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Abstract. Based on the notion of accumulators, we propose a new cmgpbir
scheme called universal accumulators. This scheme enabée® commit to a
set of values using a short accumulator and to efficientlymdma membership
witness of any value that has been accumulated. Unliketivadi accumulators,
this scheme also enables one to efficiently compute a nonewsitip witness
of any value that has not been accumulated. We give a cotistrfor universal
accumulators and prove its security based on the strong RS#rption. We fur-
ther present a construction for dynamic universal accutorgdathis construction
allows one to dynamically add and delete inputs with coristamputational
cost. Our construction directly builds upon Camenisch aysiyanskaya’s dy-
namic accumulator scheme. Universal accumulators candreasean extension
to dynamic accumulators with support of nonmembership egisn\We also give
an efficient zero-knowledge proof protocol for proving thatommitted value is
not in the accumulator. Our dynamic universal accumulabmistruction enables
efficient membership revocation in an anonymous fashion.

1 Introduction

Accumulators were first introduced by Benaloh and de Mareaf4h method to con-

dense a set of values into one short accumulator, such tha ih a short witness for
each value that has been accumulated. In the mean timepféasible to find a withess
for a value that has not been accumulated. Bari¢ and Pfitaii@proposed a construc-
tion of a collision-resistant accumulator under the strBf®A assumption. Camenisch
and Lysyanskaya [10] further proposed a dynamic accumuilatehich elements can

be efficiently added into or removed from the accumulatocukeulators have been
used in many applications [3, 4, 10, 20], including membigrgsting, time stamping,

authenticated directory, and certificate revocation.

None of the existing accumulator schemes provide nonmeshlgewitnesses for
values that have not been accumulated. This feature of nobership witnesses is
highly desirable in many applications. The following ar@texamples where a non-
membership witness is important.



1. Suppose a credit report agency compiles a list of users ldwe gone into
bankruptcy within the last three years, and it also pubfishe accumulator for this
list. When Alice applies an auto loan from a bank, the banktsvétice to prove
that she is not in the bankruptcy list. In a similar applioafisuppose a Certifi-
cate Authority (CA) revokes a number of certificates befbirtexpiration dates.
A certificate user may need to efficiently prove that her fiedie has not been
revoked when using her certificate.

2. Suppose the Center for Disease Control and Preventiantairas a list of patients
who have a certain infectious disease (e.g., Measles ore@jolin some appli-
cations, a patient needs to prove that she has the diseasdeinto purchase dis-
counted medicines from the local pharmacy stores. Whereather applications,
one needs to prove that she does not have the disease.

In this paper, we propose the notion wfiversal accumulatorsvhich enables a
trusted group manager to condense a list of values into & ahoumulator. For each
value in the list, there is a short membership witness; anddoh value not in the list,
there exists a short nonmembership witness. It is compuialty infeasible to find a
membership witness for a value that was not accumulatedford@ nonmembership
witness for a value that was accumulated. The notion of usaleomes from the fact
that each possible value in the input domain has a witnetbge(ei membership withess
or a nonmembership witness). Using universal accumulatois can easily solve the
problems in the aforementioned applications.

We further propose the notion dffnamic universal accumulatqrshich allow one
to dynamically add and delete inputs, such that the the d@st addition or a deletion
is independent of the size of the accumulated set. We canistnefficient dynamic uni-
versal accumulator under the strong RSA assumption. Dymaniversal accumulators
enable efficient membership revocation: A group managaegssa credential for each
group member. The group manager also maintains a credest@tation list using a
dynamic universal accumulator. To revoke a member, thepgnoanager simply inserts
the serial number of the revoked credential into the revdis&dlo prove membership,
a valid group member first shows her group credential, thewshhat the credential's
serial number is not in the revocation list by presentingttiemembership witness.

We also develop an efficient zero-knowledge proof protoaohghat, if a value is
stored in a cryptographic commitment, then one can proudhleasalue is not accumu-
lated in a zero-knowledge fashion. This enables membershigration in an anony-
mous setting. To prove membership anonymously, the groupbrefirst proves that
she has a valid group credential, then proves that the ctiatieserial number is notin
the revocation list.

Note that many applications that require nonmembershipfpr(such as ones in
Application 1) can be solved using membership-proof teghes. Take the certificates
revocation as an example, instead of proving the nonmerhipen$ a revocation list,
one can prove the membership of a legitimate user list to shather certificate has not
been revoked. This idea was used by, e.g., Camenisch andrsisgya [10]. However,
even though proving membership is efficient in [10], the rtenance overhead of the
witness could be very expensive if the user list is huge aeduently-changing. For
example, consider a certificate system that has thousamd#lions of users. Suppose



the list of valid users increases every hour (i.e., each tHare are several new users
added into the list). And suppose the list of revoked usesmiall in size and relatively
static (e.g., changes every month). Using the scheme indl8yitimate user may have
to update her witness every hour, whereas using our schémm@mdy need to update
her nonmembership withess once a month.

1.1 Our contribution

The contributions of this paper are as follows.

— We introduce the notion of universal accumulators, whighpsut short witnesses
for both membership and nonmembership.

— We construct an efficient dynamic universal accumulatoedas the strong RSA
assumption. The update of witness in our scheme can be efficperformed with-
out the help of the trusted group manager. Proofs of memipssshonmembership
can be achieved with a constant number of modular exportiemsa

— We give an efficient zero-knowledge proof protocol to prokatta committed
value was not accumulated. This enables efficient memhemcation in anony-
mous credential systems, group signature schemes, armd airenymous attesta-
tion schemes. Universal accumulators may be of interesthiarapplications as
well.

1.2 Organization of this paper

The rest of this paper is organized as follows. We first giviatians and security as-
sumptions in section 2. In section 3, we give a formal debnitof universal accu-
mulators and present our construction. In section 4, weeptahe notion of dynamic
universal accumulators and describe the correspondingfremtion. In section 5, we
present a zero-knowledge proof protocol to prove that a cittetvalue has not been
accumulated in an accumulator. In section 6, we discussaeapplications of dy-
namic universal accumulators to membership revocatiotiseianonymous setting, we
also compare our solution with other existing membershipeation techniques.We
conclude our paper in section 7.

2 Notations and Assumptions

2.1 Notations

We usey(-) to denote the Euler totient function. Let= pq be a RSA modulus, we use
Z} to denote the set of all positive integers that are less thand relative prime te.
We useQ) R,, to denote the set of quadratic residues modulo

A negligible function, denoted byeg(-), represents a positive function that van-
ishes faster than the inverse of any fixed positive polynbmfeat is, for every polyno-
mial p(-) and for every large enough integerneg(n) < 1/p(n). If S is a probability
space, then the probability assignment—r S means that an elementis chosen at



random according t&. If F' is a finite set, them: «—r F denotes that is chosen
uniformly from F'. If p is a predicate and,, So, ..., S, are probability spaces, then
the notatiorPr [x1 g S1,22 < Rr S2,... Tm <R Sm : p(x1, T2, -+ ,T,)] denotes
the probability thap(z1, - - - , z,,) will be true after the ordered execution of the prob-
abilistic assignments; g Si,...,2m <—r Sm. Let A and B be interactive Turing
machines, we uséw «— A(-) <« B(-) — b) to denote that. andb are two random
variables corresponding to the outputsdofind B as a result of their joint computation.

We use the notation used by Camenisch and Stadler in [14héowarious zero-
knowledge proofs of knowledge of discrete logarithms anbfs of the validity of
statements about discrete logarithms. For instance,

PR{(a,B) : y = g*h" A (u < a <v)}

denotes a zero-knowledge proof of knowledge of integessd3, such thaty = ¢g*h?
holds and: < o < v.

2.2 Security assumptions

The security of our construction is based on the strong RSArmaption, which assumes
that it is infeasible to solve the following problem: Given RSA modulus: and a
randomz «—p Z7, finde > 1 andy € Z? such thaty®* =  mod n. The strong RSA
was introduced by Bari¢ and Pfitzmann [3] and has been uggaiing the security of
many cryptographic schemes (e.g., [19, 18, 16]). It can baddly stated as follows:

Assumption 1 (strong RSA assumption)For every probabilistic polynomial-time al-
gorithmsaA,

Pr [n « G(%), 2 —p Zp, (y,e) — A(n,z) : y* =x (modn) Al <e< n| = negk)

whereG(1%) is a algorithm that generates a RSA modutusf sizek, andnegk) is a
negligible function.

Our security proofs also use the following lemma ([23, 16]):

Lemma 1. For any integern, given integersu,v € Z} anda,b € Z, such that
u® = v” mod n and ged(a,b) = 1, one can efficiently compute € Z? such that
% = v mod n.

To see the correctness of this lemma, observe thagcdS:,b) = 1, one can use
the extended Euclidian algorithm to findd € Z such thatbd = 1 4 ac. Let
r = (u?v ¢ mod n), then

2% =y~ = (u*) 7% = (V") = v (mod n).

3 Universal Accumulators

We now give a formal definition of universal accumulators present our construction.



3.1 Definition of universal accumulators

Definition 1. Letk be a security parameter, a secure universal accumulataféonily
of input{ X}, } is a family of functions{ 7, } with the following properties:

— Efficient GenerationThere is an efficient probabilistic polynomial time alghm
G that on inputl* produces a random functighof F;. Additionally, G also out-
puts some auxiliary information aboyit denoted asux.

— Efficient EvaluationEachf € Fj is a polynomial time function, on inpdy, =) €
Gy x Xy, outputs a valué € Gy, wheregGy is the input domain for the functiof,
and X, is the input domain for the elements to be accumulated.

— Quasi-CommutativeFor all f € Fy, for all g € G, and for allz,, 22 € A,
F(f(g,z1),22) = f(f(g,22),m1). f X = {z1,..., 2} C Xk, we usef(g,X)

to denotef (f(...(g,21),--.), Zm)-
— Membership Witnes$-or eachf € Fi, there is a membership verification func-

tion p;. Letc € Gy andx € Aj. A valuew, is called membership witness if
p(e,z,w) =1,

— Nonmembership Witnedsor eachf € Fy, there is a nonmembership verification
functionp,. Letc € G andz € A, A valuews is called nonmembership witness
if pa(c,z,ws) = 1.

— Security A universal accumulator scheme is secure if, for all praisic
polynomial-time adversaryy,

f—G*);9 —r Gy (x, w1, w2, X) — Ar(f,Gs,9) : B
Pr € X X C X p1(f(g, X), 2, wr) = 15 p2(f (g, X), mywa) = 1| negk)

In other words, it is computationally infeasible to find battalid membership wit-
ness and a valid nonmembership witness foraimyX;. Note that this is equivalent
to say that, given any sef € A}, it is computationally infeasible to find € X
with a valid nonmembership witness or fizde X\ X with a valid membership
witness.

The preceding definition is similar to the one of Camenisath laysyanskaya [10],
the main difference is that our definition requires witnssfe nonmembership ele-
ments.

3.2 Our construction

Our construction builds upon the construction of CamenésahLysyanskaya [10]. The
difference is that we give an efficient solution for nonmenshg witness.

Construction 1 (Universal Accumulators) Let k£ be a security parameter. Lét =
|k/2] — 2. We useX}, to denote the set of all primes .. X}, is the input domain
for the elements to be accumulateWe useF;, to denote the family of functions cor-
responding to safe-prime products of lengthThe construction takes the following
steps.

4 As in [10], the input domairi;, has to be primes. If the required input domain is the set of all
possible strings, we need to map arbitrary strings to priomebers. A number of approaches
for doing this have been proposed in the literature, see,[8,d.9, 20].



— The generation algorithi&' takesl1* as input and outputs a random modutuef
lengthk that is a safe prime, that is,= pq, wherep = 2p’ +1,¢ = 2¢' + 1, p and
q have equal length, and q, p’, ¢’ are all prime number.

— We usef,, to denote the function corresponding to modutug he auxiliary infor-
mationaux; for f,, is the factorization ofi. The input domairg; for f,, is defined
asGr = {g € QR,, : g # 1} whereQR,, denotes the group of quadratic residues
modulon.

— For f = fn, f(g,2) = ¢g* mod n.

— For f = f,, the membership verification functign is defined ag1 (¢, z,c,) = 1
if and only if (¢;)* = ¢, wherec, € Gy is the membership witness far The
nonmembership verification functign is defined ags(c, =, a,d) = 1 if and only
if ¢* = d®g (mod n), where(a,d) € Z,. x Gy is the nonmembership witness for
x.

It is easy to see that, givefy, ), we can efficiently computg (g, x). It is also
easy to see that is quasi-commutative, that ig(f (g, z1),22) = f(f(g,22),21) =
g*1*2 mod n. Note that membership and nonmembership witnesses camiqeuted
with or without the auxiliary information. It is much moreensive to compute witness
without the auxiliary information. In our application, we dot need to compute witness
using the auxiliary information; but they may be useful ihextsettings.

One difference between our construction and Camenisch wsyhhskaya’s accu-
mulator scheme [10] is that their construction does notireqio publishg. In our
constructiong needs to be public for nonmembership queries. Note thatty treat
knowsg and the value of the accumulator, and suspectsathat . , z,, are the values
used to compute the accumulator, can easily verify its gudss is not really a prob-
lem because (1) it is not required to hide the accumulatagegaland (2) it is easy to
prevent this attack by adding a random valteto the set of values used to compute
the accumulator.

How to compute witness without the auxiliary information SupposeX =
{@1,..., 2y} is asubset ot} andg is a random value i R,,. Letu denote[ [ | ;.
By definition f(g, X) = ¢g* mod n. As in the previous accumulator schemes [4, 3, 10],
for anyz € X, we can compute the membership witnessdf@sc, = ¢*/* mod n.
To verify the witness, one checks that X}, and(c,;)* = ¢ mod n.

Foranyz € X\ X, sincex, x1, ..., z,, are distinct prime numberged(z, u) = 1.
We can finda € Z,. andb € Z such thatau + bx = 1. The values andb can be
computed as follows: we first use Euclid algorithm to fifldandd’ such thata'u +
b'r = 1. As x is a positive integer it%,., we can always find an integérsuch that
a' + kx € Zye. Observe thata’ + kx)u + (b — ku)x = 1, thereforen = o’ + kx and
b=1b"— ku.Letd = g~® mod n, the nonmembership witness feis (a, d). To verify
the witness, one checks thate X, a € Zye, andc® = d*g (mod n), which holds
because® = gu* = ¢! =% = g7%*g = d%g (mod n).

How to compute witness with the auxiliary information The membership witness
and nonmembership witness can be computed efficiently divemuxiliary informa-
tion auxy. Suppose there is a trusted group manager who krows, maintains the



setX, and has already computed the accumulater f (g, X ), the group manager can
compute (non)membership witness for ang X}, with oneshort modular exponenti-
ation.

For z € X, the group manager first checks whethere X, then computes
a = 27! mod ¢(n), and finally computes, = c¢* mod n. The membership wit-
ness forz is ¢,.. It is easy to verify the correctness of the withes§@as® = (¢*)* =
@~ "emod ¢(n) — ¢ (mod n).
Forz € A3\ X, letv’ = u mod ¢(n), the group manager first checks whether

ged(z,v') = 1.

C

— If ged(x,u") = 1, the group manager findsandb such thatuu’ + bz = 1, and
sets the nonmembership witness foas (a,g~° mod n). The nonmembership
witness is correct becausgé = (g*)* = (g%)* = g¥'e = gl-br = g7brg —
d*g (mod n).

— If ged(x,u’) # 1, the group manager finds and b such thatau + bz = 1,
then computed’ = b mod ¢(n), and sets the nonmembership witnessidfas
(a,g—b' mod n). The nonmembership witness is correct becatise= ¢“* =

gt = (g7%)%g = (7% )%g = d®g (mod n).

Observe that, the second case is slightly more expensivethigafirst case. The
reason is that, in the second case, the group manager nefid toandb such that
au + bx = 1 whereu could potentially be large, i.e., size linearna Yet, in either
case, the exponent in the modular exponentiation computetiebgroup manager is
smaller thans(n). Thus the nonmembership witness can be calculated effiziéiso
observe that, the number ofe X}, such thafged(z, v') # 1 is less thark, asz must
be a prime.

Note that computing witness using auxiliary informationynmat apply to all sce-
narios. In some applications, it is not allowed to revealghgiliary information to the
party who computes the accumulator, since the auxiliarg dagbles her to prove arbi-
trary statements. In the case when the party who computescthamulator is trusted,
it is acceptable to give her the auxiliary information.

Theorem 1. Under the strong RSA assumption, the above constructiosésare uni-
versal accumulator.

Proof. We assume all the arithmetic operations in this proof areutwd unless spec-
ified otherwise. The strong RSA assumption says that giveBA Rodulusn and a
random valugy <—r QR,,, it is computationally infeasible to find andy such that
x> landy® =g.

Suppose there exists a polynomial time adversérwhich on inputn andg €
QR,,outputse, € Gy, d € Gy, x € Xy, a € Zge, andX = {x1,..., 2} C Xy, sSuch
thatc = g*t"*m, (¢;)* = ¢, ande® = d*g. We can construct an algorithBito break
the strong RSA assumption by invoking

Letu to denote[ )", ;. We consider two cases. In the first case, assumgeX,
the adversary can computea, d, andz, such that = ¢g* andc® = d*g. That is, the
adversary computes, a, d, andz such thaty®“~! = 4*. Becauser € X, z | u, and
ged(au — 1, z) = 1. By lemma 1, we can efficiently find such thay® = g.



In the second case, assumeZ X, the adversary can compute c,., andzx, such
thate = ¢g* and(c;)* = c. In other words, the adversary can findc,,, andz such
thatg® = (c;)*. Asz1,...,z,, are all prime, and: ¢ X, clearlyged(z,u) = 1. By
lemma 1, we can efficiently fing such thaty* = g.

We now construct an efficient algorithBthat breaks the strong RSA assumption as
follows. Given a RSA modulus andg < r QR,,, B invokesA with inputn andg, and
obtains outputs,, d, z,a, X from A. By the preceding arguments, can efficiently
computey from ¢, d, z, a, X such thaty® = d, which contradicts to the strong RSA
assumption. ]

Corollary 1. In the above construction, for anfye F;, and any given sek’ C X, it
is computationally infeasible to find € X with a valid nonmembership witness.

Proof. This follows directly from Theorem 1. o

Note that, in our security definition of the universal accuatar, we limit the adver-
sary to choose only from X. It is acceptable because when a user proves membership
or nonmembership to a verifier, the verifier can first checkthirer € X}, if not, the
verifier can reject the proof. If a user can prove that a valueas not accumulated in
an accumulator in an anonymous fashion (see Section 5))I&gr& guarantees that
is not a member of the accumulated &et

4 Dynamic Universal Accumulators

Camenisch and Lysyanskaya [10] proposed the concept ofntigreccumulators in

which one can dynamically add and delete elements. In tloisose we first give the

definition of dynamic universal accumulators, then presedynamic universal accu-
mulator based on our construction in the previous subsectio

4.1 Definition of dynamic universal accumulators
Definition 2. A universal accumulator idynamidif it has the following properties:

— Efficient Update of AccumulatorThere exists an efficient algorithi such that,
suppose = f(g, X), if & ¢ X, thenD(c,#) = ¢ such that = f(g, X U {2}); if
% € X, thenD(auxy, ¢, &) = ¢ such tha¢e = f(g, X\{Z}).

— Efficient Update of Membership Witnedset ¢ and¢ be the original and updated
accumulators respectively ardbe the new updated element. There exists an ef-
ficient algorithmW/; such that, ifx # &, « € X, andpi(c,z,w) = 1, then
Wi(w, ¢, é,x,2) = w such thafp (¢, z,w) = 1.

— Efficient Update of Nonmembership Witneg®t ¢ andé be the original and up-
dated accumulators respectively aide the new updated element. There exists
an efficient algorithni?, such that, ifx # %, * ¢ X, andps(c, z,w) = 1, then
Wa(w, ¢, é,x,2) = w such thafps (¢, z, w) = 1.



Of course, it is easy to perform updates using computatioatsare linear in the
size of the accumulated séf, i.e., compute the witnesses from the scratch. In the
above definition, the term “efficient” means that the time ptewity of each update
operation is independent of the size Xf Note that, update of a membership witness
or a nonmembership witness is achieved without the auyiliafiormation. That is,
given the original and new accumulators, one can updateiftess locally. This is a
very useful feature: Suppose the group manager updatestii& somputes the new
accumulator, and broadcasts its value to all users. Eaaghcaseupdate her witness
locally without any help from the group manager.

In terms of security requirement, loosely speaking, a dyinamversal accumulator
is secure against an adaptive adversary if the adversanptaiin the following game.
Suppose a group manager sets up the fungtiand the valug and hides the auxiliary
informationauxy. The adversary adaptively modifies the setWhenever a value
is inserted into or deleted fronX, the manager calls algorithf® and publishes the
updated accumulator. In the end, the adversary outpatsX and a valid membership
witness forz or outputsi € X and a valid nonmembership witness farThe formal
security definition of dynamic universal accumulator igestiaas follows.

Definition 3. Let {F,} be the family of universal accumulator functions defined in
Definition 1. LetM be an interactive Turing machine that receives inffutux;, g),
where f € Fy, auxy is the auxiliary information abouf, andg € Gy. M maintains

a list of valuesX which is initially empty. The initial accumulataris set to bey. M
responds to two types of messages: for messgade ), it makes sure that € X,
addsz to the setX, modifiesc by runningD, and then sends back the updateéor
messag€ddelete, z), it checks thatr € X, deletes it from the seX, updatesc by
running D, and sends back the updatedn the end, M outputs the current values for
X andec. A dynamic universal accumulator schemesecureif, for all probabilistic
polynomial-time adversaryi,

f—G(1*);9 —r Gy;
Pr | (z,wi,w2, X) — Ax(f, Gy, 9) < M(f,auxs,g9) — (X,c¢): =negk)
€ Xy X C Xyse= f(g,X);pr(e,z,wr) = 1; pa(c, x,wa) = 1

We now show that if a secure universal accumulator is dynamier Definition 2,
then this dynamic universal accumulator is secure agadfegitave adversaries.

Remark 1.A dynamic universal accumulator is secure against an adaptiversary if
the underlying universal accumulator is secure.

The above remark is straight-forward using reduction arguimNe can show that
if an adversary4 breaks the security property in Definition 3, we could buitebéner
adversary3 to break the security property of a universal accumulatddéfinition 1
by invoking.A. On input(f, Gy, g), B passes these values#h BecauseA needs to
interacts with the manage¥/ for updating elements, we & act as the manager: if
A sends ar{add, x) query,B simply insertse into X and computes = f(g, X); if
A sends gdelete, 2:) query,B removesr from X and computes = f(g, X). In the
end, if A outputs an element € X}, with a valid membership witness; and a valid
nonmembership witnesss, B outputs(z, X, wq,w2). Clearly, B breaks the security
property in Definition 1.



4.2 Our construction

Construction 2 (Dynamic Universal Accumulators) Our construction is built on
Construction 1 with the following additional functionadis:

— Update of Accumulator:Adding a valuet to the accumulator can be computed
as¢ = ¢* mod n. Deleting a value: from the accumulator is computed as=
D(d(n),c, &) = & med ¢() mod n, whereg(n) is the auxiliary information.

— Update of Membership Witness:et w be the original membership witness of
Let c and¢ be the original and new accumulators, respectively. Thistaction is
the same as the one in [10].

1. Addition Supposeé: has been added, the new membership witness can be com-
puted asi = f(w,#) = w® mod n. Itis easy to verify thap, (¢, z,w) = 1.

2. Deletion Supposé: # x has been deleted, the new membership witidesan
be computed as follows. Algorithi/; chooses two integer andb such that
ar + bi = 1 and thend = w’¢* mod n. We can verify that:

W = (wbéa)m — ((wbéa)zi)l/i — (Cbicaz)l/i =& (InOd n)

— Update of Nonmembership Witnedset (a, d) be the original nonmembership wit-
ness ofr.

1. Addition Supposet # =z has been added, givené, x, & such thaté¢ =
¢® mod n, the new nonmembership witne&s, d) can be computed as fol-
lows. Algorithm¥/; first finds two integeré, andry such thatigz + roz = 1.

It is easy to find suclig andry because: andz are distinct primes. Multi-
plying by a to both side of the above equation, we hagaz + roax = a.
Wy then computeg = aga mod «, and findr € Z such thatiz = a + rx.
Note thata € Zye. In the end W, computes] = dc¢” mod n. We can verify
p2(é,x,a,d) = 1, or,é* = d®g holds:

é[z — C[zi _ CaJrrz — T — Crzdzg — (dcr)zg _ dzg (HlOd n)

2. Deletion Supposé: has been deleted, givené, x, & such that = ¢* mod n,
the new nonmembership witne€s d) can be computed as follows. Algorithm
W, chooses an integersuch thatuz — rx € Zye (there always exists sugh
becauser € Z,), then leta = ai — rx andd = dé~" mod n. We can verify

p2(é,x,a,d) = 1, or, in other words¢® = d* ¢ holds:
é& _ éai—rm — AT — dmgé—rm _ (d(é)—r)zg _ ng (mod n)

Note that we can add or delete several values together sinyplgtting & be the
product of the added or deleted values. This is also truegdating (non)membership
witness.



5 Efficient Proof That a Committed Value Was Not Accumulated

We now present a useful building block for certificate rexmrain an anonymous set-
ting — a protocol that proves a committed value was not actabeaiin the accumulator.
Suppose that a group manager compiles a list of revoked ardrpublishes the accu-
mulator for the set of revoked serial numbel§a regular user wants to prove that she
is not in the revocation list, she simply shows her serial bemand the correspond-
ing nonmembership witness. However, such approach rethealsser’s serial number
(thus the identity as well). The building block presentedhis section enables such
nonmembership proof in an anonymous fashion, i.e., withexgaling the serial num-
ber. The idea here is that the user first commits her seriabeuim her certificate, then
proves that the committed serial number was not accumuilatée revocation list. We
shall describe in details how this building block is useddertificate and membership
revocation in the anonymous setting in the next section.

The commitment scheme that we use in this section is devetlopéd-ujisaki and
Okamoto [18] and improved by Damgard and Fujisaki [17]. Pheameters of the this
commitment scheme afe, g1, h1), wheren; is a special RSA modulus of lengkh,

h, is arandom value i@ R,,,, andg; is a random value in the group generatedihy
To commit a valuer, the committer chooses a randem—pr Z,, and computes the
commitmentommit(z, ) = g7 h] mod n,. The Fujisaki and Okamoto’s commitment
scheme is statistically hiding and computationally bigdfrfactoring is hard. Note that
the protocol described next could also work for other commaitt schemes, such as the
Pedersen commitment [22], with only minor modifications.

For our protocol, we require an eleménin (R, such thatog, i is unknown to
the prover, wherg andn are the parameters of the universal accumulators described
in the previous sections. To prove that given a commitnegraind an accumulatar,
the value committed ie; has not been accumulateddnwe build the following zero-
knowledge proof protocol. The common inputs to the protacet,, ny, g1, h1, ¢, n, g,
andh. The prover has additional inputs; r, a, d such thate; = g{h] mod n; and
c¢* = d®g mod n, where the first equation shows thats the committed value of;
and the second equation shows thatas not accumulated in

Protocol 1 PK{(x,r,a,d) : c1 = gThy A c*=d*g N x €Zge N a € ZLoe}

1. The prover chooses, uniformly at random, valugsr,, r,, ry, 7., andr. of
length k. The prover computes the following values (modulp ¢, = ¢*h"=,
Cq = g*h™, cq = dg¥, ¢ = g¥Vh™, 2 = zw, ¢, = g°h"=, andc. = (cq)*h"e.
The prover sendéc,, cq, ¢4, cw, ¢, ce) t0 the verifier and carry out the following
zero-knowledge proofs of knowledge.
Note thatc, = (cq)*h" = (dg¥)*h" = d*g*h"e = g~ tcg*h".

2. The prover proves to the verifier that the value committed iin basegg;, h1) is
the same as the value committed:inin basegg, h):

PK{ (e, p, pz) : c1 = gfh) mod ny A ¢ = g°h?* mod n}

5 We assume that each group member in the system has a uniqueesiial number.



3. The prover proves to the verifier that the value committed iin basegcy, h) is
the same as the value committed:in

PK{(g, pe, pz) : ce = (ca)°hP* A ¢z = g hP*}

4. The prover proves to the verifier thay is also a commitment in baség:, g), h),
and the values committed ing are the same as the values committed,irc.., and
the power ofh in c.g is the same as ia. in basegcy, h):

PK{(Uv T,€, Pas Pz, pe) :
Cceg =g hPe N ca=g°hP* N ¢, =g "h** A c. = (cq)*h’}

5. The prover proves to the verifier thatis a commitment to the product of values
committed inc,, andc,,:

PK{(Uv vavpz,l’vazvp) :
c: =9 "hP* A ¢y =g hP A ¢y =g hP* A e, = (cy)h’}

6. The prover proves to the verifier thatis a commitment to an integer of length
and that, is a commitment to an integer of length

PK{(g,0, Pz, pa) : Co = g°h’" N ca =g °hP* N € € Loy N 0 € Lo}

Note that the preceding protocol is similar to the one preddsy Camenisch and
Lysyanskaya [11]. The zero-knowledge proof protocol in][ilused to prove knowl-
edge of a signature, whereas our protocol is to prove knayeled a nonmembership
witness. The details of the zero-knowledge proof protogolsach step are omitted,
as these zero-knowledge proof protocols are standard ilitéhature, e.g., a protocol
for proving knowledge of equality of representation modiwio composite modulus
in step 2, 3, and 4 can be found in [13], a protocol for zerovkedge proof that a
committed value is the product of two other committed valmestep 5 can be found
in [12,17], a protocol for proving that a committed valueslia a given range in step 6
can be found in [6].

Theorem 2. The preceding protocol is a zero-knowledge proof of knogdedf the
values(z, r, a,d) such thatc; = ¢g7h] mod n; and(a,d) is a valid nonmembership
witness ofc for accumulatore.

Proof. The completeness property of Protocol 1 is obvious. The-krowledge prop-
erty of Protocol 1 is also clear. The simulator first compukescommitments,,, c,,
Cd, Cw, C», ande, at random. Then the simulator invokes the simulator for th®=z
knowledge proofs of knowledge of each step. Because the domemts reveal nothing
statistically and the proofs of knowledge protocols at esiep are zero-knowledge, the
preceding protocol is zero-knowledge.

We now show that there exists a knowledge extractor thatubsigp valid commit-
ted valuer and a valid nonmembership witness farOur extractor will invoke the
extractor for the zero-knowledge proof protocols at eaep as a building block. If our



extractor fails, then we are able to set up a reduction tokitteastrong RSA assump-
tion. Suppose the extractor succeeds and computesw, z, 7, 7., Ta, Tw, 'z, 'e) SUCh
that

c1 = gihy (1)
Co = b )
ce = (ca)"h" 3)
Ca =g*h" (4)
Cy = gzhrz (5)
ceg = c"g*h" (6)
¢ = g"uh' (7)

where the equations (1) and (2) come from the extractor im 2tef the protocol, the
equations (2) and (3) come from the extractor in step 3 of thtopol, the equation (4),
(5), and (6) come from the extractor in step 4 of the protaita,equation (5) and (7)
come from the extractor in step 5 of the protocol. From equati(5) and (7), we get
z = zw. Equations (3) and (6) imply thdt;)*g = c*¢*. Letd = ¢4/g", we have
d® = (ca/g")* = % /g7 = c*g~*, or equivalentlyc® = d®g. Since we also know that
x anda are of length¢, we can outputz, r, a, d) such thatc; is a commitment ofz,
and(a, d) is a valid nonmembership witness ter O

6 Application to Certificate and Membership Revocation

In this section, we show that the dynamic universal accutoulae constructed can be
used for efficient membership revocation for group sigreguanonymous credentials,
and direct anonymous attestation schemes; right afteeéeniew of these schemes.

6.1 Review of group signatures, anonymous credentials, ardirect anonymous
attestation

Group signatures, first introduced by Chaum and van Heygt fitbvide anonymity
for signers. In a group signature scheme, each group merahesign messages such
that the resulting signatures do not reveal the identithefdigner. A number of group
signature schemes have been proposed, e.g., [1, 2,5, Ifjalp speaking, a group-
signature scheme with membership revocation is a digiglagiire scheme comprised
of the following procedures:

— Setup:On input a security parameter, this probabilistic alganithutputs the initial
group public key and the secret key for the group manager.

— Join: A protocol between the group manager and a user that resutteiuser
becoming a new group member. The user’s output is a mempeshificate and
a membership secret.

— Sign: A probabilistic algorithm that on input a group public keymembership
certificate, a membership secret, and a messagatputs group signature of.



— Verify: An algorithm for establishing the validity of a group sigmia of a message
with respect to a group public key.

— Open:An algorithm that, given a message, a valid group signatari, @ group
public key and a group managers secret key, determinesghétidof the signer.

— Revocation:An algorithm for the group manager to remove a member from the
group. This algorithm results in an updated group’s pubég knd some other
information to be stored in a public server.

— Membership UpdateéAn algorithm for the users to update their membership certifi
cates and membership secrets using the information alailabhe public server
and the current group public key.

A secure group signature scheme must satisfiatt@ymityandunlinkability prop-
erty. The anonymity property says that, given a valid sigreabf some message, iden-
tifying the actual signer is computationally hard for evamg but the group manager.
The unlinkability property means that deciding whether @ifferent valid signatures
were computed by the same group member is computationatlly ha

In an anonymous credential system [21,9, 11], a user can n&nate to a ver-
ifier that she has a credential, but the verifier cannot infgittang about who the
user is other than the fact that the user has the right criedleihe Camenisch and
Lysyanskaya [9, 11] credential system has a similar coostmito the group signature
schemes. Essentially, their system enables a credentiditto prove to a verifier that
the credential holder has a signature signed by the cetéfasthority.

Direct Anonymous Attestation (DAA) was first proposed bydBall, Camenisch,
and Chen [7]. DAA enables remote authentication of a Trustf&®m Module (TPM),
while preserving the privacy of the user of the platform ttattains the module. The
DAA scheme can be seen as a group signature without the éghttra signature can be
opened. The DAA scheme presented in [7] is similar to theatigne scheme proposed
in[11].

6.2 Incorporating revocation into group signature schemes

In this subsection, we use the group signatures schemeopeeeby Ateniese et al. [1]
as an example, and show that our universal accumulator &bambe integrated into
the group signatures scheme to enable efficient revocation.

— Setup:In [1], the group manager chooses two rangeand A and chooses =
pq wherep and ¢ are safe primes. The group manager also picks, g, h €
QR,, and chooses a secret elementand computegy = ¢ mod n. The group
public key is(n, a, ag, g, h, y) and the secret key 9, ¢, z). In addition, the group
manager creates for the universal accumulators described in section 3, theh
I' C Xj. The group manager also chooses a rangbrea QR,,- and publishes
(n', ¢’) as the public parameters of the universal accumulator.

— Join: In [1], a user interacts with the group manager. In the enel utber obtains
e; € I',z; € A, and4,; such that™iag = A;* mod n. In addition, given the cur-
rentrevocation lisfes, . . ., e, }, the group manager computes the nonmembership
witness fore;, and sends the witness to the user.



— Sign and Verifyln [1], the prover with private keyA;, e;, z;) proves to the ver-
ifier that she is a member of the group. More specifically, thever uses zero-
knowledge proof of knowledge to prove the knowledge(4f, e;, x;) such that
a“iap = A" mod n. In addition, the prover proves to the verifier thatis not
in the revocation list. This can be done using the zero-kadge proof protocol in
Section 5. That is, the prover can first commitand then prove that (1) the value
committed is the same as the value in her private key, andchéalue committed
has not been accumulatediiay, . . ., e, }.

— RevocationTo revoke a member with private kéw;, e;, ;) from the group, the
group manager inserts into the revocation list. Let be the current accumulator.
The group member updates= f(c,e;) = ¢ mod n'.

— Membership Updatel.et ¢ be the current accumulator andbe previous accumu-
lator stored in the public server. Each group member updaetesonmembership
witness accordingly usinggandc using the algorithms presented in Section 4.

Analogously, we could integrate our revocation schemegugiriversal accumula-
tors with other group signature schemes [2, 5, 14], anonwwgoedentials schemes [9,
11], compact e-cash scheme [8], and DAA scheme [7] with mmodifications. Ob-
serve that the group manager could generate both a valid ership witness and a
valid nonmembership witness for a given group member. Inssheme, we assume
that the group manager is trusted and it will not generatemsnbership withesses for
the members that are already in the revocation list.

7 Conclusion

We proposed a new cryptographic scheme called universahadators which enables
one to condense to a set of values using a short accumulatifjdiently compute a

witness of the membership of any value that has been acctaduknd to efficiently

compute a witness of the nonmembership of any value that diaseen accumulated.
We gave a construction for universal accumulators and rdsesecurity based on the
strong RSA assumption. We then presented a constructiatyf@mic universal accu-
mulators in which one can add (or delete) inputs into (or frtime accumulated set with
constant cost. Dynamic universal accumulators can be wsegfffcient membership

revocation in the anonymous setting. Universal accumtgattay be of independent
interest in other applications as well.
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