map-
pings defined on U = {z: Izl > 1} that map 00 to 00. Such mappings can be 
represented by 

J(z) = Alog Izl + h(z) + g(z) 
where 

00 00 

h(z) = az + L ak z- k and g(z) = 13z + L bkz-k 
k=O k=l 

are analytic in U and lal > 1131. Since the affine transformation 

(?iJ - 13J -?iao + 13ao)/(laI2 - 1(31 2 ) 

is again in the class, we may restrict our attention to the family ~~ of all harmonic 
orientation-preserving univalent mappings which have the development 

00 00 

J(z) = z + Alog Izl + L ak z- k + L bkrk. 
k=l k=l 

We show that ~~ is compact, and by Schwarz's lemma it follows that IAI ::; 2 
and Ibll ::; 1. In contrast to the familiar analytic subclass ~', but similar to the class 
S}j, support points of ~~ need not be slit mappings. In particular, for real I the 
function z + eh /z is a support point of ~~ and maps U onto {w: Iw I > 2 cosh /2)}. 
In addition, since the image domain is C\{O} when I = 11', we note that harmonic 
mappings need not preserve the conformal type of a domain. §3 closes with sharp 
lower bounds for the diameter of C\J(U) as a function of bl and with an area 
theorem. 

Finally, in §4 we study the subclass ~~R of all functions in ~~ that map U 
onto the complement of a real line segment. We show that functions in ~~R 
can be represented, but in a nonlinear fashion, in terms of probability measures 
on the unit circle. Applications include sharp coefficient estimates and distortion 
theorems, including the maximum diameter of the omitted segment. 
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UNIVALENT HARMONIC FUNCTIONS 3 

2. Harmonic mappings onto a strip. We shall use the strip 

0= {w: IImwl < 1l"/4} 

and a simply-connected domain D f. C containing the origin. Then SH(D,O) 
consists of harmonic orientation-preserving univalent mappings f = u + iv from D 
onto 0 normalized by 

u(O) = v(O) = 0, uy(O) = vx(O) = 0, and ux(O) = Vy(O) > O. 

In addition, we may represent f = h + g where hand 9 are analytic in D and 
have the expansions h(z) = 2:%"=lakzk with al > 0 and g(z) = 2:%"=2bkzk in 
a neighborhood of the origin. Since f preserves orientation, the function a(z) = 
g'(z)/h'(z) satisfies la(z)1 < 1, and the normalization implies a(O) = O. 

In this section 'l/JD denotes the conformal mapping from D onto the unit disk 
normalized by 'l/JD(O) = 0 and 'l/J~(O) > O. Since SH(D, 0) = SH(U, 0) 0 'l/JD, it is 
sufficient for many problems to consider the class SH(U, 0). Another particularly 
interesting case is D = O. Then SH(O, 0) consists of automorphisms of O. 

The following lemmas prepare for an integral representation of functions in 
SH(U, 0). 

LEMMA 2.1. Consider the Dirichlet problem for 6.v = 0 in U with boundary 
values v = 1l"/4 on an open arc r of au and v = -1l"/4 on the complementary arc, 
i.e., on au\I'. Then the only bounded solution with the normalizations v(O) = 0, 
vx(O) = 0, and Vy(O) > 0 is 

. 1 (l+Z) r={e't:O<t<1l"} and v(z)=2 arg 1-z. 

PROOF. Let r = {eit : tl < t < t2}. Then the bounded solution of the Dirichlet 
problem is 

1l" 1 [t2 eit + z v(z) = -- + - Re-.-- dt. 
4 4 tt e,t - z 

The condition v(O) = 0 implies t2 = tl + 1l", and since 

the remaining normalization forces it = 0 (modulo 21l"). Thus r and also v are as 
asserted. 0 

For z E U and 1171 = 1, define now the kernel 

K(Z,17) = r 1 + 17Z ~ 10 1 - 17Z 1 - z2 

{ 
z / (1 - z) if 17 = 1, 
z/(l + z) if 17 = -1, 

= ~ (l+17)lOg(l-17Z) _~ (l-17)lOg(l-17Z) if17f.±l. 2 1-17 1-z 2 1+17 l+z 
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4 W. HENGARTNER AND G. SCHOBER 

Then for TJ = e-2ia we define 

(1.2) 
ua(z) = ReK(z,e-2ia ) 

{ 
Re{z/(l - z)} if a = 0, 
Re{z/(l + z)} if a = 7r/2, 

= 1 (1_e- 2ia z) 1 (1-e- 2iaz) "2(cota)arg 1-z + "2 (tan a)arg l+z ifO<lal<~, 

as well as the family 

(2.2) J = {f: I(z) = Re l,l=l K(z, TJ) dJi(TJ) + ~arg (~ ~;) , Ji E p} 
where P is the set of probability measures on the Borel sets of ITJI = 1. 

LEMMA 2.2. We have SH(U,O) C J. 
PROOF. Let I E SH(U,O). Decompose I = h + g as before so that a = g' /h' 

satisfies the hypothesis of Schwarz's lemma. Note that u = ReI = Re{h + g} 
and v = 1m I = 1m {h - g}. The function v = 1m I is harmonic and bounded 
in U, and it has the normalizations of Lemma 2.1. Its boundary values are 7r/4 
and -7r/4 on complementary arcs of au. Therefore Lemma 2.1 implies v(z) 
~arg((l + z)/(l - z)) and 

At the same time, 

h'(z) - g'(z) = 2ivz (z) = _1_2 , 
1-z 

l+a(z) 1 
h'(z) + g'(z) = [h'(z) - g'(z)] 1 _ a(z) = 1- z2 P(z) 

where by the Herglotz formula p(z) = ~711=1 (1 + TJz)/(l - TJz) dJi for some measure 
Ji E P. Therefore 

u(z) = Re {foZ [h'(z) + g'(z)] dZ} = Re {foZ ~(~ ::} = Re {/711=1 K(z, TJ) dJi } 

and the lemma is proved. D 
As a first consequence we obtain the folowing interesting result. 

THEOREM 2.3. Let I = u + iv E SH(D, 0). Then ux(O) = Vy(O) = 'l/I~(O) is 
independent 01 I. In other words, we have 

00 00 

I(z) = 'l/I~(O)z + L: ak zk + L: bkzk 
k=2 k=2 

lor all IE SH(D, 0). In particular, il D = U or D = 0, then the leading coefficient 
is 1. 

PROOF. Each I E J had leading coefficient lAO) = 1, and so each I E 
SH(D,O) = SH(U, 0) 0 'l/ID C J 0 'l/ID has leading coefficient lAO) = 'l/I~(O). D 
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UNIVALENT HARMONIC FUNCTIONS 5 

REMARK. Theorem 2.3 depends strongly on the choice of image domain O. 
Indeed, it fails for example for SH(D, U). In fact, Hall [3] has shown for I(z) = 
L~l ak zk + L~2 bkzk E SH(U, U) that 

3V3 < a < 1 271" - 1 - , 

where the bounds are best possible. 
The following lemma gives properties of the family J. 
LEMMA 2.4. J is a compact convex set of normalized univalent orientation-

preserving harmonic mappings Irom U into O. 

PROOF. It is evident from the definition (2.2) that J is a compact convex set 
of normalized harmonic functions in U. If I E J, then 1m I = 1m '¢i1 1 where 
'¢i1 1 (z) = ~ log( (1 + z) I (1 - z)) maps U conformally onto O. Therefore 10 ,¢O maps 
horizontal lines in 0 into themselves. In addition, if O"+iT E 0, then (olloT)O'¢O = 
Re pO ,¢o for some function p of positive real part. Therefore I is univalent and 
orientation-preserving and maps 0 into itself. 0 

REMARKS. (1) There are harmonic mappings from U into 0 which are not in 
J. Indeed, no conformal mapping of U onto a proper subdomain of 0 can have the 
normalization of 1. 

(2) SH(U,O) =f. J. For instance, if Ji is a unit point mass at rJ = 1, then 

I (z) = Re { 1 ~ z } + ~ arg C ~ ; ) 
maps U onto the half-strip {w : Rew > -~, IImwl < 71"/4}. Therefore I E 
J\SH(U,O). 

Although functions in J do not necessarily map onto 0, we shall see that they 
map onto convex subdomains. Later, in Theorem 2.9, we shall be even more specific. 

LEMMA 2.5. II IE J, then I(U) is convex. 

PROOF. If I = h + 9 E J, then by Lemmas 1.1 and 2.4 the set I(U) will be 
convex if and only if the analytic functions h - e2iIJ g are univalent and convex in the 
direction () for all (), 0 ~ () < 71". To show the latter, it is sufficient to show that the 
functions F = ie-ilJ(h - e2ilJ g) are univalent and convex in the vertical direction. 
By [5, Theorem 1] this will be the case if Re{(l - z2)F'(z)} > O. Thus we verify 
that 

= (sin (})Re { r 1 + rJZ dJi } 
J1rJl=1 1 - rJZ 

is positive for 0 < () < 71". For () = 0 the function h - g = ~ log((l + z)/(l - z)) is 
univalent and convex. 0 

The next lemma gives a sufficient condition in order that I E J implies I E 
SH(U,O). Denote Iiall oo = sUPzEU la(z)l. 

LEMMA 2.6. II 1= h + 9 E J and Ilg'lh'lloo < 1, then I(U) = 0 and I E 
SH(U'O). 

PROOF. By Lemma 2.4 and the hypothesis that Ilhllzlloo = Ilg'lh'lloo < 1, I is 
a quasiconformal mapping of U into O. By Lemma 2.5, I(U) is convex and ifit were 
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6 W. HENGARTNER AND G. SCHOBER 

not all of 0, then 8f(U) would be a Jordan curve in C U {oo}. Consequently, the 
quasiconformal mapping f would extend [6, Theorem 1.8.2J to a homeomorphism (in 
the spherical metric) between U and f(U). However, Lemma 2.1 implies that f has 
a discontinuity at either z = 1 or z =-1. Thus f(U) = 0 and f E SH(U, 0). 0 

Finally, we are able to identify 1 as the closure of SH(U, 0). 

THEOREM 2.7. SH(U,O) = 1 andSH(D,O) = lowD. 

PROOF. SH(U,O) c 1 by Lemma 2.2. At the same time, each f E 1 has 
a measure f.1, E P which can be approximated by measures f.1,n E P so that the 
corresponding functions fn = hn+gn E 1 have Ilg~/h~lloo = II(Pn -1)/(Pn+1)lloo < 
1. By Lemma 2.6 the functions fn belong to SH(U, 0) and so SH(U, 0) = 1 follows. 
The final assertion is obvious. 0 

Theorem 2.7 is very useful for solving extremal problems on SH(D, 0). In partic-
ular, if ¢> is a real continuous convex functional on SH(D, 0), it is sufficient by the 
Krein-Milman theorem to find the maximum of ¢> over the set of extreme points. 

THEOREM 2.8. The set of extreme points of SH(U,O) is the set of functions 

(2.3) i (1 + z) fo:(z) = uo:(z) + '2 arg 1 _ z ' 
7r 7r --<a<-2 - 2' 

where Uo: is defined in (2.1). Furthermore, the image fo:(U) is 
(a) the half-strip {w EO: Rew > -D if a = 0, 
(b) the half-strip {w EO: Rew < D if a = 7r/2, 
(c) the interior of the triangle with vertices 

VI = ~ [( ~ - a) tan a + (7r - a) cot a] + i;, 
V2 = - ~ [( ~ + a) tan a + a cot a] + i;, and 
V3=~[(~-a)tana-acota]-i; ifO<a<~, and 

(d) the interior of the triangle with vertices 

VI = - ~ [( ~ + a) tan a + (7r + a) cot a] _ i;, 
V2 = ~ [(~ - a) tan a - acota] -~, and 
V3 = - ~ [( ~ + a) tan a + a cot a] + i; for - ~ < a < O. 

PROOF. Since SH(U, 0) = 1, one can easily identify the extreme points from 
the integral representation in (2.2). In particular, the mapping 

f.1,EP-tRe r K(·,'rJ)df.1, J1'11=1 

is a linear homeomorphism, and we know that the extreme points of P are unit 
point masses. Thus the extreme points are as indicated. 
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UNIVALENT HARMONIC FUNCTIONS 7 

Since the mappings are very elementary, it is clear that fo(U) and Irr/2(U) are 
the half-strips (a) and (b). Next, let 0 < a < 7r/2 and define 

a 1 (1-e- 2io.z) 
Wl (z) = - + - arg 1 ' 7r 7r -z 

1 a 1 (1- e- 2io.z) W2 (z) = - - - - - arg , and 
2 7r 7r l+z 

W3(Z) = 1 -WI (z) - W2(Z) = ! _ -.!arg (1 + z) 
2 7r 1-z 

for z E U. Then WI is the harmonic measure of the arc {ei(/: 0 < () < 2a}, W2 is the 
harmonic measure of the arc {ei(/: 2a < () < 7r}, and W3 is the harmonic measure 
of the remaining arc {e i(/: -7r < () < O}. It is straightforward to verify that 

(2.4) 

where VI, V2, and V3 are the points in (c). Thus fo.(U) consists of all proper convex 
combinations of these three points, and so (c) is verified. 

Since fo.(z) = f-o.(z), the case (d) follows from (c) by conjugating and replacing 
a by -a. 0 

REMARKS. (1) The formula (2.4) is a nice potential-theoretic representation for 
the functions f 0.. Let us give a more geometric one. Let 0 < a < 7r /2 and define 
()(z) to be the angle at z generated by the rays from z to 1 and from z to e2io.. 
Then 

Uo.(z) = ()(~~;~a + ~(tana) [W3(Z) -~], 
where W3 is the harmonic measure of the lower semicircle, defined earlier. 

(2) For 0 < a < 7r/2 we have U(7r/2)-0.(Z) = -Uo.( -z). 
(3) The extreme points of SH(D, 0) are the functions fo. 0 WD for -7r/2 < a :s; 

7r/2. 
(4) No extreme point of SH(D, 0) belongs to SH(D, O)! This follows by observ-

ing that each extreme point maps to a proper subset of O. 
The next theorem describes the functions in SH(D, O)\SH(D, 0). 

THEOREM 2.9. Let f E SH(D,O). (a) If Ref is bounded above, then feD) is 
bounded to the right by a straight line segment. 

(b) If Re f is bounded below, then f (D) is bounded to the left by a straight line 
segment. 

(c) If Re f is bounded neither from below nor from above, then feD) = 0 and 
f E SH(D,O). 

PROOF. With no loss of generality we may assume D = U. If f E SH(U, 0), 
then Theorem 2.7 and Lemma 2.5 imply that feU) is a convex subset of O. Recall 
also that f 0 wn maps horizontal lines into themselves. Therefore assertion (c) is 
obvious. 

To prove (a) we want to show that limx->oo uown(x+iy) = u*(y) is linear for Iyl < 
7r / 4. On the boundary of the subdomain 0 0 = {x + iy: x > 0, Iyl < Yo}, Yo < 7r / 4, 
the function u 0 wn is continuous except possibly for a jump discontinuity at 00 of 
amount 8 = u* (yo) -u* ( -yo). Since the harmonic function uown (x+iy) - ~ (8 /yo)y 
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8 W. HENGARTNER AND G. SCHOBER 

is continuous on aoo even at 00, the linearity of u*(y) follows, at least for Iyl < Yo. 
Since Yo is arbitrary, (a) is proved. 

The statement (b) follows by applying (a) to - f ( - z). D 
The set H(D) of complex-valued harmonic functions in D with the topology 

of locally uniform convergence forms a locally convex topological vector space. Its 
topological dual space H' (D) can be represented, for example, by complex measures 
with compact support in D. A support point of a set K C H(D) is a function fa E K 
such that for some L E H'(D) with ReL nonconstant on K we have 

ReL(fo) ~ ReL(f) for all f E K. 

Our next theorem describes the support points of SH(D, 0). 

THEOREM 2.10. The set of support points of SH(D, 0) is the set of all finite 
convex combinations of extreme points of SH(D, 0), that is, the set of functions of 
the form L~=l Ak(fO:k 0 'l/JD) where Ak > 0, L~=l Ak = 1, and fO:k is defined in 
(2.3) . 

PROOF. Again, with no loss of generality we may assume D = U. Corresponding 
to L E H'(U) we first define a real-linear function I on the analytic subspace of 
H(U) by 

I (:zRe f ) = Re{L(f) - L(I)f(O)}. 

Then L(¢;) = I(¢;) - i/(i¢;) defines a continuous complex-linear functional L on the 
analytic subspace of H(U). If f = u + iv belongs to SH(U, 0) = 1, then 

ReL(f) = l(u z ) = I ( p(z) ) = ReL ( p(z) ) 
1 - z2 1 - Z2 

for a corresponding function pEP, the family of analytic functions in U with 
positive real part and p(O) = 1. In other words, fa is optimal for Re Lover SH(U, 0) 
if and only if the corresponding Po is optimal for Re L (p( z) / (1 - z2)) over P. The 
support points of P are known (see, e.g., [8, Theorem 1]) to be generated by finitely 
discrete measures J-l E P. Thus support points of SH(U, 0) have the indicated 
form. Since our construction is reversible, the indicated functions are all support 
points. D 

COROLLARY 2.11. A function f = h + g in SH(U, 0) is a support point if and 
only if a = g' /h' is a finite Blaschke product and a(O) = O. 

PROOF. Use a = (p - 1)/(p + 1). D 
REMARKS. Note that a support point of SH(U, 0) is in SH(U, 0) if and only if 

'rJ = 1 and 'rJ = -1 are both in the support of its probability measure J-l. 
In general, if 'rJ = 1 is not in the support of the measure J-l E P, then f defined 

in (2.2) has Re f bounded above and so f E SH(U, O)\SH(U, 0). Indeed, if the 
support of J-l is contained in {eill:O < 13 :::; 101 :::; 7r}, then by (2.1), (2.2), and 
Theorem 2.8 one has 

Re f(z) :::; sup uo:(z) = sup ! [(~ - a) tan a + (7r - a)cot a] 
;3/2:510:1::;1[/2 ;3/2::;0:::;1[/2 2 2 
(7r - 13) 13 (27r - 13) 13 

= 4 tan "2 + 4 cos "2 < 00. 
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UNIVALENT HARMONIC FUNCTIONS 9 

Similarly, Re f is bounded below if rJ = -1 is not in the support of Jl. 
Unfortunately, the support of the measure Jl by itself is not sufficient to tell 

whether Ref is bounded. For example, the measure dJl(rJ) = ilImrJldargrJ is 
supported on the full circle, but its corresponding function 

1171" (1-e- iOz) i 1+z f(z) = -4 argo d(} + -2 arg--o 1 - e' z 1 - z 

maps U onto the rectangle {w E 0: IRewl < 1T2 /8}. 
Next we shall consider coefficient problems. Let f = h + 9 belong to SH(D, 0) 

and have expansions 
00 00 

(2.5) and g(z) = L bkzk 
k=2 

in a neighborhood of z = O. By Theorem 2.3 the leading coefficient a1 depends 
only on D and a1 = 'l/JD(O). Since 

h' - g' = 'l/JD/(1 - 'l/Jb), 
also the differences an - bn are independent of f and 

an = bn + ~['l/JD/(1- 'l/Jb)]n-1, n ~ 2, n 
where [ ]m denotes the mth coefficient of the function in brackets. 

In particular, if f E SH(U, 0), then 

(2.6) 

and if f E SH(O, 0), then 

(2.7) 

if n is even, 
if n is odd, 

THEOREM 2.12. If f = h+g belongs to SH(U,O) and has expansions (2.5), 
then a1 = 1 and 

if n is even, if n is even, 

if n is odd, if n is odd, 

for n ~ 2. The bounds are sharp. 

PROOF. If f = h + 9 E SH(U, 0), then 

'( ) 1 1 rJZ g z = -- --dJl 
1 - z2 1171=1 1 - rJz 

and so 

(2.8) { 
"n/2 
6k=1 C2k-l 

nbn = 
,,(n-1)/2 
6k=1 C2k 

if n is even, 

if n is odd, 
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10 W. HENGARTNER AND G. SCHOBER 

where Ck = ~111=1 r/ dll are the moments of Il· Since ICkl ~ 1, the bounds for Ibnl 
follow. Because of (2.6) the bounds for lanl follow. Equality occurs in all cases for 
the functions 

Z i 1 + Z 
fez) = Re -1- + -2 arg -1-' =t=z -z 

which arise from unit measures at 1} = ±1. 0 
REMARK. Using (2.8) and (2.6) one can describe the regions of values for coef-

ficients of functions in SH(U, 0). The region of values of a2k and b2k is the convex 
hull of the curve 

sin(kt) ikt 
2k sin t e , O~t~21r, 

for k = 1,2,3, .... Similarly, for k = 1,2,3, ... the region of values of a2k+1 is the 
convex hull of the curve 

sin(k + 1)t ikt 
(2k+1)sint e , o ~ t ~ 211", 

and the region of values of b2k+1 is the convex hull of the curve 

sin(kt) i(k+1)t 
(2k+1)sint e , o ~ t ~ 211". 

When k = 1 these regions are all disks. 
For automorphisms of 0 we have the following coefficient estimates. 

THEOREM 2.13. Let f = h + g belong to SH(O, 0) and have expansions (2.5). 
Then a1 = 1 and 

(2.9) 

where the constants Cn- 1 are defined by 

1 00 

...,....--- = '"' CkZk . 1- tanz L..., k=O 
The bounds are sharp. 

PROOF. We have already observed in Theorem 2.3 that a1 = 1. Since '¢o(z) = 
tanh z, 

I () 1 'T/ tanh z d g z = Il, 
1111=1 1 - 'T/ tanh z 

and so for n ~ 2 

nlbnl = 1I:[tanhkz]n-1 r 'T/ k dill 
k=1 J1111 =1 

n-1 n-1 
~ L I[tanhkz]n_ll = L[tank z]n_1 

k=1 k=1 

= [1- !anzL_1 
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UNIVALENT HARMONIC FUNCTIONS 11 

where we have used the fact that the coefficients of tan z are real and nonnegative. 
Because of (2.7) the same bounds are valid for nan. Equality occurs for the functions 

fez) = ±!arg(1 ± sin(2iz)) + iIm z, 
which arise from unit point measures at 'f/ = =Fi. 0 

REMARK. If we use 
x x 00 BkX2k 00 EkX2k 
"2 cot "2 = 1- L (2k)! and sec x = 1 + L (2k)! 

k=l k=l 
to generate the Bernoulli numbers Bl = ~, B2 = ;{o' B3 = 12' ... and the Euler 
numbers El = 1, E2 = 5, E3 = 61, ... , then the identity 

1 1 1 1 
--- = -2 + -2 sec(2z) + -2 cot (2z) - cot(4z) 1- tanz 

allows us to identify the constants Ck in Theorem 2.13. They are 

(64k - 16k)Bk 22k- 1 Ek 
C2k-l = (2k)!4 and C2k = (2k)! 

for k = 1,2,3, .... Thus the bounds (2.9) become 

(64k - 16k)Bk 22k- 1 Ek 
la2kl=lb2kl::; (2k)!8k and la2k+ll=lb2k+1I::;(2k+1)! 

for k = 1,2,3, ... in terms of the Bernoulli and Euler numbers. In particular, 

la21 = Ib21 ::; !, 
la41 = Ib41 ::; i, 
la61 = Ib61 ::; !~, 

la31 = Ib31 ::; i, 
la51 = Ib51 ::; i, 

la71 = Ib71 ::; ~i~· 
The next theorem is concerned with estimates of lanl and Ibnl that are valid for 

all domains D. 

THEOREM 2.14. Let f = h+g belong to SH(D,O) and have expansions (2.5). 
Then al = 1PD(O) and for all n ~ 2 

[ (2n)! 4n] I 

lanl::; 4(n!)2 + 8n 1PD(O) 

The bounds are sharp. 

PROOF. It follows from Theorem 2.3 that al = 1PD(O), and it is no loss of 
generality to assume 1PD(O) = 1. Write f = j 0 'l/JD where j E SH(U,O) has 
coefficients an and bn and 'l/JD(Z) = z + ~~=2 Anzn near z = O. Then 

n n 

(2.10) an = L ak 7rkn(A2, ... , An) and bn = L bk 7rkn (A2, ... , An), 
k=l k=2 

where the functions 7rkn are polynomials with nonnegative coefficients. 
By a theorem of K. Lowner [7, p. 121] the coefficients Am are dominated by the 

coefficients of the function 
1- 2z - V1- 4z 

1PDo(Z) = 2z . 
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12 w. HENGARTNER AND G. SCHOBER 

The function 'I/J Do is inverse to the familiar function 'I/J r;! (z) = z / (1 + z) 2 that maps 
U onto the domain Do consisting of the plane slit along the positive real axis from 
1/4 to 00. Since 'l/JDo has positive coefficients and the estimates of Theorem 2.12 
are sharp for the function 

z i 1 + z 
f 0 (z) = Re 1 _ z + "2 arg 1 - z' 

which has positive coefficients, it follows from (2.10) that an and bn are dominated 
by the corresponding coefficients of fo 0 'l/JDo = ho + 90. That is, an and bn are 
bounded by the corresponding coefficients of 

1 1 1 ~ [ (2n)! 4 n ] n ho(z) = - - - -log(1- 4z) = L- -- + - z 
4V1 - 4z 4 8 n=1 4(n!)2 8n 

and 
1 1 1 00 [( 2n)! 4 n ] n go(z) = - - + -log(1- 4z) = L -- - - z . 

4V1 - 4z 4 8 n=1 4(n!)2 8n 
The bounds are sharp for 

1 1 1 i 
fo 0 'l/JDo (z) = -Re - -2 - -4arg(1- 4z). 0 

2 V1 - 4z 
Our next application concerns the extremal problems 

(2.11) max[u(z) - u( -z)] and min[u(z) - u( -z)], 

where z E U is fixed and f = u + iv varies over SH(U, D). Observe that v(z) = 
v( -z) = ~arg((1 + z)/(1 - z)) for all f. 

If z is purely imaginary, then z = -z and the extremal problems (2.11) are 
trivial. Assume therefore that Re z 1= O. 

Since the extremal problems (2.11) are linear, it is sufficient to find the extreme 
values over the set of extreme points of SH(U, D), that is, 

max[u,,(z) - u,,( -z)] and min[u,,(z) - u,,( -z)]. 
" " 

After the substitutions t = sin 20: and w = 2iz / (1 - z2) these become 
1 

max -arg(1 + tw) and 
-1::;t::;1 t 

where w is fixed, 1m w 1= 0, and arg 1 = O. 

min !arg(1 + tw), 
-1::;t::;1 t 

LEMMA 2.15. For fixed (), 0 < I()I < 7r, let <p1)(t) = targ(1 + teil)) with arg(1) = 
o and <PI)(O) = sin(). Then <PI) has the following properties. 

(a) <PI) is a Coo function on R. 
(b) limt-->±oo <p1)(t) = O. 
(c) <P-I) = -<PI). 
(d) <P7r-I)(t) = <PI) (-t) for 0 < () < 7r, and <P-7r-I)(t) = <Po(-t) for -7r < () < o. 
(e) <Po ( -Itl) :s; <po(lti) for -7r/2 :s; () < 0 or 7r/2 :s; () < 7r, and <Po ( -Itl) ~ <Po(ltl) 

for -7r < () :s; -7r /2 or 0 < () :s; 7r /2. 
(f) The equation <Po(t) = 0 has exactly one solution t = T(()) for 0 < I()I < 7r. 
(g) T(()) = T( -()) < 0 for 0 < I()I < 7r/2, T(()) = T( -()) > 0 for 7r/2 < I()I < 7r, 

and T( ±7r /2) = O. 
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UNIVALENT HARMONIC FUNCTIONS 13 

(h) If ° < () < 7r, then ¢o is positive, increasing for -00 < t < 7((}), and 
decreasing for 7((}) < t < 00. If -7r < () < 0, then ¢o is negative, decreasing for 
-00 < t < 7((}) and increasing for 7((}) < t < 00. 

PROOF. Properties (a), (b), (c), (d), and (e) follow easily from the definition. 
In preparation for (f) note that 

t2¢~(t) = -1m { 1 +lteiO } - arg(l + teiO ) 

and 
3 /I { 3 + 4teiO } iO t ¢o (t) = 1m (1 + teiO )2 + 2 arg(l + te ). 

So if 7 is a critical point, then 

First restrict () E (0,7r/2). If ¢~(7) = 0 for a 7 > 0, then ¢(f(7) < ° and we 
would have a strict local maximum at 7. Only one such point would be possible, 
and we would have ¢~(o) ~ 0. But ¢~(o) = -~sin2(} < 0, so that a critical point 
7 ~ ° is not possible. Suppose next that ¢9(7) = ° for a 7 E (-cos(},O). Then 
¢(f (7) > ° and we would have a strict local minimum. This, too, is impossible since 
¢o is positive, limt ...... oo ¢o(t) = 0, and ¢o has no local maximum to the right. The 
point t = - cos () is not a critical point since 

¢~( - cos(}) = -(sec2(}) [tan (~ - ()) - (~ - ())] < 0. 

Finally, if ¢~ ( 7) = ° for a 7 < -cos (), then ¢(f ( 7) < ° and we have a strict local 
maximum. Only one such critical point 7 = 7((}) can appear, and so (f) is proved 
for () E (0,7r/2). 

If () = 7r/2, then ¢~/2(7) = -2/(1 + 7)2 < ° at each critical point. Hence there 
is only one. In fact, ¢~/2(7) = ° if and only if 7 = 0. 

The remaining cases of (f) and properties (g) and (h) now follow by applying 
properties (c) and (d). 0 

On the basis of Lemma 2.15 we may conclude the following. For ° < () < 7r/2, 

For 7r/2 < () < 7r, 

For () = 7r /2, 

max ¢ (t) _ {¢o(lwl) if 7((}) ~ Iwl, 
Itl:'Olwl ° - ¢O(7((})) if 7((}) < Iwl· 

min ¢7r/2(t) = ¢7r/2(±lwl) and max ¢7r/2(t) = ¢7r/2(0) = l. 
Itl:'Olwl Itl:'Olwl 
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14 W. HENGARTNER AND G. SCHOBER 

THEOREM 2.16. Let f = u + iv belong to SH(U,D) and set w = IwleiO = 
2iz/(1- z2). For 0 < 101 < rr define 

(I-iz)2 
A(z)=-arg I- z2 ' 

{ 
(I+iz)2 

arg 1- z2 
B(z) = 21z1 

11 _ z214>0(r(0)) 

. 21z1 
ifr(0)~II_z21' 

. 21z1 
if r( 0) < I 21 ' I-z 

where 4>o(t) = (I/t)arg(I + te iO ), 4>0(0) = sinO, and t = T(O) is the unique solution 
of the equation 4>o(t) = O. Then 

(a) 2 arg(1 + ix) :::; lu(x) - u( -x)1 :::; 2x/(I - x2) if - 1 < x < 1, 
(b) A(z):::; lu(z) - u(-z)1 :::; B(z) iflmz > 0, and 
(c) A(z) :::; lu(z) - u( -z)1 :::; B(z) if 1m z < O. 

PROOF. If Re z = 0, the estimates are all trivial. Assume, therefore, that 
Re z =f. O. We shall use the relations 

min !arg(I + tw) = min Iwl4>o(t) and max !arg(l + tw) = max Iwl4>o(t), 
-1:S;t:S;1 t JtJ:S;JwJ -19:S;1 t JtJ:S;JwJ 

A(z) = Iwl4>o( -Iwl) 

B(z) _ { Iwl4>o(lwl) if r(O) ~ Iwl, 
- Iwl4>o(r(O)) if T(O) < Iwl, 

B( -z) = -B(z) 
and the extrema developed above. 

and A(z) = Iwl4>o(lwl), 

B(z) - { Iwl4>o( -Iwl) 
- Iwl4>o(r(O)) 

and B( -z) = -B(z), 

First, if z = x E (0,1), then w = (2x/(I - x2 ))ei7r / 2 and so 

if T(O) :::; -Iwl, 
if T(O) > -Iwl, 

2 arg(I + ix) = Iwl4>7r/2(±lwl) :::; u(x) - u( -x) :::; Iwl4>7r/2(0) = 2x/(I - x2). 

Furthermore, if z = x E (-1,0), it follows that -x E (0,1) and 

2 arg(I - ix) :::; u( -x) - u(x) :::; -2x/(1 - x2). 

These inequalities can be written more concisely as (a). 
Consider next the case z = Izleir with 0 < 1 < rr/2. Then w = 2iz/(1 - z2) = 

IwleiO where rr /2 < 0 < rr and we have the bounds 

A(z) :::; u(z) - u( -z) :::; B(z). 

Furthermore, if z = Izlei""Y where rr /2 < 1 < rr, then we can apply these estimates 
to -z: 

A( -z) :::; u( -z) - u(z) :::; B( -z). 
Since A( -z) = -A(z) and B( -z) = -B(z), these bounds can be written compactly 
as (b). 

Finally, consider the case z = Izleirwith -rr/2 < 1 < O. Thenw = 2iz/(1-z2 ) = 
IwleiO where 0 < 0 < rr /2 and we have the bounds 

A(z):::; u(z) - u(-z):::; B(z). 
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Furthermore, if z = Izlei , where -7r < I < -7r 12, then we can apply these estimates 
to -z: 

A( -z) ::; u( -z) - u(z) ::; B( -z). 
Since A( -z) = -A(z) and B( -z) = -B(z), these bounds can be written as (c). 0 

In each case we remark that the inequalities are sharp. 

3. Harmonic mappings of fJ. First we find the form of harmonic mappings 
of fJ = {z: Izl > I} for which 1(00) = limz-+oo I(z) exists as 00. 

LEMMA 3.1. Let I be a complex-valued, harmonic, orientation-preserving, uni-
valent mapping 01 fJ with 1(00) = 00. Then I has the representation 

00 00 

I(z) = o:z + j3z + Alog Izl + L ak z - k + L bkz-k, 
k=O k=1 

where 0 ::; 1,81 < 10:1. In addition, a = hi Iz is analytic and satisfies la(z)1 < 1. 

PROOF. Since I is harmonic and 1(00) = 00, it has the representation 

I(z) = h(z) + g(z) + A log Izl, 

where 
00 00 

h(z) = L akz - k and g(z) = L bkz-k 
k=-oo k=-oo 

are analytic in fJ and A E C. 
The orientation-preserving property implies that the Jacobian I/zl2 - liz? IS 

nonnegative, and so 

Ih(z)1 = Ig'(z) + AI(2z)1 ::; I/Az)1 = Ih'(z) + AI(2z)l· 
If the latter were to vanish identically, then I would be constant and not univalent. 
Therefore 

a(z) = 2zg'(z) + A 
2zh'(z) + A 

is analytic in fJ and la(z)1 ::; 1. If la(z)1 = 1 at some point, then the maximum 
principle would imply g' (z) - e2h h' (z) = 1 (e2h A - A) I z. On the left the coefficient 
of II z is zero. Therefore 9 = e2h h + c, where c is a constant. As a result, 

ei'[/(z) - c] = 2 Re{ ei, h(z)} + Aei, log Izl 

would not cover a full neighborhood of 00. Therefore la(z)1 < 1 and la(oo)1 < 1 for 
the analytic extension. 

The mapping I is a quasiconformal mapping on Izl > R for each R > 1. By 
the distortion theorem for such mappings (see [6, Chapter II, §3]) we have I/(z)1 = 
O(lzI K ) as z -> 00 for each real number K > (1 + la(oo)I)/(I-la(oo)l). It follows 
that the Fourier coefficients a_n and Ln are all zero for n > K. Therefore the 
singular part of I at 00 is of the form 

-1 -1 

L akz- k + L bkZ-k + A log Izi. 
k=-N k=-N 
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16 W. HENGARTNER AND G. SCHOBER 

If a-N =I- 0, then ILNI < la-NI since la(oo)1 < 1 and 

I(ReilJ ) = a_NRNeiNIJ [l + (LNla_N)e-2iNIJ +0(1)] as R ---+ 00. 

In this case I is univalent only if N = 1 and we have the conclusion of the lemma. 
The alternative would be that I has the form 

I(ReilJ ) = A log R + 0(1) as R ---+ 00, 

in which case I could not cover a neighborhood of 00. D 
By applying an affine post-mapping to I we may normalize I so that 0: = 1, 

f3 = 0, and ao = 0. Therefore let I:~ be the set of all harmonic, orientation-
preserving, univalent mappings 

(3.1) I(z) = h(z) + g(z) + Alog Izl 
of fJ, where 

00 00 

h(z) = z + L ak z- k and g(z) = L bk Z - k 
k=1 k=1 

are analytic in fJ and A E C. The subclass with no logarithmic singularity will be 
denoted by I:'k: 

I:'k = {f E I:~: A = O}. 
The following estimates are essentially a consequence of Schwarz's lemma. 

THEOREM 3.2. (a) II I E I:~, then IAI::; 2 and Ib11::; l. 
(b) II IE I:'k, then Ib1 1::; 1 and Ib21::; ~(1-lbI12)::;~. 
PROOF. We shall use the bounds Iwol ::; 1 and IWll ::; 1 - Iwol2 for analytic 

functions w(z) = Wo + WIZ-1 + ... in fJ that are bounded by one. 
If I E I:~ has expansion (3.1), then 

( ) = 2zg'(z) + A = !-A -1 _ (b !IAI2)-2 
a z 2zh'(z) + A 2 z 1 + 4 z 

- [2b2 - ~Aal - ~Abt - ~AIAI2] z-3 + ... 

is analytic in fJ and la(z)1 < 1 by Lemma 3.1. The maximum principle implies that 
w(z) = za(z) is also bounded by one, and so I~AI ::; 1 and Ib1 + ilAI21 ::; 1-I~AI2. 
The latter implies I b1 1 ::; 1. 

If I belongs to I:'k, then A = 0, 

a(z) = -b1z- 2 - 2b2z-3 +"', 
and w(z) = z2a(z) is bounded by one. Therefore Ib11 ::; 1 and 12b21 ::; 1-lbI12. D 

The coefficient bounds in Theorem 3.2 are all sharp. Equality in (a) is attained, 
for example, by the function 

I(z) = z - liz + 210g Izl, 
which maps fJ onto C\{O}. For a proof that I belongs to I:~ see Theorem 3.7. 
In the proof of part (a) we could have observed also that b1 must lie in a disk of 
radius 1- ilAI2 about the point -iIAI2. 
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In (b) the bound for b1 is sharp for the function 

f(z) = z + ei"llz, 

which maps U onto the exterior of the (possibly degenerate) circle Iwl = 2cosh/2). 
In addition, the bound for b2 is attained by the function 

f(z) = z + 1/(2z2). 

REMARK. In contrast to the classical analytic families Sand E, the functions 
above show that support points of EH and E'H need not be slit mappings. Further-
more, f(U) may not be conformally equivalent to U. 

The following lemma contains a distortion estimate for a class of locally quasi-
conformal mappings. 

LEMMA 3.3. Let f be a diffeomorphism of U satisfying 

(a) 

(b) 

Ifz(z)1 ~ Izllfz(z)1 for all z E U, 

f(z) = z + O(lzl,B) for some f3 > 1 as z ----> o. 
Then for all z E U we have 

If(z)1 ~ IzI/[4(1 + IzI)2]. 
In particular, the disk {w: Iwl < 1~} is contained in f(U). 

PROOF. In their paper [2, Theorem 4.4] Clunie and Sheil-Small proved Lemma 
3.3 for harmonic mappings f = h + g satisfying (a) and (b). But their proof applies 
equally well to the present situation. One only replaces hi by fz and g' by fz. D 

An immediate consequence is the following distortion theorem for the nonvan-
ishing class 

E~ = {f - c: f E EH and c rt f(U)}. 

THEOREM 3.4. If f(z) = z-c+Aloglzl+ E%"=l akz-k+ E%"=l bkz-k belongs 
to E~, then 

If(z)1 ~ 4(1 + Izl)2/1z1 for all z E U, 

f(U) contains the set {w: Iwl > 16}, and Icl ~ 16. 

PROOF. If f belongs to E~, then j(z) = 1If(1/z) is a diffeomorphism of U 
that satisfies 

(a) Ijz(z)l/ljZ(z)1 = la(l/z)1 ~ Izl for z E U, 

(b) j(z) = z - Az2log z + O(lzI2) as z ----> o. 
Therefore Lemma 3.3 applies to j, and the first two conclusions follow. In addition, 

I - c + A log RI = 12~ fo27r f(Rei9 ) dol ~ 4(1 + R)2 I R 

for all R > 1. Let R approach 1 to obtain lei ~ 16. D 
The bound for c is equivalent to the following. 
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18 W. HENGARTNER AND G. SCHOBER 

COROLLARY 3.5. Iff belongs to ~~, then f(U) contains the set {w: Iwl > 16}. 

The next result concerns compactness of our families. 

THEOREM 3.6. The families ~~, ~~, and ~'iI are compact with respect to the 
topology of locally uniform convergence. 

PROOF. By Theorem 3.4 the families are locally uniformly bounded families 
of harmonic functions, hence normal. If {fn} is a convergent sequence in one of 
these families and In --+ I, then f is harmonic and Iz(oo) = 1. To see that f is 
univalent, we use the fact that each fn satisfies (fnh = an(fn)z where an is analytic 
and satisfies lan(z)1 :::; 1/14 That is, each fn is a Kwquasiconformal mapping in 
Izl > R, R > 1, with KR = (R + l)/(R - 1). Limits of such mappings are either 
univalent or constant. Since fAoo) = 1, the function f is univalent. Furthermore, 
the normalizations are preserved. 0 

In the examples following Theorem 3.2 we have seen that it is possible for the 
diameter of the omitted set C\f(U) to be zero for f in ~~ or ~'iI. The following 
theorem contains a sharp lower bound for this diameter depending on the coefficient 
b1· 

THEOREM 3.7. If f E ~~, then the diameter Df of C\f(U) satisfies 

Df 2': 211 + bll· 
This estimate is sharp for 
(3.2) f(z) = z + bdz + Alog Izl 

whenever Ib11 < 1 and IAI :::; (1 - Ib I 12)/11 + bll, Ibil = 1 and A = 0, or bi = -1 
and IAI ::; 2. 

PROOF. Let Df(R) be the diameter of f(lzl = R), R > 1, and let Dj(R) = 
maxlzl=R If(z) - f( -z)l· Then Df(R) "" Df as R --+ 1 and Df(R) 2': Dj(R). Since 

Dj(R)2 2': ~ r2rr If(ReiO ) - f( - ReiOW dO 
27r 10 

= 4 [IR + b1R- 112 + la11 2 R-2 + ~(la2k+112 + Ib2k+112)R-2(2k+1) 1 
> 41R + b R-112 _ I , 

we conclude that Df 2': 211 + b11. 
For the given parameters bi and A the function (3.2) maps U onto the exterior 

of the circle Iwl = 11 + bil and shows that the bound is sharp. To see that the 
mapping is univalent either observe that it maps the circles Izl = R, R > 1, onto 
an increasing family of (possibly nonconcentric) circles or note that it is a local 
homeomorphism since its Jacobian is positive and is one-to-one on circles near au. 0 

Note that we have proved the apparently stronger bound 
(Xl 

Df 2': 2 11 + b112 + I)la2k-112 + Ib2k+11 2). 
k=1 

Corresponding to the classical area theorem is the following. 
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THEOREM 3.8. If f E E~ has expansion (3.1), then 
00 

L k(l akl 2 -lbkI 2) :s: 1 + 2 Reb1. 
k=1 

Equality occurs if and only if C\f(U) has area zero. 

PROOF. The area of the omitted set is 

11 - [11 - 11 - ] lim -2' f df = lim -2 . hh' dz + -2 . gg' az + 27r Re b1 
R--->1 Z izi=R R--->l Z izi=R Z izi=R 

= 1r [1- ~ k(lakl2 -lbkI2) + 2 Reb1] 2 O. 0 
REMARKS. (1) Since the Jacobian Ifzl2 - Ihl2 is nonnegative, we have also 

00 

1 + L k2(l akl 2 -lbkI 2) 2 O. 
k=1 

19 

(2) In the next section we shall see that functions f E E~ which map U onto 
complements of real line segments satisfy 

a1 = 1 + b1 and ak = bk for k 2 2. 

4. Mappings onto complements of real line segments. We now restrict 
our attention to functions in E~ or E'H that map U onto complements of (possibly 
degenerate) real line segments. Denote 

E~fR = {f E E~: C\f(U) C R} and E'ffR = {f E E'H: C\f(U) C R} 
where R is the real line in the complex plane. Of course, E'HR C E~R' 

For f = u + iv in E~R we have necessarily v = 0 on au, and the normalization 
at 00 gives 

v(z) = 1m z + r(z) + (1m A) log Izl 
where r is harmonic and vanishes at infinity. Solving the Dirichlet problem for r, 
we conclude that r(z) = Im{l/z} and therefore 

v(z) = Im{z + liz} + (1m A) log Izi. 
In the representation (3.1) it follows that Im{h(z) + g(z)} = Im{z + liz}. Taking 
derivatives with respect to z, we obtain 

h'(z) - g'(z) = 1- Z-2. 
In Lemma 3.1 we proved that 

a(z) = 2zg'(z) + A 
2zh'(z) + A 

is analytic in U and satisfies 1 a( z) 1 < 1. Therefore p = (1 + a) 1(1 - a) is analytic 
and has positive real part. Since p( z) = 1 + AI z + ... , we have the Herglotz 
representation () 1 l+rJlzd p z = 11 

i'IJi=l 1 - rJlz 
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for some probability measure J.1, on 11]1 = 1; in addition, A = 2 ~'71=11] dJ.1,. 
We will use the identities 

h'(z) + g'(z) = 1 + a(z) [h'(Z) _ g'(z) + i(ImA)] _ Re A 
1 - a(z) z z 

= p(z) [1- ~ + i(ImA)] _ Re A 
z2 Z Z 

= r (l+1]/z[l_~+i(ImA)]_ReA)dJ.1, J1'71=1 l-1]/z z2 z z 

1 ( 21]-A (21]2- 1 + 21]ilmA)z-TJ) d 
= 1+--+ J.1, 

1'71=1 z z2(z-1]) 
= 1 + r (2TJ2 - 1 + 21]ilmA)z - TJ dJ.1, 

J1'71=1 Z2(Z_1]) 
to represent 

u(z) - (Re A) log Izl = Re {h(z) + g(z)} 

= Re {z + /~ [h'(z) - 1 + g'(z)J dZ} 

R { 1 j z (21]2 - 1 + 21]i 1m A)z - 1] d d } = e z+ 2 z J.1, 
1'71=1 00 Z (z - TJ) 

=Re{z+ r [2(1]-~+ilmA)lOg(1-!r)-~] dJ.1,} J1'71=1 TJ Z Z 

= Re {z -~} - r 2 Im{2TJ + A}arg (1-!r) dJ.1,. 
z J1'71=1 Z 

Therefore 

(4.1) l(z)=u(z)+iv(z)=z-~+Aloglzl- r 2Im{21]+A}arg(1-!r) dJ.1,. 
z J1'71=1 Z 

Denote 

l' = {f: I(z) = z - ~ + A log Izl- r 2 Im{21] + A}arg( 1-!r) dJ.1" 
z J1'71=1 z 

and 

A = 2 r fj dJ.1" J.1, E p} J1'71=1 

1" = {I E 1': A = 21 fj dJ.1, = o} . 
1'71=1 

What we have derived is that 

E~fR C l' and E'JfR C 1". 
The next theorem shows that we even have equality. 
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THEOREM 4.1. We have ~~R = l' and ~'J.rR = 1". 
PROOF. Let f E 1'. Then f is harmonic in U and has the required normalization 

at infinity. By reversing the steps in the derivation of (4.1) one finds that a = hi fz 
satisfies lal < 1 in U and that 

fz = (1 - z12 + i I: A) 1(1 -a). 

The latter is nonzero in U since IAI ::::; 2. Therefore f is locally univalent and 
orientation-preserving. 

Write 

f(z)=F(z)- r 2Im{217+A}arg(1-.2) d/-l, J1rtl =1 z 
where F(z) = z - liz + A log Izi. Since IAI ::::; 2, the function F belongs to ~~ by 
Theorem 3.7. In particular, F is univalent and maps U onto C\{O}. 

Since 1m f = 1m F, the function f 0 F- 1 carries horizontal lines into themselves. 
That is, f 0 F-1 ((7 + iT) = ¢( (7, T) + iT. We shall show that oN 0(7 > O. Then it 
will follow that both f 0 F- 1 and f are univalent. 

Using the Jacobian h = IFz 12 - IFz12, which is positive, and the identity 

of- 1 = ~ (OlmF) IJ 
0(7 i oz F, 

we compute 

o¢ = 2 Re {O Re f . 0 F- 1 } = ~ 1m { 0 Re f . 0 1m F} . 
0(7 oz 0(7 JF oz oz 

Aided again by the development of (4.1), one finds that 

oRef ='!!.[l_~+ilmA] 
oz 2 z2 Z 

for some analytic function p of positive real part, and 

o 1m F = i [1 _ ~ _ i 1m A] . 
oz 2 z2 Z 

Therefore 
o¢ 1 1 1 iIm A 12 - = - 1 - - + -- Re p > 0, 0(7 JF z2 Z 

and so f is univalent. 
Finally, 1m f(z) = (1- 1/1z12)lm z + (1m A) log Izl ----+ 0 as Izl ----+ 1; thus C\f(U) 

is real and f E ~~R' The same proof also implies 1" C ~'J.rR' 0 
The following corollary is a consequence of the corresponding properties of P. 
COROLLARY 4.2. ~~R is compact, and ~'J.rR is a compact convex subset. f is 

a support point of ~'J.rR if and only if f is of the form 
N 

f(z) = z - ~ - I: 4Ak(lm l7k)arg( 1 - ~) , 
k=1 

where Ak 20, 117kl = 1, L~=1 Ak = 1, and L~=1 Akl7k = O. 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



22 W. HENGARTNER AND G. SCHOBER 

REMARKS. (1) I:~R is apparently not a convex family since ImA = 
-2 ~t71=1 Im'f} dM appears also in the integrand. The subset of I:~R consisting 
of functions for which A is real is convex. One can easily develop a theory for it 
that parallels the theory for I:'jlR' 

(2) Let a = h/ fz. The harmonic mappings f E I:~R correspond to analytic 
functions a in iJ with /za(z)/ ~ 1. Furthermore, mappings f E I:'jlR correspond 
to analytic functions a in iJ with /z2a(z) / ~ 1. Moreover, f is a support point of 
I:'jlR if and only if, in addition, a is a finite Blaschke product. 

The function f(z) = z - l/z shows that the diameter Df of C\f(iJ) satisfies 

minDf = minDf = min Df = min Df = O. 
E~ E~ E~R E~R 

We are now concerned with max Df . 

THEOREM 4.3. The diameter Df of C\f(iJ) satisfies 

~ax Df = ~:uc Df = 27r. 
EHR EHR 

Equality occurs if and only if 

f (z) = z - ~ + 2 arg ( ~ ~ ~~;) . 

PROOF. Let f = u + iv E I:~R' Zl, Z2 E iJ, and /'f}l/ = /'f}2/ = 1. Since 
Im{f(zk)} --+ 0 as Zk --+ 'f}k, the diameter is Df = sUPt7"t72 tl('f}1,'f}2), where 

tl('f}l, 'f}2) = limsup[u(zd - U(Z2)] 

= lim sup r _2Im{2'f}+A}arg(1-'f}~Zl) dM. 
Zk->t7k i 1t71 =1 1 - 'f} Z2 

The functions arg((l - 'f}/zd/(l - 'f}/Z2)) of'f} are bounded as Zk --+ 'f}k and so by 
Fatou's lemma we may estimate tl('f}b'f}2) above by interchanging lim sup and J. 

Next, the points 'f}l and 'f}2 partition the circle /'f}/ = 1 into disjoint arcs It and 
h which we index so that arg((l - 'f}/'f}d/(l - 'f}/'f}2)) has a constant value Q: for 'f} 
on the interior of It and Q: + 7r for 'f} on the interior of 12. Then 

tl('f}b 'f}2) ~ -2Q: r Im{2'f} + A} dM - 2(Q: + 7r) r Im{2'f} + A} dM. iI, iI2 
We have tacitly included the points 'f}l and 'f}2 in the appropriate arcs It or h in 
order to bound the limit superior. 

Since ~t71=1 Im{2'f} + A} dM = 0, it follows that 

tl('f}l, 'f}2) ~ -27r r Im{2'f} + A} dM = -47r r Im'f} dM - 27rM(I2)lm A ih ih 

= 47r {M(I2) 1, Im'f} dM - [1 - M(h)] 12 Im'f} dM} 

~ 47r{M(I2)M(Id + [1 - M(I2)]M(I2)} 
= 87rx(1 - x) 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



UNIVALENT HARMONIC FUNCTIONS 23 

where x = J.l(h). Since x(l - x) ~ 1/4, we have ~(171,172) ~ 271". Therefore the 
diameter satisfies Df ~ 271". 

Equality can occur only if x = J.l(I2) = 1/2 and 1 - x = J.l(Id = 1/2 and also 
only if the measure is concentrated at ±i. Thus equality occurs only if the measure 
has mass 1/2 at each of the points ±i. This yields the indicated extremal function, 
which maps U onto the complement of the real interval [-7I",7I"J. Since the extremal 
function belongs even to L:,'HR' the maximum of Df over L:,'HR is also 271". 0 

Our next theorem answers the question of how far the endpoints of the omitted 
slit can move. 

THEOREM 4.4. If f E L:,'a-R and f(U) = C\[a, b], then we have 

-Ro ~ a ~ 0 ~ b ~ Ro 

where Ro = maxO$x$11" 2x sin x = 2xo sin Xo ~ 3.6394 and Xo ~ 2.0288. The equality 
b = Ro occurs for the function 

1 (l+e- iXo /z) fo(z)=z-=-2(cosxo)loglzl-2(sinxo)arg . / ' z 1 + etxo z 
and the equality a = -Ro occurs for - fo( -z). The equalities a = 0 and b = 0 
occur, for example, for f(z) = z - l/z. 

PROOF. If f E L:,'a-R' then the mean values 

1 [211" 
271" 10 f(Re iO )dB = AlogR ~ 0 as R ~ 1, 

and so it is clear that a ~ 0 ~ b. Write 

f(z)=F(z)- [ 2Im{217+A}arg(1-17/z)dJ.l 
11'11=1 

where 
F(z) = z - l/z + Alog Izl. 

The function F belongs to L:,'a- by Theorem 3.7 and C\F(U) = {O}. If F(z) 
approaches the origin on the positive real axis, then z approaches a point ei (3 with 
cos{3 ~ 0; in addition, ImA = -2 sin{3. It follows from the proof of Theorem 4.1 
that the tip of the slit 

b= lim foF-1(t)=-4 lim [ (Im17-sin{3)arg(1-17/F-1(t))dJ.l' 
t-->O+ t-->O+ 11'11=1 

On the interval ({3, {3 + 271") the function arg(l- eilJ /e i (3) = ~(B - {3 + m7l") for some 
odd integer m. Therefore 

[(3+211" [(3+211" 
b ~ - 2 1(3 (sin B - sin {3)( B - {3 + m7l") djL = - 2 1(3 (sin B - sin {3)B djL 

for an appropriate probability measure jL on [{3, {3 + 271"J. Thus 

1(3+211" 
b ~ sup max -2 B(sinB - sin{3) dJ.l 

-11" /2$(3$11" /2I-'EPf3 (3 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



24 W. HENGARTNER AND G. SCHOBER 

where P{3 is the set of probability measures on [;3,;3 + 21r] with the constraint 
J:+ 27r sin B dj.t = sin;3. 

Since finitely discrete probability measures are weakly dense in P, we consider 
the Lagrangian 

L = -2 t AkBdsinBk - sin;3) - B (t Ak - 1) - C (t Ak sinBk - sin;3) , 
k=l k=l k=l 

where we assume that Ak > O. Differentiation with respect to Ak gives 

(4.2) :~ = -2BdsinBk - sin;3) - B - CsinBk = O. 

If we denote M = maxPil -2 J:+27r B(sin B-sin;3) dj.t, then the sum 2::::~=1 haL/aAk 
= 0 becomes M = B + Csin;3. Using this to eliminate B in (4.2), we obtain 
(4.3) (C + 2Bk)(sinBk - sin;3) = -M. 

We may restrict our attention to ;3 for which M > O. In this case we have 
C + 2Bk f. 0 and sin Bk f. sin;3. In particular, the endpoints ;3 and ;3 + 27l" are not 
values for Bk. 

Differentiation of L with respect to Bk gives 

~: :~ = (C + 2Bk) cos Bk + 2(sin Bk - sin;3) = O. 

Together with (4.3), this implies 
(4.4) (sinBk - sin;3)2 = ~M cosBk . 

From this it follows that cos Bk > O. In addition, since the functions (x - sin;3) 2 and 
~M vI - x 2 are concave in opposite directions, there are at most two values for 
x = sin Bk that satisfy (4.4). Furthermore, since cos Bk > 0, there are at most two 
values Bk in (;3,;3 + 27l") that satisfy (4.4). If there were only one value B1, then the 
constraint would force sin B1 = sin;3 and M = O. Thus there are exactly two values 
B1 and B2, which we may index so that sin B1 < sin;3 < sin B2 and 0 < B1 - B2 < 27l". 

If A = A1, then sin;3 = AsinB1 + (1- A)sinB2 and (4.3) for k = 1,2 becomes 
(1- A)(C + 2Bt}(sinB2 - sinBt) = M, 

- A(C + 2B2)(sinB2 - sinBt} = M. 
Therefore we have 

M = 2A(1 - A)(B1 - B2)(sinB2 - sinBd 

= -4A(1 - A)(B1 - B2) cos (B1 ; B2) sin (B1 ; B2 ) 

~ max 8A(1 - A)X sin x 
0<>-<1 
OSxS7r 

= max 2x sin x = 2xo sin Xo. 
O:S;X:S;7r 

Thus b ~ Ra = 2xo sin Xo. Equality occurs for the function fa given in the statement 
of the theorem because fo(1) = Ra. 

The inequality -Ro ~ a follows by applying what has been proved to - f( -z). 0 
For the class 2:,'kR the endpoints of the omitted slit cannot move as far as in 

Theorem 4.4. 
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THEOREM 4.5. If f E '£/kR and f(U) = C\[a, b], then we have 

-7r ::::; a ::::; 0 ::::; b ::::; 7r. 

Both equalities a = -7r and b = 7r occur for the function 

f(z) = z - l/z + 2arg((l + i/z)/(l- i/z)). 

25 

PROOF. The proof begins as in Theorem 4.4, except that now f3 = 0 and we 
have the additional constraint J~1r cos () dll = o. Consider therefore the Lagrangian 

L = -2 t, Ak(}k sin (}k - B (t, Ak - 1) - C t, Ak sin (}k - D t, Ak cos (}k, 

where all Ak > O. As before, 

(4.5) 8L/8Ak = -2(}ksin(h - B - Csin(}k - DCOS(}k = 0, 

and if M denotes the maximum of our functional, then the sum 2::=1 Ak8L/8Ak = 
o implies M = B. Therefore (4.5) becomes 

(4,6) (C + 2(}k)sin(}k + DCOS(}k =-M 

for each k. 
If (}k -:j:. 0, 27r, then differentiation of L with respect to (}k gives 

(4.7) 
-18L 
Ak 8(}k = (C + 2(}k) cos (}k + (2 - D) sin (}k = O. 

Using (4.6) to eliminate C in (4.7), we obtain the quadratic equation 

(4.8) 2 cos2 (}k + M cos (}k + D - 2 = 0 

in cos (}k for (}k -:j:. 0, 27r. 
If either endpoint 0 or 27r were to satisfy (4.6), then D = -M and equation (4.8) 

would imply that cos (}k equals 1 or -1 - M /2 for (}k -:j:. 0, 27r. Since we may assume 
M > 0, there could be no (}k -:j:. O,27r and so the constraint 2::=1 Ak cos (}k = 0 
would be violated. Thus neither endpoint is possible, and (4.7) and (4.8) are valid 
for all k. 

It takes more than one (}k to satisfy the constraints. If there are only two, we 
may index them so that (}2 = (}1 + 7r. Substituting both into (4.7) and adding the 
two equations, we find that cos (}1 = 0 or (}1 = 7r /2 and (}2 = 37r /2. In this case the 
constraints require that A1 = A2 = 1/2, and we are led to the extremal function 
and bound indicated in the statement of the theorem. 

It remains to eliminate the case of three or more points (}k. In this case the 
quadratic equation (4.8) requires that two of them have the same cosine, say (}1 
and (}2 = 27r - (}1. Substituting both of these points into (4.6) and subtracting, or 
into (4.7) and adding, we find that C = - 27r. Therefore equation (4.7) becomes 

2( (}k - 7r )cot (}k = D - 2 

for each (}k -:j:. 7r. Since the solution - -! M - -! J M2 - 8D + 16 of the quadratic 
equation (4.8) must be at least -1, we also have D ~ M. Thus 

2((}k -7r)cot(}k ~ M - 2 ~ 7r - 2> 0 
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or Ok = 7r. As a result, cos Ok is negative for all k, and so the constraint 
N 

L AkCOS Ok = 0 
k=l 

is not satisfied. 0 
If f = u + iv belongs to E~R' then v(z) - v( -z) = O. Therefore we may obtain 

a measure of distortion for f by considering u(z) - u( -z). 

THEOREM 4.6. If z E fJ and Re z > 0, then 
(a) 

max[u(z) - u(-z)) = max[u(z) - u(-z)) = 2(Re z) (1- -1112 ) +4arg (1 +~jZ), 
E~fR E'ffR Z 1 - z z 

(b) lllin[u(z) - u(-z)J = lll,in[u(z) - u(-z)J = 2(Re z) (1- -1
112)' 

EHR EHR z 

For each z, the maxima in (a) are achieved if and only if f(z) = z - liz + 
2 arg( (1 + i I z) I (1 - i I z)). In (b) the first minimum is achieved if and only if 
f(z) = z - liz + Alog Izi with -2 :s: A :s: 2 and the second one if and only if 
f(z) = z - liz. 

PROOF. Since 

u(z) - u(-z) = 2(Re z) (1- Iz~2) -l71=1 2 Im{21] + A}argG ~ ~j;) dJi 

for f = u + iv E E~R' we have to find the maximum and minimum of 

1271' (l-eiOlz) I = -4 (sin 0 - sin ,8)arg o 1_ dji, 
o 1 + et z 

where sinj3 = fg71' sin 0 dji, over probability measures ji on [0, 27rJ. If w = 
2izl(l- z2), then Imw < 0 and 

( 1 - eiO I z ) ( 1 2i sin (I ) ( 1 ) . argo I = arg 1 - 2 - -- = arg 1 - 2 + arg( 1 + w sm 0) 
1 + et z z z z 

up to an integer mulitple of 27r. Therefore 

r271' 
I = -4 } 0 (sin 0 - sin ,8)arg( 1 + w sin 0) dji 

= -4 [11 (x - xo)arg(1 + xw) dp.., 
(4.9) 

where Xo = f~l xdp.. and p.. is a probability measure on [-1, IJ. 
It is convenient to write 

/
1 (1 + xow) ~ 1=4 (x - xo)arg dJi 

-1 1 + xw 
since the function G(x) = (x - xo)arg((1 + xow)/(1 + xw)) is nonnegative on 
[-I,IJ. Therefore I ~ 0 and u(z) - u( -z) ~ 2(Re z)(1 - l/lzI2). Equality is 
possible if and only if p.. is concentrated where G vanishes, that is, at x = Xo. Since 
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the corresponding measure J-l on 1171 = 1 is concentrated where 1m 17 is constant, 
the extremal functions in ERR are the ones given. Since the extremal function 
f(z} = z - liz belongs also to E'lrR' the minimum problem for E'lrR follows from 
that for ERR. 

To find the maximum of I, observe that G is an increasing function of Ix - xol. 
Therefore, I will be a maximum only when fl is concentrated at x = ±l. If A = fl(1}, 
then Xo = 2A - 1 and from (4.9), 

1= -4[A(2 - 2A}arg(1 + w} + (1 - A)( -2A}arg(1- w}] 

= 8A(1- A}arg(~ ~ :) ~ 2arg(~ ~ :) = 4arg(~ ~ ~j;) . 
Equality occurs if and only if fl has mass A = 1/2 at x = 1 and mass 1 - A = ~ at 
x = -1, which corresponds to the indicated extremal function. 0 

Our final applications concern coefficient problems for ERR and E'lrR. We have 
already seen in Theorem 3.2 that for 

00 00 

f(z} = z + A log Izl + L anz-n + L bnz-n, 
n=l n=l 

we have 
max IAI = max IAI = 2, 
E~ E~fR 

max Ibll = max Ibll = max Ibll = max Ibll = l. 
E~ E'j, E~R E'j,R 

Indeed, the functions f(z} = z - l/z + A log Izl belong to ERR for IAI ~ 2 and to 
E'lrR for A = o. 

From (4.1) we obtain the representations 

an = -i r 17 nIm{217 + A} dJ-l for n ;::: 1, 
n J1fJ1=l 

al = bl + 1, and 
an = bn for n ;::: 2. 

More convenient will be the representation 

(4.1O) an = - Z eino(sinO - sin,8} dJ-l 2 ·127r 

n 0 
for n ;::: 1, 

where sin,8 = J~7r sin 0 dJ-l and J-l is a probability measure on [0,27r]. 
THEOREM 4.7. If f E ERR' then lall ~ 2 and for all n;::: 2, 

lanl = Ibnl ~ 2/n. 
For odd indices the inequalities are sharp, even for E'lrR' and equality occurs if and 
only if f(z} = z - l/z + 2 arg((l + i/z}/(l - ilz}}. 

PROOF. Using (4.1O), we have 
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Equality could occur only if sin f3 = 0 and {l were concentrated where sin2 () = 1, 
that is, for the function given. Equality actually does occur for the odd coefficients, 
but not for the even ones. 0 

Since the extremal functions have real coefficients and belong to E'kR' the fol-
lowing is obvious. 

COROLLARY 4.8. For the odd coefficients we have 

max IRe all = max IRe all = 2, 
I:~R I:~R 

max IRe bll = max IRe bll = 1, 
E~R E~R 

and 

for n = 1,2,3, .... 

Let us consider the even coefficients for E~R' The estimates given in Theorem 
4.7 are not sharp. To simplify the development we shall consider only their real 
parts. The answers will be in terms of the Chebyshev polynomials of second kind 
defined by 

or 

U ( ()) _ sin[(n + 1)B] 
n cos - . () sm 

[n/2] (-1)k(n-k)! n-2k 
Un(x) = L k!(n _ 2k)! (2x) . 

k=O 

THEOREM 4.9. For all even coefficients we have 

1 2 max IRe a2nl = max IRe b2n l = - max (1- X )U2n-l(X). 
I:~R I:~R n -1:Sx:9 

PROOF. Applying the Cauchy-Schwarz inequality to (4.10), we obtain 

(nRea2n)2::; (127r Sin2(2n())d{l) (127r Sin2()d{l-Sin2f3) 

::; 127r sin2 (2n()) d{l . 127r sin2 () dJ1. 

From the periodicity of sin2(2n()) and sin2 () and the monotonicity of sin2 () on 
[0,11" /2], it is sufficient to estimate 

where On = 11"/2 - 1I"/(2n) , over probability measures on [On' 11"/2]. 
Consider therefore the Lagrangian 
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where Ak > 0 and ()k E [en, 11"/2]. Differentiation with respect to Ak gives 

N N 
:: = sin2 ()k L AJ sin2(2n()j) + sin2(2n()k) L Aj sin2 ()j - B = o. 

k j=1 j=1 
(4.11) 

The maximum M of our functional is clearly positive, and 

N aL L Ak aA = 2M - B = 0 or B = 2M > o. 
k=1 k 

We now show that optimal measures have no mass at the endpoints. Indeed, if 
()k were en or 11"/2, then sin2(2n()k) = 0 and (4.11) would imply 

N 

0< 2M = A = sin2 ()k L AJ sin2(2n()j) < 1 
j=1 

or M < ~. On the other hand, the measure with unit mass at 11"/2 - 11"/ (4n) shows 
that M ~ cos2 (11"/(4n)) ~ cos2(11"/4) = 1/2. 

Differentiation of L with respect to ()k gives 

N N 
: :: = sin(2()k) L AJ sin2(2n()j) + sin(4n()k) L Aj sin2 ()j = O. 

k k j=1 j=1 
( 4.12) 

That is, sin(4n()k)/sin(2()k) is a negative constant for all k. The function 
sin( 4n()) / sin(2()) is positive on the interval (Bn, 11"/2 - 11"/ (4n)) and negative on 
(11" /2 - 11"/( 4n), 11"/2). Furthermore, on (11"/2 - 11"/ (4n), 11"/2) it is strictly decreasing. 
Therefore, there is only one point On satisfying (4.12), and it lies in the interval 
(11"/2 -11"/(4n), 11"/2). As a result, we have 

(4.13) 

The function f E ~~R whose measure consists of equal point masses at rt = eiOn 

and rt = e- iOn has coefficient a2n that achieves equality in (4.13). Therefore we 
have 

Furthermore, since U2n-1 is odd, we may omit its absolute value sign. 0 
We now apply Theorem 4.9 to the second and fourth coefficients. One easily 

verifies that 
4 

max (1 - X 2 )U1(x) = max 2x(1 - x2 ) = -9J3 = .76980 ... , 
-1~x~1 -1~x~1 
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~j3 and 

REMARKS. If J belongs to ~lfR' then so does - J( -z) and the even coefficients 
change sign. Therefore we may replace IRe a2nl by Re a2n or -Re a2n in Theorem 
4.9 and Corollary 4.10. A similar statement holds for b2n . 

If B~ = rr/2 + (-1)nrr/(4n), then (sin2B~)U2n_l(CosB~) = cos(rr/(4n)) ap-
proaches one as n -> 00. As a result, max_1:Sx::;1(1 - X2)U2n_1(X) approaches 
one as n -> 00. Thus the bounds in Theorem 4.7 are asymptotically correct for the 
even coefficients. 

COROLLARY 4.11. We have 

lim max n Re a2n = lim max n Re b2n = 1. 
n---+CX) E~R n---+oo E~R 

In ~'h:R' Theorem 4.7 gave sharp estimates for the odd coefficients. We shall 
briefly consider the even coefficients. 

The function 
1 2 ( 1 - e1ri / 3 / z ) 

J(z) = z - = - Marg /3/ Z v 3 1 - e-1rt z 

belongs to ~'h:R' It arises from the measure with mass ~ at the cube roots of -1. 
Its coefficients a2 = b2 = ~. Thus the bound Ib2 1 :::; ~ in ~'h: from Theorem 3.2 is 
sharp also in ~'h:R' 

The problem for higher even coefficients in ~'h:R is more difficult. We may write 
the coefficient 

121r /1 nRea2n= sin(2nB)sinBdJ.l= (l-X2)U2n- 1(X)dit 
o -1 

for some probability measure it on [-1,1]. Since the integrand is a function only 
of x = cos B, the only new constraint is J~1 x dit = O. Thus the Lagrangian to be 
optimized becomes 

Using this technique, one obtains, for example, 

18ffo maxRe a4 = maxRe b4 = - - = .39436 .... 
E~R E~R 25 10 

The optimal measure has mass (5 - J5) /20 at the points ±e iIl1 , where cos B1 
\1'3/40(1 + J5), and mass (5 + J5)/20 at the points ±eiIl2 , where cosB2 

\1'3/40(1 - J5). 
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