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Abstract 
It is known that multiquadric radial basis function approximations can reproduce low 
order polynomials when the centres form an infinite regular lattice. We make a start 
on the interesting question of extending this result in a way that allows the centres to 
be in less restrictive positions. Specifically, univariate multiquadric approximations are 
studied when the only conditions on the centres are that they are not bounded above or 
below. We find that all linear polynomials can be reproduced on R, which is a simple 
conclusion if the multiquadrics degenerate to piecewise linear functions. Our method of 
analysis depends on a Peano kernel formulation of linear combinations of second divided 
differences, a crucial point being that it is necessary to employ differences in order that 
certain infinite sums are absolutely convergent. It seems that standard methods cannot 
be used to identify the linear space that is spanned by the multiquadric functions, partly 
because it is shown that this space provides uniform convergence to any continuous 
function on any finite interval of the real line. 



1. Introduction 

A radial basis function approximation has the form 

s(x) = L ,\i </>(llx-xill2), x E IRd, 
j 

(1.1) 

where { x j} is a fixed set of points in IRd, where each ,\j is a real coefficient, 

and where</> is a fixed function from JR+ to IR. Thuss is a linear combination 

of translates of the spherically symmetric function { </>(llxll 2 ) : x E IRd}. In 
general </> does not have finite support, the simplest choice being the identity 

{ </>( r) = r : r 2: 0}. Hardy ( 1971) recommends an extension to this choice 

that avoids first derivative discontinuities, namely the "multiquadric" radial 

function 

ef>(r) = Vr2 + c2
, r 2: O, (1.2) 

where c is a constant. It is very suitable in several practical calculations, and 

we are going to study some of its properties. 

Much of the recent theory of radial basis function approximation addresses 

the case when the set of "centres" {xi} is the integer lattice zd CIR d. The use

fulness of this case in practice is limited by the fact that it is more convenient 

to employ tensor product spline methods because of the finite support of B

splines, but some of the theoretical properties of multiquadric approximations 

on the infinite regular grid are stunning. In particular, the linear space of ap

proximating functions, that is a consequence of the freedom in the coefficients 

{,\j}, includes all polynomials of degreed. This result was discovered by Jack

son (1987) when c=O and dis odd, and it has been extended to all real c and 

all positive integers d by Buhmann (1988). Their analysis depends strongly 

on properties of Fourier transforms that are derived from the regular lattice. 

It seems possible, however, that the ability to reproduce all polynomials of 

degree d does not require the centres to form a regular grid. This conjecture 

is highly important to the development of general algorithms for multivariable 

approximation, because orders of accuracy are closely related to polynomial 

reproduction, and because radial basis functions are far more versatile than 

spline functions for fitting data at irregular points. Here we have in mind that 

the form (1.1) does not require IRd to be divided into regions, so there are no 

continuity conditions to be satisfied on interfaces between regions, which can 

cause severe difficulties when piecewise polynomials are employed. 

The answer to the polynomial reproduction conjecture is known when c= 0 

and d= 1, because in this case expression (1.1) is a piecewise linear function. 

If the centres are the infinite set { Xj : j E Z} arranged in strictly ascending 

order, then, for every j, the set of approximating functions includes the "hat" 
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function 

1Pi(x) = ~X-Xj-11) _ (xJ+1 -Xj-1) lx-xjl + ~X-XJ+1I), 
2 Xj-Xj-1 2(xj-Xj-1)(xJ+1-Xj) 2 Xj+1-Xj 

x E JR, (1.3) 

which satisfies the "cardinality conditions" { tpj(xk) = 8jk : k E Z}. Hence the 

formula 

s(x)=="'£J(xj)1Pj(x), xEJR, (1.4) 
jeZ 

yields s == f when f is any linear polynomial, provided that the infinite se

quences { Xj : j == 1, 2, 3, ... } and { X_j : j = 1, 2, 3, ... } both diverge. The 

generalization of the hat function to multiquadrics is the expression 

tf;·( ) _ </>(lx-Xj-11) _ (x1+1-Xj-1) </>(lx-xjl) </>(lx-x1+1I) 
J X - 2(Xj-Xj-1) 2(Xj-Xj-1)(XJ+1-Xj) + 2(Xj+1-Xj)' 

x E lR, (1.5) 

where c is usually nonzero in the definition (1.2). We are going to prove that, 

for general c, formula (1.4) gives s = f when f is any linear polynomial, without 

any further restrictions on the positions of the centres { x j : j E Z}. In other 

words, Buhmann's polynomial reproduction result for multiquadrics when d = 1 

does not require the spacing between centres to be uniform. Unfortunately, 

most of our work is confined to the univariate case. 

Some care is needed to ensure that each approximating function { s( x) : 
x E lR} is well-defined. Therefore, whenever we employ expression (1.1) or 

(1.4), we require the relevant sum to be absolutely convergent for all x. This 

condition defines an admissible set of approximating functions. The set that 

stems from the form (1.1) when d == 1 is studied in Section 2. We find that 

it does not contain any nonzero polynomials, even when c = 0. In Section 3, 

however, the B-spline representation of second order divided differences shows 

that the form (1.4) yields an admissible set that includes all linear polynomi

als, but no approximations to quadratic polynomials have uniformly bounded 

errors. Instead one could seek a reasonable approximation to a quadratic on 

a finite interval [ a, b] of lR. A generalization of this question is addressed in 

Section 4, where it is shown that, if c =f. O, then any continuous function can 

be approximated uniformly on [a, b], in stark contrast to the cases when either 

c== 0 or [a, b] is replaced by lR. These results are discussed briefly in Section 5 

with an application to the multivariable case. 

2. The set of approximations So 

Throughout the remainder of the pa per we let d = 1, and we let the centres be 

fixed points that satisfy the conditions that have been stated already, namely 
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that { Xj : j E Z} is a set of real numbers in strictly ascending order that 

is unbounded both above and below. Further, </> is the multiquadric radial 

function (1.2), where e is a constant that is allowed to be zero. In this section 

the coefficients {Aj : j E Z} of the expression 

00 

s(x) = L Aj</>(lx-xil), xE1R, (2.1) 
j=-oo 

have to satisfy the condition that the sum is absolutely convergent for every x. 

A convenient form of this restriction is given in the following lemma. We define 

So to be the set of functions s that are admitted by the condition on { Aj}, and 

we are going to investigate whether So includes any nonzero polynomials. 

Lemma 1. The function (2.1) is in So if and only if the sum Ei IAjXjl is finite. 

Proof: If s E S0 , then the sum (2.1) is absolutely convergent when x = O, 
which implies the inequality 

00 00 

L IAj Xj I ~ L IAj </>(lxil)I < oo (2.2) 
i=-oo j=-oo 

as required. Conversely, if Ei IAjXjl is the finite number A1, say, then, for any 

x E JR, we have the relation 

00 

L IAj </>(lx-xjl)I < L IAj </>(lx-xjl)I + V2 L IAj (x-xj)I 
j=-oo jEI(x) itl(x) 

< L IAj </>(lx-xil)I + 2./2 A1, (2.3) 
jel(x) 

where I( x) is the set 

I(x) = {j: Ix-xii< lei} U {j : lxil < lxl}, (2.4) 

Expression (2.3) is bounded because, for each x, the number of elements in 

I(x) is finite. Therefore the lemma is true. Ill 

It follows from this lemma that S0 is a linear space. Further, by giving 

special attention to the finite set {j : lxil < 1}, one can deduce that the sum 

Ei 1\1 = Ao, say, is bounded. The definitions of A0 and A1 imply the inequality 

00 

ls(x)I ~ L IAjl (Ix-xii+ lcl) ~(Ix!+ lei) Ao+ A1, xEJR. (2.5) 
j=-oo 

Therefore, ifs is a polynomial, its degree is at most one. 
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Now, ifs is a nonconstant linear polynomial, then ls(x)-s(-x)I diverges 

as X--t oo, but l<P(lx-xjl)-<P(I- x-xjl)I remains finite. This remark provides 

a relation that excludes linear polynomials from So, namely the condition 

00 

ls(x) - s(-x)I - I L .\;[<P(lx-xjl) - <P(lx+xjl)] I 
j=-oo 
00 

< L l.\jl h/(x-xj)2 + c2 - /(x+xj)2 + c21 
j=-oo 

where the prime indicates that we drop any zero terms from the sum. It 

remains to consider whether s E So can be a nonzero constant function. 

In this case s would be bounded. Therefore the elementary inequality 

00 

ls(x)I = I L Aj/(x-xj)2 + c2 I 
j=-oo 

00 00 

I L Aj Ix-xii+ L Aj [/(x-xj)2 + c2 
- lx-xjl] I 

j=-oo j=-oo 
00 00 00 

> I L Aj lxl I - L l>..i Xjl - L l.\i cl 
j=-oo j=-oo i=-oo 

00 

- lxl I L Aj I - A1 - lei Ao (2.7) 
i=-oo 

gives Ei Aj = O, which allows us to write s in the form 

00 

s(x) = L Aj [/(x-xj)2 + c2 - vx2 + c2] 
j=-oo 

oot 2 ·+ 2 _ ~ , . - XX 3 Xj 
LJ /\ 3 , x E JR. 

i=-oo v(X-Xj)2 + c2 + VX2 + c2 
(2.8) 

Letting x --t -oo and x --t +oo, it follows that s(x) --t Ei AjXj and s(x) --t 

- Ei AjXj respectively, which implies the limit 

lim[s(x) +s(-x)] = 0. 
X-+00 

(2.9) 

Therefore s is not a nonzero constant function. 
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These results suggest that multiquadric radial functions are unsuitable for 

the approximation of nonzero constant and linear polynomials. On the other 

hand, we know that these polynomials can be reproduced when c = 0 and for 

nonzero c when {x;} is the set Z (Buhmann, 1988). The explanation of this 

apparent contradiction is that the linear space 80 is too small to include the 

most useful multiquadric approximations. Therefore a larger space is found in 

the next section that repairs this deficiency. 

3. The set of approximations 8 2 

We consider functions of the form 

00 

s(x) = I: µ; "Pi(x), x ElR, 
i=-oo 

(3.1) 

where each "Pi is defined by equation (1.5). Therefore s can be regarded as a 

multiquadric approximation whose centres are still the points {xi : j E Z}. In 

order that s is well-defined, we require the coefficients {µi : j E Z} to have the 

property that the sum (3.1) is absolutely convergent for every x. In this case 

we say that s is in the set 82• 

We recall that, when c=O, "Pi is the hat function (1.3). Thens ES2 imposes 

no restriction on the coefficients {µ;} because, for each x, there are at most two 

nonzero terms in the sum (3.1). In particular, 82 includes the piecewise linear 

interpolant (1.4) that satisfies s = f when f is any linear polynomial, which 

answers the question that is raised in the final paragraph of Section 2. The 

remainder of this section, however, addresses the more interesting case when c 

is nonzero, so the multiquadric radial function { </>(r) = (r2 +c2
)

112 
: r E lR} has 

continuous second derivatives. It is important to note that we can write </>(r) 
instead of </>(lrl) when r is negative. 

Our method of analysis requires the function (3.1) to be expressed in terms 

of </>". We use the B-spline representation of second divided differences 

where g is any twice differentiable function and where Bi is the hat function 

BJ
·(O) = IO-xi-1 I _ (x;+1 -Xi-1) IO-xil + IO-x;+1 I , () lR ( ) 

( ) ( ( ) ( ) 
E , 3.3 

2 Xi-Xi-1 2 Xi-Xi-1) Xj+1-Xi 2 Xj+1-Xi 

satisfying the normalization condition Bi(xi) = 1 as in equation (1.3). It 

is straightforward to establish the identity (3.2) by integration by parts (see 
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Powell, 1981, for instance), the actual range of integration on the right hand 

side being [xj-i,Xj+ 1] because of the finite support of Bj, We make the choice 

{g(t)=</>(x-t): tEJR} for each xEJR, in order to deduce from equation (3.2) 

that the definition (1.5) can be written in the form 

1/;;(x) = ! 1: Bi(O)</>"(x-O)dO, xEJR. (3.4) 

Since analytic differentiation of the multiquadric radial function provides the 

values 

</>'(r) = r/Jr2 +c2 
} 

, rEJR, 
</>"(r) = c2/(r2+c2)3/2 

we have the expression 

( ) 
i 2100 Bi( 0) d 

1Pi x = 2 c -oo [ (x-0)2 + c2 J3/2 {}, 

Thus 1Pi is positive and the need for the assumption c i: 0 is clear. 

(3.5) 

(3.6) 

Now, when s E 82 , the sum (3.1) is absolutely convergent. Therefore, 

because the integrand of expression (3.6) is nonnegative, we can express s in 

the form 

( ) 
i 2100 K ( 0) 

s x = z c -oo [ (x-0)2 + c2 ]3/2 d(}, xEJR, (3.7) 

where K is the function 

00 

K(O) = L µiBi(O), OEJR. (3.8) 
i=-oo 

Remembering the definition (3.3) of Bj, we see that K is just the piecewise 

linear interpolant to the coefficients {µi : j E Z} at the centres { Xj : j E Z}. 

This observation is only a small step away from our main conclusion that the 

set 82 contains all linear polynomials, once we have proved a result that is 

analogous to Lemma 1. 

Lemma 2. Tbe function (3.1) is in tbe set 8 2 if and only if the function 

00 

K(O) = L lµil Bj(O) (02+c2t 3!2, OEIR, (3.9) 
i=-oo 

is absolutely integrable. 

Proof: Ifs E 82 , then the sum (3.1) is absolutely convergent when x = 0. It 

follows from equation (3.6) that we have the bound 

(3.10) 
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which shows the absolute integrability off<. Conversely, if f IK(O)I d(} is the 

finite number A3 , say, then for any x E lR we find the inequality 

i=-oo 

_ 1 c2 J00 Li !µii Bi(O) dO 
2 -oo [ (x-0)2 + c2 ]3/2 

< 1 2 f LilµilBi(O) dO v'2 2A 

2 c li(:c) [ (x-0)2 + c2 ]3/2 + c 3, (3.11) 

where J( x) is the set of values of () that satisfy the condition 

(3.12) 

Since J(x) is bounded for each x, it follows that the right hand side of expres

sion (3.11) is finite for each x, which gives the required result. II 

The characterization of the functions in 8 2 that is provided by the lemma 

is more convenient than the original definition of 8 2 • Moreover, the lemma 

implies that 8 2 is a linear space. It is now straightforward to prove the principal 

results of this section, which are stated in two theorems. 

Theorem 3. If the coefficients of expression (3.1) have the values {µi = 1 : j E 

Z}, then s is in the linear space 8 2, and it is the constant function { s( x) = 1 : 

x E JR}. In other words the functions { 1Pi : j E Z}, which a.re positive because 

of equation (3.6), form a partition of unity. 

Proof: The values {µj = 1 : j E Z} and the definition (3.9) imply that f< is 

the absolutely integrable function {(02+c2)-3/2 : OElR}, sos is in 82. Further, 

equations (3.7) and (3.8) and some elementary algebra yield the identity 

s(x) - ~c
2
1-:[(x-0)

2
+c

2J-3' 2ae 

- ! c2 1-: ( 02 + c2t3/2 dO 

- i [o Iv o2 + c2 ] 00 
2 -oo 

1, xElR. 

Therefore the theorem is true. 111111 

(3.13) 

Theorem 4. If f is any linear polynomial, then formula. (1.4) yields a function 

in 8 2 , and we have s = f. 

Proof: Let f be the polynomial {ax+b: x E JR}, so formula (1.4) gives the 

coefficients {µi =a Xj+b: j E Z}. It follows that the function (3.9) is absolutely 
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integrable, which implies s E S2• In this case expression (3.8) has the value 

{K(O)=aO+b: OEJR}. Therefore equation (3.7) leads to the relation 

s(x) - ! c2 
[: (a O+b) [ (x-0)2 + c2 J-312 d(} 

- !c2 [:[(ax+b)-a0](02 +c2t 312 d(} 

- ax+ b, xEJR, (3.14) 

where the last line is a consequence of the identity (3.13) and the fact that the 

integral of an odd function is zero. The proof is complete. • 

Letting i be any integer, the choice of coefficients {µj=lxj-Xil: jEZ} in 

equation (3.1) is also remarkable. Lemma 2 states that they give an element 

of S2, and a straightforward calculation shows that it is the function { s( x) = 

[ ( x- Xi )2 + c2 ]112 =</>(Ix- Xi I) : x E JR}. Further, if we have the values 

00 

µj = I: ,\i jxj-Xij, j E Z, (3.15) 
i=-oo 

where the sums I:i l,\il and I:i l,\ixil are absolutely convergent, thens remains 

in S2 and it is expression (2.1). Therefore the set S0 that is studied in Section 

2 is a linear subspace of S2• 

The final result of this section is that the elements of S2 are unsuitable 

for the approximation of quadratic polynomials. Indeed, the statement of 

the following lemma shows that the average value of an element of S2 on the 

interval [O, M] becomes much less than the average value of a positive quadratic 

polynomial on the same interval as M ~ oo. 

Lemma 5. Ifs is any element of S 2 , then it satisfies the condition 

lim M-3 fMs(x) dx = 0. 
M-+oo Jo 

(3.16) 

Proof: Equation (3. 7) provides the identity 

lM 1M ioo K(O) 
s(x) dx = f c2 

[ ( B) 2 2 ]3/2 d() dx, 
O x=O 6=-oo X- + C 

(3.17) 

and Lemma 2 gives the condition 

J
oo IK(O)I 

-oo (02+c2)3/2 dB= .6. 
(3.18) 
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for some finite number .6.. When O satisfies IOI;::: 2M in equation (3.17), we 

deduce from O < x < M that the denominator [ ( x-0)2+c2 ]312 is bounded below 

by [ }02+}c2 ]312. Therefore expressions (3.17) and (3.18) imply the inequality 

rM 1 2 1M r2M K(o) 
I Jo s(x)dxl::; 2 c [I :v=olo=-2M[(x-0)2+c2]3!2d0dxl+BM.6.]. (3.19) 

By changing the order of integration and making use of the elementary relations 

1 2 {M 1 
0:::; 2 c Jo [ (x-0)2+c2 )3/2 dx < 1, (3.20) 

we deduce the bound 

1M 12M I s(x)dxl::; IK(O)ld0+4M.6.c2. 
o -2M 

(3.21) 

For any positive constant t that satisfies t < .6., we define T by the equation 

1

T IK(O)I 
-T (02+c2)3/2 dO = .6.-t. (3.22) 

If 2M:::; T, we are going to employ the inequality 

1
2M 

-2M IK(O)I dO 

(3.23) 

while, if 2M > T, we use the relation 

1
2M 

-2M IK(O)I dO < (T2+c2)3/2 (.6.-t:) + 1-T IK(O)I dO + f
2
M IK(O)I dO 

-2M }T 

:::; (T2+c2)3/2(.6.-t:)+(4M2+c2)3/2 f IK(O)I dO 
}101'?:.T ( 02 +c2)3/2 

(T2+c2)3/2 (.6.-t:) + (4M2+c2)3/2 t. (3.24) 

It follows from condition (3.21) that we have the bound 

The right hand side tends to St: as M--+ oo. Hence the lemma is a consequence 

of the fact that the positive constant t: can be arbitrarily small. II 
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4. Uniform convergence on compact intervals 

Lemma 5 shows that, if s E S2 and if f is a quadratic polynomial, then the 

error 

llf-slloo = sup{lf(x )-s(x )I : x E IR} (4.1) 

is unbounded. In practice, however, we may require an approximation to f(x) 
only for values of x that satisfy a~ x < b for finite a and b. It would be usual 

in this case to choose centres { xi} that lie in or near the interval [a, b], but we 

continue to assume in this section that the centres have the properties that 

are summarised at the beginning of Section 2. We let f be any continuous 

function, and we seek the least maximum value of lf-sl on [a, b], wheres has 

the form 
00 

s(x) = I: Aj </>(lx-x3I), x EIR, ( 4.2) 
j=-oo 

so we are reverting to the set S0 • Actually, absolute convergence of the sum 

is not a problem, because we restrict attention to cases where the number of 

nonzero parameters { Aj} is finite. 

When c = 0, equation ( 4.2) allows s to be any continuous piecewise linear 

function whose knots are the points of the set {x3 : j E Z}n[a,b). Therefore 

the least maximum value of the error when f is a quadratic polynomial, for 

example, is at least h2 jf"l/16, where his the greatest distance between adjacent 

knots. In the more interesting case when c is nonzero, however, all the centres 

{x3 : j E Z} are able to influence the form of s on [a, b], so the scope of 

the approximating functions { s ( x) : a ~ x ~ b} is much greater than before. 

Indeed, the main result of this section is that continuous functions can be 

approximated to arbitrarily high accuracy on compact intervals. 

This assertion is deduced from the Taylor series expansion of the function 

{</>(lx-x31): a~x~b} when x3 is large and positive. We write the expansion 

in the form 

[ 

2x x2+c2] 1/2 
- x· 1--+---

3 x · x~ 
j j 

_ Xj [l + a:(~) + a~\x) + a:~) + .. ·], a~x~b, (4.3) 
j j j 

each function { { a.e(x) : a~ x ~ b} : .e = O, 1, 2, ... } being independent of x3• 

Further, it follows from the coefficient of x;e-1 in the identity 

1 
2x x

2
+c

2 [ a0(x) a 1 (x) a2(x) ]
2 

--+ = 1+--+--+--+ ... 
Xj xJ Xj xJ XJ 

( 4.4) 
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that 0:1. is defined by the formula 

1.-1 

a1_(x)=![.B1.(x)-I:ai(x)a1.-i-i(x)], a~x~b, (4.5) 
i=O 

where ,81. is the function 

(4.6) 

Thus we find the expressions 

o:1(x) = ! c2 
} 

o:2(x) = ! c2
x, o:3(x) = ! c2x2 -1 c4 ' 

ao(x) = -x, 
(4.7) 

and we deduce by induction that 0:1. is a polynomial of degree exactly C-1 for 

all .e 2:: 2, still assuming that c is nonzero. 

We let .e be any positive integer, we let Xj(I) be one of the centres { Xj : j E Z} 

that is very large and positive, and we pick .e+ 1 more centres {Xj(k) : k = 

2, 3, ... ,£+2} say, that satisfy the conditions {Xj(k) 2:: 2Xj(k-1): k=2, 3, ... ,.e+ 
2}, which is allowed by our assumptions for any choice of Xj(I)· The purpose 

of this construction is that the square system of equations 

/.+2 

I: wk xi(t) = Sa, t=-l, O, ... , .e, 
k=l 

(4.8) 

in the coefficients { wk : k = 1, 2, ... ,£+2} not only has a unique solution but 

also the products { Wk xi(t) : k = 1, 2, ... ,f +2} are uniformly bounded, which 

is a consequence of the explicit formula 

'-+2 

wk=xi(k) IT [l-Xj(k)/Xj(i)J-1, k=l,2, ... ,£+2. (4.9) 
i=l, i¢k 

Therefore equations ( 4.3) and ( 4.8) provide the relation 

/.+2 

I: wk <P(lx-Xj(k) I) = 0:1.(x) + O(xi{i)), a< x ~ b. (4.10) 
k=l 

Since Xj(l) can be arbitrarily large and since £ can be any positive integer, it 

follows that all the functions { 0:1. : .e = 1, 2, 3, ... } can be approximated on [a, b] 

to arbitrarily high accuracy from the linear space S0 • Further, we recall from 

the construction of expression ( 4. 7) that ae is a polynomial of degree exactly 

.e -1. Therefore the uniform approximation of continuous functions on [a, b] 
from So is a consequence of the well-known Weierstrass theorem. We state this 

conclusion formally. 
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Theorem 6. Let [a, b] be any finite interval of JR and let 8 0 be the linear space 

that is defined in Section 2, the multi quadric parameter c being nonzero. Then, 

for any continuous function {J(x) : a~ x ~ b}, there exists an approximation 

s E 80 that satisfies the condition {IJ(x )-s(x )I~ E: a~ x ~ b }, where Eis any 

positive constant. Ill 

5. Conclusions 

When this work was begun, the main aim was to identify conditions on the 

centres {x3 : j E Z} that would allow the reproduction of linear polynomials. 

It is therefore pleasing that our only requirement is that the centres are not 

bounded above or below. A crude explanation is contained in the remark that, 

if one seeks the multipliers of ·each of the functions { </>(Ix - xii) : i E Z} in 

formula (1.4) when f is a linear polynomial, one finds that every multiplier 

is zero. Specifically, this remark shows that all centres at finite points are 

irrelevant, but it is debatable whether a function of the form (2.1) with zero 

parameters {A3 : j E Z} can be a nonzero linear polynomial. The introduction 

of the set 82 in Section 3 provides a satisfactory answer to this difficulty, and 

it suggests the use of B-splines that gives the main results. 

The constru, : ion of spaces by taking linear intermediate combinations of 

the original radial functions is inelegant, however, and instead it would be 

usual to pick a metric space of real valued continuous functions, and to let the 

set of approximations be the closure of the span of the elements { { </>(lx-xjl) : 
x E JR} : j E Z}. Two difficulties here, however, are the presence of unbounded 

functions and the fact that, due to Theorem 6, our approximating functions 

are dense in some of the usual choices of metric spaces. Therefore it is hard to 

decide what is meant by the term "reproduction of linear polynomials". Our 

approach seems to provide suitable results, but it may be useful to generalize 

82 to a set of functions of the form 

00 

s(x) = I: v3x3(x), xElR, (5.1) 
j=-oo 

where each Xi is in 82 and where the sum (5.1) is absolutely convergent for 

every x. In particular, when the set of centres is the integer grid { x 3 = j : j E 

Z}, one can let the basis functions be the cardinal functions of interpolation 

that satisfy {xj(.t) = S3e : j,£ E Z}. Because lx3(x)I decays like lxl-5 as lxl 
becomes large [1], it is admissible to set {113 = f(xj) : j E Z} in formula 

(5.1) when f is any quadratic polynomial. In this case it can be shown that 

II! - slloo is bounded. Therefore, in view of Lemma 5, the linear space 82 
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does not include all the well-defined multiquadric approximations that are of 

fundamental importance. 

Theorem 6 explains some unfortunate numerical experiments that were 

described to me by Philip Smith of IMSL. The problem was to adjust both the 

centres and the coefficients of a multiquadric approximation in a least squares 

fitting calculation, the total number of centres being given. In fact the data 

could be fitted rather well by a low order polynomial. Therefore the centres 

diverged steadily away from the data points in order to provide the dominant 

terms of the Taylor series expansions that occur in Section 4, except that there 

were two variables, each x and each centre being a point in JR.2. 
Uniqueness has not been mentioned so far, but it raises some interesting 

questions. In particular, if the function (3.1) is identically zero, each sum 

being absolutely convergent as usual, does it follow that every µj is zero? Nira 

Dyn (private communication) has proved this conjecture when there are certain 

bounds on maximum and minimum distances between adjacent centres. I have 

acquired a preference for the original conditions on the centres, however, and 

have shown that, ifs E S0 is zero, then the coefficients { Aj : j E Z} must vanish 

in expression (2.1). Further, Nira Dyn (private communication) has extended 

the work of Section 3 to the radial function 

(5.2) 

where k is any nonnegative constant integer. She has discovered some excel

lent polynomial reproduction properties under the original conditions on the 

centres. 

It was hoped that studying the univariate case would provide some ideas for 

investigating polynomial reproduction properties when there are two or more 

variables. It seems, however, that our main contribution to this important 

problem is that we have sustained the conjecture that there is no need for the 

centres to form a regular grid. Further, the fact that Theorem 4 is valid for 

all c provides a way of constructing some constant and linear polynomials in 

higher dimensions. Specifically, if a straight line in ]Rd contains a set of centres 

{xj} that is not bounded above or below, it is suitable to change the definition 

(1.5) to the expression 

7Pj(x)= </>(llx-xj-1112) _ llxH1-Xj-1ll2</>(llx-xjll2) + (</>llx-xH1ll2), xERd. 
211xj-Xj-1ll2 211xj-Xj-1ll2llxH1-Xj 112 211xj+1-Xjll2 

(5.3) 
Then, if f is constant or linear, formula (1.4) gives the polynomial {s(x) = 

f(Px) : x E JRd}, where Px is the orthogonal projection of x onto the line of 

centres. Thus d independent lines of centres can yield all linear polynomials 

in d variables, but further research has indicated that these conditions on the 

centres are stronger than necessary. 
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