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Abstract

We propose a method for prediction in Cox’s proportional model, when the number of features

(regressors), p, exceeds the number of observations, n. The method assumes that the features

are independent in each risk set, so that the partial likelihood factors into a product. As such,

it is analogous to univariate thresholding in linear regression and nearest shrunken centroids in

classification. We call the procedure Cox univariate shrinkage and demonstrate its usefulness on

real and simulated data. The method has the attractive property of being essentially univariate in

its operation: the features are entered into the model based on the size of their Cox score statistics.

We illustrate the new method on real and simulated data, and compare it to other proposed methods

for survival prediction with a large number of predictors.
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1 Introduction

High-dimensional regression problems are challenging, and a current focus of
statistical research. One simplifying assumption that can be useful is that of
independence of features. While this assumption will rarely be even approx-
imately true, in practice, it leads to simple estimates with predictive perfor-
mance sometimes as good or better than more ambitious multivariate methods.

In linear regression with squared error loss and a lasso penalty, indepen-
dence of the features leads to the univariate soft-thresholding estimates, that
often behave well.

In classification problems, the idea of class-wise independence forms the
basis for diagonal discriminant analysis. In that setting, if we assume that the
features are independent within each class, and incorporate a lasso penalty,
the resulting estimator is the nearest shrunken centroid procedure proposed by
Tibshirani et al. (2001): we review this fact in the next section. The nearest
shrunken centroid classifier is very simple but useful in practice, and has many
attractive properties. It has a single tuning parameter that automatically
selects the features to retain in the model, and it provides a single ranking of
all features, that is independent of the value of the tuning parameter.

We review the details of the regression and classification problems in the
next section. Then we extend the idea of class-wise feature independence to
the Cox model for survival data: this is the main contribution of the paper. We
study this new procedure on both real and simulated datasets, and compare
it to competing methods for this problem.

2 Regression and classification using feature

independence

2.1 Regression

Consider the usual regression situation: we have data (xi, yi), i = 1, 2, . . . n
where xi = (xi1, . . . xip)

T and yi are the regressors and response for the ith
observation. Assume the xij are standardized so that

∑

i xij/n = 0,
∑

i x
2
ij/n =

1. The lasso finds β = (β1, . . . βp)
T to minimize

N
∑

i=1

(yi −
∑

j

βjxij)
2 + λ

p
∑

j=1

|βj |. (1)

Now if we assume that the features are independent (uncorrelated), it is
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easy to show that

β̂j = sign(β̂o

j )(|β̂o

j | − λ)+ (2)

where β̂o
j are the ordinary (univariate) least squares estimates. These are

univariate soft-thresholded estimates, and perform particularly well when p ≫
n. Zou & Hastie (2005) study these estimates as a special case of their elastic
net procedure. See Fan & Lv (2008) for some theoretical support of univariate
soft-thresholding.

2.2 Classification

Here we review the nearest shrunken centroid method for high-dimensional
classification and its connection to the lasso. Consider the diagonal-covariance
linear discriminant rule for classification. The discriminant score for class k is

δk(x
∗) = −

p
∑

j=1

(x∗
j − x̄kj)

2

s2
j

+ 2 log πk. (3)

Here x∗ = (x∗
1, x

∗
2, . . . , x

∗
p)

T is a vector of expression values for a test obser-
vation, sj is the pooled within-class standard deviation of the jth gene, and
x̄kj =

∑

i∈Ck
xij/nk is the mean of the nk values for gene j in class k, with Ck

being the index set for class k. We call x̃k = (x̄k1, x̄k2, . . . x̄kp)
T the centroid

of class k. The first part of (3) is simply the (negative) standardized squared
distance of x∗ to the kth centroid. The second part is a correction based on
the class prior probability πk, where

∑K

k=1
πk = 1. The classification rule is

then
C(x∗) = ℓ if δℓ(x

∗) = maxk δk(x
∗). (4)

We see that the diagonal LDA classifier is equivalent to a nearest centroid
classifier after appropriate standardization.

The nearest shrunken centroid classifier regularizes this further, and is
defined as follows. Let

dkj =
x̄kj − x̄j

mk(sj + s0)
, (5)

where x̄j is the overall mean for gene j, m2
k = 1/nk − 1/n and s0 is a small

positive constant, typically chosen to be the median of the sj values. This
constant guards against large dkj values that arise from expression values near
zero.

Finally, we can derive the nearest shrunken centroid classifier as the so-
lution to a lasso-regularized problem that assumes independence of the fea-
tures. Consider a (naive Bayes) Gaussian model for classification in which
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the features j = 1, 2, . . . , p are assumed to be independent within each class
k = 1, 2, . . . , K. With observations i = 1, 2, . . . , n and Ck equal to the set of
indices of the nk observations in class k, we observe xij ∼ N(µj + µjk, σ

2
j ) for

i ∈ Ck with
∑K

k=1
µjk = 0. We set σ̂2

j = s2
j , the pooled within-class variance

for feature j, and consider the lasso-style minimization problem

min
{µj ,µjk}

{

1

2

p
∑

j=1

K
∑

k=1

∑

i∈Ck

(xij − µj − µjk)
2

s2
j

+ λ
√

nk

p
∑

j=1

K
∑

k=1

|µjk|
sj

}

. (6)

By direct calculation, it is easy to show that the solution is equivalent to the
nearest shrunken centroid estimator (5), with s0 set to zero, and Mk equal to
1/nk instead of 1/nk−1/n as before. Some interesting theoretical results for di-
agonal linear discriminant analysis are given in Bickel & Levina (2004). Efron
(2008) proposes an Empirical Bayes variation on nearest shrunken centroids.

3 Survival data and Cox’s proportional haz-

ards model

For the rest of this paper we consider the right-censored survival data setting.
The data available are of the form (y1,x1, δ1, ), . . . , (yn,xn, δn), the survival
time yi being complete if δi = 1 and right censored if δi = 0, with xi denoting
the usual vector of predictors (x1, x2, . . . xp) for the ith individual. Denote the
distinct failure times by t1 < · · · < tK , there being dk failures at time tk.

The proportional-hazards model for survival data, also known as the Cox
model, assumes that

λ(t|x) = λ0(t) exp
(

∑

j

xjβj

)

(7)

where λ(t|x) is the hazard at time t given predictor values x = (x1, . . . , xp),
and λ0(t) is an arbitrary baseline hazard function.

One usually estimates the parameter β = (β1 ,β2 , . . .βp)
T in the proportional-

hazards model (7) without specification of λ0(t) through maximization of the
partial likelihood

PL(β) =
∏

k∈D

exp(xkβ)

{
∑

m∈Rk
exp(xmβ)} .

Here D is the set of indices of the failure times, Rk is the set of indices of
the individuals at risk at time tk −0, and we have assumed there are no ties in
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the survival times. In the case of ties, we use the “Breslow” approximation to
the partial likelihood. We also assume that the censoring is noninformative,
so that the construction of the partial likelihood is justified.

If p ≫ n then maximizer of the partial likelihood is not unique, and some
regularization must be used. One possibility is to include a “lasso” penalty
and jointly optimize over the parameters, as suggested by Tibshirani (1997).

Here we extend the idea of feature independence to the Cox model for
survival data. Now the partial likelihood term exp(xkβ)/

∑

m∈Rk
exp(xmβ)

equals Pr(k|xi, i ∈ Rk) the probability that individual k is the one who fails at
time tk, given the risk set and their feature vectors. Now we assume that both
conditionally on each risk set, and marginally, the features are independent
of one another. Then using Bayes theorem we obtain Pr(k|xi, i ∈ Rk) ∼
∏

j Pr(k|xij, i ∈ Rk). As a result, up to a proportionality constant, the partial
likelihood becomes a simple product

PL(β) = c ·
p

∏

j=1

∏

k∈D

exp(xkjβj)

{
∑

m∈Rk
exp(xmjβj)}

The log partial likelihood is

ℓ(β) =

p
∑

j=1

K
∑

k=1

(

xkjβj − log
∑

m∈Rk

exp(xmjβj)
)

(8)

≡
p

∑

j=1

gj(βj). (9)

We propose the Cox univariate shrinkage (CUS) estimator as the maxi-
mizer of the penalized partial log-likelihood

J(β) =

p
∑

j=1

gj(βj) − λ
∑

|βj|. (10)

Here λ ≥ 0 is a tuning parameter, and we solve this problem for a range of λ
values. Note that is just a set of one-dimensional maximizations, since we can
maximize each function gj(βj) − λ|βj| separately. The minimizers of (10) are

not simply soft-thresholded versions of the unpenalized estimates β̂j , as they
are in the least squares regression case. We discuss and illustrate this fact in
the next section. From this, we obtain solutions paths (β̂1(λ), β̂2(λ), . . . β̂p(λ)),
and we can use these to predict the survival in a separate test sample.

Note that the estimates β̂ will tend to be biased towards zero, especially
for larger values of λ. In the test set and cross-validation computations in this
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Figure 1: Kidney cancer example: solution paths for univariate shrinkage, for
500 randomly chosen genes.

paper, we fit the predictor z = xβ̂ in the new (test or validation) data, and so
obtain a scale factor to debias the estimate. If we are interested in the values
of β̂ themselves, a better approach would be fit the single predictor γxiβ̂ in a
Cox model on the training data, and hence obtain the adjusted estimates γ̂β̂.

The lasso penalty above might not make sense if the predictors are in
different units. Therefore we first standardize each predictor xj by sj , the
square root of the observed (negative) Fisher information at βj = 0.

3.1 Example

Zhao et al. (2005) collected gene expression data on 14, 814 genes from 177
kidney patients. Survival times (possibly censored) were also measured for
each patient. The data were split into 88 samples to form the training set and
the remaining 89 formed the test set. Figure 1 shows the solution paths for
Cox univariate shrinkage for 500 randomly chosen genes.

Notice that the solutions paths have a particularly nice form: they are
monotonically decreasing in absolute value and once they hit zero, they stay
at zero. It is easy to prove that this holds in general. The proof is given in
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the Appendix.
Note also that the profiles decrease at different rates. This is somewhat

surprising. In the least squares regression case under orthogonality of the
predictors, the lasso estimates are simply the soft-thresholded versions of the
least squares estimates β̂j:, that is, sign(β̂j)(|β̂j| − t)+. Thus every profile

decreases at the same rate. Here, each profile decreases at rate 1/|g ′(β̂j)|,
which is the reciprocal of the observed Fisher information.
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Figure 2: Kidney cancer example: cross-validation curve. Drop in deviance
on validation set, with plus and minus one standard error bars.

Let Uj, Vj be the gradient of the (unpenalized) log-partial likelihood and
the (negative) observed Fisher information, evaluated at βj = 0 Then we can
also show that

β̂λ 6= 0 ⇐⇒ |Uj |/
√

Vj > λ. (11)

The proof is given in the Appendix. Therefore we have the following useful
fact:

For any value of λ, the set of predictors that appear in the model estimated
by Cox univariate shrinkage are just those whose score statistic exceeds λ in
absolute value.

That is, the Cox univariate shrinkage method used a fixed ranking of all
features based on the Cox score statistic. This is very convenient for interpreta-
tion, as the Cox score is often used for determining the univariate significance

6

Statistical Applications in Genetics and Molecular Biology, Vol. 8 [2009], Iss. 1, Art. 21

http://www.bepress.com/sagmb/vol8/iss1/art21

DOI: 10.2202/1544-6115.1438



of features (e.g. in the SAM procedure of Tusher et al. (2001)). However
the non-zero coefficients given to these predictors are not simply the score
statistics or soft thresholded versions of them.

Figure 3 shows the drop in test sample deviance for CUS (Cox univariate
shrinkage), lasso, SPC (Supervised principal components) and UST (univariate
soft thresholding), plotted against the number of genes in the model. The CUS
and SPC methods work best.

1 10 100 1000 10000

0
5

1
0

1
5

Number of genes

D
ro

p
 i
n

 t
e

s
t 

s
e

t 
d

e
v
ia

n
c
e CUS

Lasso

SPC

UST

Figure 3: Kidney cancer example: drop in test sample deviance for CUS (Cox
univariate shrinkage), lasso, SPC (Supervised principal components) and UST
(univariate soft thresholding).

Figure 4 shows the univariate Cox coefficients plotted against the Cox
score statistics, for the kidney cancer data. Although the two measures are
correlated, this correlation is far from perfect, and again this underlines the
difference between our proposed univariate shrinkage method, which enters
features based on the size of the Cox score, and simple soft-thresholding of
the univariate coefficients. The latter ranks features based on the size of their
unregularized coefficient, while the former looks at the standardized effect size
at the null end of the scale.

To estimate the tuning parameter λ we can use cross-validation. However
it is not clear how to apply cross-validation in the setting of partial likeli-
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Figure 4: Kidney cancer data: the univariate Cox coefficients plotted against
the Cox score statistics.

hood, since this function is not a simple sum of independent terms. Verweij
& van Houwelingen (1993) propose an interesting method for leave-one-out
cross-validation of the partial likelihood: for each left-out observation they
compute the probability of its sample path over the risk sets. For the fitting
methods presented in this paper, this leave-one-out cross-validation was too
slow, requiring too many model fits. When we instead tried 5 or 10- fold par-
tial likelihood cross-validation, the resulting curve was quite unstable. So we
settled on a simpler approach, 5-fold cross-validation where we fit a Cox model
to the left out one-fifth and record the drop in deviance. The results for the
kidney cancer data is shown in Figure 2. The curve is a reasonable estimate
of the test deviance curve of Figure 3.

In some microarray datasets, there are duplicate genes, or multiple clones
representing the same gene. In this case, the data for the different features
will be highly correlated, and it makes sense to average the data for each gene,
before applying UC. One can also average genes whose pairwise correlation
is very high, whether or not they’re supposed to represent the same gene.
For example, when we averaged genes with correlation greater than 0.9 in the
kidney cancer dataset, it reduced the number of genes by a few hundred and
caused very little change in the test deviance curve.
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3.2 Selection of a more parsimonius model

The CUS procedure enters predictors into the model based on this univariate
Cox scores. Thus if two predictors are strongly predictive and correlated with
each other, both will appear in the model. In some situations it is desirable
pare down the predictors to a smaller, mode independent set. The lasso does
this selection automatically, but sometimes doesn’t predict as well as other
methods (as in Figure 3.) An alternative approach is pre-conditioning (Paul
et al. 2008), in which we apply the standard (regression) lasso to the fitted
values from a model. In Paul et al. (2008) the initial fitting method used was
supervised principal components. Here we start with the CUS fit using 500
genes, which approximately the best model from Figure 2. We then apply the
(regression version) of the lasso to the fitted values, and we report the drop in
test deviance in Figure 5, along with that for CUS itself (green curve copied
from Figure 3.) We see that pre-conditioning gives about the same drop in
test deviance as the 500 gene CUS model, but using fewer than 100 genes.
And it performs better here than the Cox model lasso (blue curve in Figure
3, a finding supported theoretically in Paul et al. (2008). Figure 6 shows
the univariate Cox scores for the predictors entered by each method. We see
that the pre-conditioning approach enters only predictors that are individually
strong, while the usual lasso enter many predictors that are individually weak.

4 Simulation study

We generated Gaussian samples of size n = 50 with p = 1000 predictors, with c
population correlation ρ(xi, xj) between each pair of predictors. The outcome
y was generated as an exponential random variable with mean exp(

∑

1000

1
xjβj),

with a randomly chosen s out of the p coefficients equal to value ±4 and the
rest equal to zero. We considered two scenarios— s = 20 and s = 200—, and
tried both ρ(xi, xj) = 0 and ρ(xi, xj) = 0.5|i−j|. Three fitting methods for the
Cox model were compared: lasso, supervised principal components, and CUS,
over a range of the tuning parameter for each method. A test set of size 400
was generated and the test set deviance of each fitting model was computed.
Figure 7 shows the median test deviance plus and minus one standard error
over 10 simulations, plotted against the number of genes in each model.

Figure 8 shows the number of genes correctly included in the model versus
the number of genes in the model, for each of CUS and lasso. Neither method
is very good at isolating the true non-zero predictors, but surprisingly the lasso
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Figure 5: Kidney cancer example: drop in test sample deviance for CUS (Cox
univariate shrinkage), and pre-conditioning applied to CUS. In the latter we
apply the regression version of the lasso to the fitted values from CUS.
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Figure 6: Kidney cancer example: univariate Cox scores for all predictors
(black) and those entered into the model (red). Panel on the left corresponds
to L1-penalized partial likelihood, fit by coxpath. On the right is the standard
regression version of the lasso applied to the fitted values from CUS.
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Figure 7: Simulation results: average drop in test set deviance (± one standard
error), for three different estimators, over four different simulation settings.
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does no better than the simple CUS procedure.
In Figures 9 and 10 we chose the model complexity by cross-validation and

report the drop in test set deviance (Figure 9) and the C-index (Figure 10).
The latter index is time-integrated area under the ROC curve, appropriate for
survival studies (Heagerty & Zheng 2005). In every case the CUS performs on
average as well or better than the lasso and supervised principal components).

5 Some real data examples

We applied three methods- lasso, supervised principal components, and CUS,
to three real datasets. The first is the kidney data discussed earlier; the
other datasets are the diffuse large cell lymphoma data of Rosenwald et al.
(2002) (7399 genes and 240 patients), and the breast cancer data of van’t Veer
et al. (2002) (24881 genes, 295 patients). We randomly divided each dataset
into training and test sets ten times, and averaged the results. The first two
datasets included test sets of size 88 and 80 respectively, so we retained those
test set sizes. For the third dataset, we took a test set of about one-third (98
patients), and to ease the computation load, restricted attention to the 10, 000
genes with largest variance. Figure 11 shows the median test deviance plus
and minus one standard error over 10 simulations, plotted against the number
of genes in each model. The CUS method yields a larger drop in test deviance
than the lasso, in at least two of the datasets and performs a little better than
SPC overall.

The R package uniCox implementing the methods of this paper will soon
be available on CRAN.

Appendix

Monotonicity of profiles. The subgradient equation for each βj is:

K
∑

k=1

(

xkj − dk

∑

m∈Rk
xmj exp(xmjβj)

∑

m∈Rk
exp(xmjβj)

)

− λ · tj = 0 (12)

where tj ∈ sign(βj), that is tj = sign(βj) if βj 6= 0 and tj ∈ [−1, 1] if βj = 0

Claim: |β̂j(λ)| is strictly decreasing in λ when β̂j(λ) is non-zero, and if

β̂j(λ) = 0 then β̂j(λ
′) = 0 for all λ′ > λ.

Proof: for ease of notation, suppose we have a single β having the sub-
gradient equation
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Figure 8: Simulation results: number of correctly included predictors in the
model, for CUS and lasso, over the four different simulation settings.
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Figure 9: Simulation results: average drop in test set deviance standard error),
for three different estimators, over four different simulation settings. The
model tuning parameter was chosen in each case by cross-validation.
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Figure 10: Simulation results: average test-set C-index for three different es-
timators, over four different simulation settings. The model tuning parameter
was chosen in each case by cross-validation.

15

Tibshirani: Univariate Shrinkage in the Cox Model

Published by The Berkeley Electronic Press, 2009



1 5 10 50 500

0
5

1
0

1
5

2
0

Number of  genes

D
ro

p
 i
n
 t

e
s
t 

s
e
t 

d
e
v
ia

n
c
e

CUS
Lasso
SPC

1 10 100 1000 10000

0
5

1
0

1
5

Number of  genes

D
ro

p
 i
n
 t
e
s
t 
s
e
t 
d
e
v
ia

n
c
e

CUS
Lasso
SPC

1 10 100 1000 10000

0
5

1
0

1
5

Number of  genes

D
ro

p
 i
n
 t

e
s
t 
s
e
t 
d
e
v
ia

n
c
e

CUS
Lasso
SPC

Figure 11: Top to bottom: results for Kidney, Lymphoma and Breast cancer
datasets; shown is the average drop in test set deviance (± one standard er-
ror) for CUS (Cox univariate shrinkage), lasso and SPC (supervised principal
components).
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g(β) − λt = 0 (13)

with t ∈ sign(β).
Then g′(β) is the negative of the observed information and it is easy to

show that g′(β) < 0.
Denote the solution to (13) for parameter λ by β̂(λ). Suppose that we have

a solution β̂(λ) 6= 0 for some λ. WLOG assume β̂(λ) > 0. Then by (13) we
have

g(β̂(λ)) = λ

Then if λ′ > λ, we can’t have β̂(λ′) ≥ β̂(λ) since this would imply g(β̂(λ′)) <
g(β̂(λ)) = λ < λ′. Hence β̂(λ′) < β̂(λ).

On the other hand, if β̂(λ) = 0 then

g(0) − λt = 0

for some t with |t| ≤ 1. Then if λ′ > λ the equation g(0) − λ′t′ = 0 can be
solved by taking t′ = t(λ/λ′). Hence β̂(λ′) = 0 .

Proof of (11). Let

gj(βj) =
K

∑

k=1

(

xkj − dk

∑

m∈Rk
xmj exp(xmjβj)

∑

m∈Rk
exp(xmjβj)

)

Suppose β̂j(0) > 0. Then β̂j(λ) 6= 0 ⇐⇒ the equation gj(βj) − λ = 0 has

a solution in (0, β̂j(0)). Recall that the xj have been standardized by
√

Vj.
Hence if the gradient for βj for the raw (unnormalized) data is Uj(βj), with
Uj(0) ≡ Uj , then gj(βj) = Uj(βj)/

√

Vj and we must have Uj/
√

Vj > λ. The

quantity Uj/
√

Vj is the square root of the usual score statistic for testing
βj = 0.
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