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Abstract 

Background: Deep neural networks (DNNs) are widely investigated in medical image classification to achieve 

automated support for clinical diagnosis. It is necessary to evaluate the robustness of medical DNN tasks against 

adversarial attacks, as high-stake decision-making will be made based on the diagnosis. Several previous studies have 

considered simple adversarial attacks. However, the vulnerability of DNNs to more realistic and higher risk attacks, 

such as universal adversarial perturbation (UAP), which is a single perturbation that can induce DNN failure in most 

classification tasks has not been evaluated yet.

Methods: We focus on three representative DNN-based medical image classification tasks (i.e., skin cancer, referable 

diabetic retinopathy, and pneumonia classifications) and investigate their vulnerability to the seven model architec-

tures of UAPs.

Results: We demonstrate that DNNs are vulnerable to both nontargeted UAPs, which cause a task failure resulting 

in an input being assigned an incorrect class, and to targeted UAPs, which cause the DNN to classify an input into a 

specific class. The almost imperceptible UAPs achieved > 80% success rates for nontargeted and targeted attacks. The 

vulnerability to UAPs depended very little on the model architecture. Moreover, we discovered that adversarial retrain-

ing, which is known to be an effective method for adversarial defenses, increased DNNs’ robustness against UAPs in 

only very few cases.

Conclusion: Unlike previous assumptions, the results indicate that DNN-based clinical diagnosis is easier to deceive 

because of adversarial attacks. Adversaries can cause failed diagnoses at lower costs (e.g., without consideration of 

data distribution); moreover, they can affect the diagnosis. The effects of adversarial defenses may not be limited. Our 

findings emphasize that more careful consideration is required in developing DNNs for medical imaging and their 

practical applications.
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Background
Deep neural networks (DNNs) are effective for image 

classification and are beginning to be applied to medi-

cal image diagnosis to empower physicians and accel-

erate decision making in clinical environments [1]. For 

example, DNNs have been used to classify skin cancer 

based on photographic images [2], referable diabetic 

retinopathy based on optical coherence tomography 

(OCT) images of the retina [3], and pneumonia based 

on chest X-ray images [3]. �ey have demonstrated high 

diagnostic performances. A meta-analysis [4] has indi-

cated that the diagnostic performance of DNNs is equiv-

alent to that of healthcare professionals.

Despite DNNs’ high performance, their practical appli-

cation in disease diagnosis is still debatable. High-stake 

decision making will be based on disease diagnosis. 

Complex classifiers, including DNNs, can potentially 

cause catastrophic harm to society because they are often 
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difficult to interpret [5]. More importantly, DNNs present 

a number of security concerns [6]. Specifically, DNNs 

are known to be vulnerable to adversarial examples [7, 

8], which are input images that cause misclassifications 

by DNNs and are typically generated by adding specific, 

imperceptible perturbations to original input images that 

have been correctly classified using DNNs. �e existence 

of adversarial examples raises questions about DNNs’ 

generalization ability, reduces model interpretability, and 

limits deep learning applications in safety- and security-

critical environments [9]. In particular, adversarial exam-

ples cause not only misdiagnosis but also various social 

disturbances [10]. �e vulnerability of DNNs to adversar-

ial attacks has been claimed in skin cancer [10] and pneu-

monia classifications based on chest X-ray images [11].

Nevertheless, more focused investigations are needed 

on DNNs’ vulnerability to adversarial attacks. Previous 

studies have only considered input-dependent adversarial 

attacks (i.e., an individual adversarial perturbation is used 

such that each input image is misclassified). Such adver-

sarial attacks are difficult because they require high com-

putational costs. More realistic adversarial attacks must 

be further considered. Notably, a single small, image 

agnostic perturbation, called universal adversarial per-

turbation (UAP), that can induce DNN failure in most 

image classification tasks, has been reported [12]. A pre-

vious study [12] considered only UAPs for nontargeted 

attacks, which cause misclassification (i.e., a task failure 

resulting in an input image being assigned an incorrect 

class). However, we previously extended the UAPs gen-

erating algorithm to enable targeted attacks [13], which 

caused the DNN to classify an input image into a specific 

class. UAPs are difficult to detect because such perturba-

tions are extremely small and, hence, do not significantly 

affect data distributions. UAP-based adversarial attacks 

can be more straightforward to implement by adversar-

ies in real-world environments. UAPs are vulnerable to 

security threats in medical image diagnosis; however, 

UAP vulnerability is still poorly evaluated in DNN-

based medical image diagnosis to date. Specifically, many 

researchers and engineers have simply developed DNNs 

using transfer learning (by fine-tuning pretrained DNN 

models with medical images), inspired by famous studies 

on medical image classification based on DNNs [2, 3] and 

have applied DNNs to medical image classification with-

out consideration for their vulnerability to UAPs. Addi-

tionally, defense strategies against UAPs in DNN-based 

medical image classification are still poorly investigated, 

although the vulnerability of DNNs to adversarial attacks 

indicates the need for strategies to address security con-

cerns (i.e., adversarial defense [8]). Specifically, adversar-

ial retraining is one of the few approaches that could not 

be defeated thus far [14].

�is study aims to evaluate the vulnerability of DNNs 

to UAPs for medical image classification and to warn 

against facile applications of DNNs for medical image 

classification. We focused on representative medical 

image classifications: skin cancer classification based on 

photographic images [2], referable diabetic retinopathy 

classification based on OCT images [3], and pneumo-

nia classification based on chest X-ray images [3]. We 

obtained DNN models with various architectures for 

medical image diagnosis inspired by previous studies [2, 

3] and investigated their vulnerability to nontargeted and 

targeted attacks based on UAPs. Moreover, adversarial 

defense was considered; in particular, we evaluated the 

increased robustness of DNNs to nontargeted and tar-

geted UAPs using adversarial retraining [12, 14–16], a 

representative method for adversarial defenses.

Methods
Medical image datasets

We used three types of medical images: skin lesion 

images for skin cancer classification, OCT images for ref-

erable diabetic retinopathy classification, and chest X-ray 

images for pneumonia classification.

In a previous study [2], skin lesion images (red–

green–blue color) were obtained from the International 

Skin Imaging Collaboration (ISIC) 2018 dataset (chal-

lenge2018.isic-archive.com/task3/training/), in which 

the images were classified into seven classes: melanoma 

(MEL), melanocytic nevus (NV), basal cell carcinoma 

(BCC), actinic keratosis/Bowens disease (intraepithe-

lial carcinoma; AKIEC), benign keratosis (solar lentigo/

seborrheic keratosis/lichen planus-like keratosis; BKL), 

dermatofibroma (DF), and vascular lesions (VASC). �e 

dataset comprised 10,015 images. We randomly divided 

these images into 7,000 training images (778 MEL, 4,689 

NV, 370 BCC, 229 AKIEC, 764 BKL, 76 DF, and 94 VASC 

images, respectively) and 3,015 test images (335 MEL, 

2016 NV, 144 BCC, 98 AKIEC, 335 BKL, 39 DF, and 48 

VASC images, respectively).

�e OCT and chest X-ray images (grayscale) were 

obtained from a previous study [3] (data.mendeley.

com/datasets/rscbjbr9sj/3). �e OCT images were clas-

sified into four classes: choroidal neovascularization 

with neovascular membrane and associated subreti-

nal fluid (CNV), diabetic macular edema with retinal-

thickening-associated intraretinal fluid (DME), multiple 

drusen present in early age-related macular degeneration 

(DRUSEN), and normal retina with preserved foveal con-

tour and absence of any retinal fluid/edema (NM). �e 

original dataset comprised 37,455 CNV, 11,598 DME, 

8866 DRUSEN, and 51,390 NM images, respectively. We 

constructed a class-balanced training image set and test 

image set by randomly selecting 1960 and 840 images 
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per class, without duplicates, respectively. We finally 

obtained 7840 training and 3360 test images.

�e chest X-ray images were classified into binary 

classes: no pneumonia (NORMAL) or viral or bacterial 

pneumonia (PNEUMONIA). �e original dataset com-

prised 1583 NORMAL and 4273 PNEUMONIA images. 

We constructed a class-balanced training image set and 

test image set by randomly selecting 900 and 270 images 

per class, without duplicates, respectively. We finally 

obtained 1800 training and 540 test images.

Transfer learning methods

Following previous studies [2, 3], we obtained the DNN 

models using transfer learning; in particular, we fine-

tuned DNN models pretrained using the ImageNet 

dataset [17] with a medical image dataset. We mainly 

considered the Inception V3 architecture [18], following 

previous studies. To investigate the effect of model archi-

tecture on adversarial robustness, we considered different 

model architectures: VGG16 [19], VGG19 [19], ResNet50 

[20], Inception ResNet V2 [21], DenseNet 121 [22], and 

DenseNet 169 [22]. For each model architecture, we 

replaced the original last fully connected (FC) layer with 

a new FC layer in which the output size is the number 

of classes. �e images were resized to 299 × 299 pixels. 

All layer parameters were fine-tuned using the training 

images in a medical image dataset. We used the stochas-

tic gradient descent optimizer with a momentum of 0.9. 

�e batch size and number of epochs were set to 32 and 

50, respectively. �e learning rates were scheduled based 

on the number of epochs: 0.001 for ≤ 40 epochs, 1e−4 

for 41–45 epochs, and 1e−5 for > 45 epochs. To avoid 

overfitting, data augmentation was considered: random 

image rotations with angles ranging between − 5° and 5° 

and random 5% height and width image shifts. For the 

skin cancer classification, we adopted oversampling to 

account for imbalances in the dataset. �e transfer learn-

ing procedures were performed using Keras (version 

2.2.4; Keras.io).

Universal adversarial perturbations

Simple iterative algorithms [12, 13] were used to gen-

erate UAPs for nontargeted and targeted attacks. �e 

algorithms’ details are described in [12, 13]. We used 

the nontargeted UAP algorithm available in the Adver-

sarial Robustness 360 Toolbox (ART) [23] (version 1.0; 

github.com/Trusted-AI/adversarial-robustness-tool-

box). �e targeted UAP algorithm was implemented 

by modifying the nontargeted UAP algorithm from our 

previous study in ART [13] (github.com/hkthirano/

targeted_UAP_CIFAR10).

�e algorithms consider a classifier and generate non-

targeted (targeted) UPAs ρ from an input image set X , 

under the constraint that the Lp norm of the perturba-

tion is equal to or less than a small ξ value (i.e., 
∥

∥ρp

∥

∥ ≤ ξ ). 

�e algorithms start with ρ = 0 (no perturbation) and 

iteratively update ρ by additively obtaining an adversar-

ial perturbation for an input image x , which is randomly 

selected from X without replacement. �ese iterative 

updates continue until the number of iterations reaches 

a maximum imax.

�e fast gradient sign method (FGSM) [7] is used to 

obtain an adversarial perturbation for the input image. 

Meanwhile, the original UAP algorithm [12] uses the 

DeepFool method [24]. �is is because the FGSM is used 

for both nontargeted and targeted attacks, and DeepFool 

requires a higher computational cost than the FGSM and 

only generates a nontargeted adversarial example for the 

input image. �e FGSM generates the adversarial pertur-

bation for x based on the loss gradient [7] with the attack 

strength parameter ǫ.

Nontargeted and targeted UAPs were generated using 

the training images in the dataset. �e parameter ǫ was 

set to 0.0024; cases where p = 2 and ∞ were consid-

ered. �e parameter ξ was determined based on the ratio 

ζ of the Lp norm of the UAP to the average Lp norm of 

an image in the dataset. For the ISIC 2018 (skin lesion 

image) dataset, the average L∞ and L2 norms were 237 

and 85,662, respectively. For the OCT image dataset, the 

average L∞ and L2 norms were 253 and 15,077, respec-

tively. For the chest X-ray image dataset, the average L∞ 

and L2 norms were 253 and 40,738, respectively. �e 

parameter imax was set to 15.

To compare the performances of the generated UAPs 

with those of the random controls, we generated ran-

dom vectors (random UAPs) sampled uniformly from the 

sphere of a specified radius [12].

Vulnerability evaluation

�e fooling rate Rf  and targeted attack success rate Rs 

were computed to evaluate the vulnerability of the DNN 

models to a nontargeted UAP ( ρnt ) and targeted UAP 

( ρt ), respectively. Further, Rf  for an image set X is defined 

as adversarial images for which predicted labels are 

inconsistent with the labels predicted from their associ-

ated clean images to all images in the set (i.e., the proba-

bility that the labels predicted from clean images are 

inconsistent with the labels predicted from their adver-

sarial images). Let C(x) be an output (class or label) of a 

classifier (DNN) for an input image x , 

Rf = |X |−1
∑

x∈X

I
(

C(x) �= C
(

x + ρnt

))

 , where the func-

tion I(A) returns 1 if the condition A is true and 0 other-

wise. Rs for an image set is the proportion of adversarial 

images classified into the target class y to all images in 

the set Rs = |X |−1
∑

x∈X

I
(

C
(

x + ρt

)

= y
)

 . It is noteworthy 
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that Rs has a baseline, defined as Rs , observed without 

UAPs. Class (label) composition of image data and pre-

diction performance of DNNs both affect the baseline. In 

this study, for the OCT and chest X-ray image datasets, 

the Rs baselines of UAPs targeted to a specified class 

were ~ 25% and ~ 50%, respectively. For the skin lesion 

dataset, the Rs baselines of UAPs targeted to MEL and 

NV were ~ 10% and ~ 65%, respectively.

Additionally, we obtained the confusion matrices, to 

evaluate the change in prediction owing to the UAPs for 

each class. �e rows and columns in the matrices rep-

resent true and predicted classes, respectively. �e con-

fusion matrices were row-normalized to account for an 

imbalanced dataset (ISIC 2018 dataset); in particular, 

each cell value was normalized by the number of obser-

vations with the same true class (label).

Adversarial retraining

Adversarial retraining was performed to increase the 

robustness of the DNN models to UAPs [12, 15]; in par-

ticular, the models were fine-tuned with adversarial 

images. �e procedure was described in a previous study 

[12]. A schematic diagram of the adversarial retraining 

procedure is shown in Additional file  1: Fig. S1. A brief 

description is provided here: (1) 10 UAPs against a DNN 

model were generated with the (clean) training image set; 

(2) a modified training image set was obtained by ran-

domly selecting half of the training images and combin-

ing them with the remaining images in which each image 

was perturbed by a UAP randomly selected from the 10 

UAPs; (3) the model was fine-tuned by performing five 

additional epochs of training on the modified training 

image set; (4) a new UAP was generated against the fine-

tuned model using the algorithm with the training image 

set; (5) the UAP Rf  and Rs values for the test images were 

computed; and steps (1)–(5) were repeated five times.

Results
Medical images classi�cation performance

We evaluated the prediction performance of seven DNN 

models for three medical image datasets. �e test and 

training accuracies of the models for the datasets are 

summarized in Additional file  1: Table  S1. �e DNN 

models achieved good accuracy. For the skin lesion, 

OCT, and chest X-ray image datasets, the average test 

accuracies across the seven models were 87.3%, 95.8%, 

and 98.4%, respectively. Specifically, the test accuracies 

of Inception V3 models, which were frequently used in 

previous studies on medical image diagnosis (e.g., [2, 3]), 

were 87.7%, 95.5%, and 97.6%, respectively. �e normal-

ized confusion matrices for the Inception V3 models on 

the test images are shown in Additional file 1: Fig. S2.

Nontargeted universal adversarial attacks

We evaluated the vulnerability of the DNN models to 

nontargeted UAPs. We first considered Inception V3 

models because well-known previous studies on DNN-

based medical image classification used the Inception 

V3 architecture [2, 3]. Figure  1 shows the case of non-

targeted UAPs p = 2 against the Inception V3 models. 

�e fooling rates Rf  for both the training and test images 

increased rapidly with the perturbation magnitude ζ and 

reached a high Rf  , despite a low ζ . �e UAPs with ζ = 4% 

achieved Rf  > 80% for the skin lesion (Fig. 1a) and chest 

X-ray image datasets (Fig.  1c), whereas slightly larger 

UAPs (with ζ = 6% ) were required to achieve Rf  ~ 70% 

for the OCT image dataset (Fig.  1b). Further, Rf  of the 

nontargeted UAPs was significantly higher than that of 

random UAPs. �e confusion matrices on test images 

show that the models classified most images into several 

specific classes (i.e., dominant classes) due to the UAPs 

for the skin lesion and OCT image datasets. Specifically, 

most skin lesion images tended to be classified as AKIEC 

or DF (Fig. 1d); moreover, most OCT images were classi-

fied as CNV (Fig. 1e). For the chest X-ray image dataset, 

the model incorrectly predicted the true labels (Fig. 1f ). 

A high Rf  at low ζ and dominant labels was observed in 

the case of UAP with p = ∞ against the Inception V3 

models for all medical image datasets (Additional file 1: 

Fig. S3). However, the skin lesion images tended to be 

classified into broader classes: BCC, AKIEC, BKL, or DF 

(Additional file 1: Fig. S3D).

We also considered other models to evaluate whether 

the vulnerability to nontargeted UAPs depends on model 

architectures. Table 1 shows Rf  of the UAPs against the 

DNN models for the test images in the medical image 

datasets. Overall, a vulnerability to nontargeted UAPs 

was observed independent of model architectures; in 

particular, the small UAPs ( ζ = 4% for the skin lesions 

and chest X-ray image datasets, and ζ = 6% for the OCT 

image dataset) achieved a high Rf  (70–90%). �e UAPs’ 

Rf  were significantly higher than those of the random 

UAPs. However, Rf  partially depends on model archi-

tectures; specifically, Rf  of the UAPs against the VGG16 

and VGG19 models were ~ 50% for the chest X-ray 

image dataset, whereas those of the UAPs against the 

other models were between 70 and 80%. �is indicates 

that the models classified images into either NORMAL 

or PNEUMONIA. In the case of UAPs with p = 2 , the 

VGG16 and VGG19 models classified most test images 

into PNEUMONIA and NORMAL, respectively (Addi-

tional file  1: Fig. S4). In the case of UAPs with p = ∞ , 

both the VGG16 and VGG19 models predicted most of 

the test images as NORMAL. �is indicates that the con-

fusion matrix patterns (dominant classes) might change 

according to the model architecture and p . Additionally, 
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a change in confusion matrix patterns (on test images) 

was observed in the skin lesions and OCT image data-

sets. For example, the VGG16 model classified most skin 

lesion images into BKL owing to the UAP with ζ = 4% 

and p = 2 (Additional file  1: Figure S5A), whereas the 

Inception V3 models classified them into AKIEC or DF 

(Fig.  1d). �e ResNet 50 model classified most OCT 

images into DME owing to the UAP with ζ = 6% and 

p = 2 (Additional file 1: Fig. S5B), whereas Inception V3 

models classified them into CNV (Fig. 1e).

We investigated whether the nontargeted UAPs were 

perceptible. As a representative example, the nontargeted 
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Fig. 1 Vulnerability to nontargeted UAPs with p = 2 . Line plots of the fooling rate Rf  against Inception V3 model versus perturbation magnitude 

ζ for skin lesions (a), OCT (b), and chest X-ray (c) image datasets. Legend label indicates image set used for computing Rf  . Additional argument 

“(random)” indicates that random UAPs were used instead of UAPs. Normalized confusion matrices for Inception V3 models attacked using UAPs on 

test images of skin lesions (d), OCT (e), and chest X-ray (f) image datasets are also shown. ζ = 4% in d and f. ζ = 6% in e 

Table 1 Fooling rates Rf  (%) of  nontargeted UAPs against  various DNN models for  test images of  skin lesions, OCT, 

and chest X-ray image datasets

ζ = 4% for the skin lesions and chest X-ray image datasets. ζ = 6% for the OCT image dataset. Values in brackets are Rf  of random UAPs (random controls)

Model architecture Skin lesions OCT Chest X-ray

p = 2 p = ∞ p = 2 p = ∞ p = 2 p = ∞

Inception V3 92.2 (14.1) 90.0 (11.8) 70.2 (1.0) 73.9 (3.4) 81.7 (2.4) 79.8 (3.0)

VGG16 87.6 (4.9) 86.4 (3.5) 72.4 (0.2) 74.9 (1.8) 49.8 (2.2) 50.0 (2.2)

VGG19 89.2 (5.2) 87.0 (3.7) 72.8 (0.4) 74.7 (2.1) 49.3 (3.9) 49.3 (4.4)

ResNet50 91.9 (11.6) 87.9 (10.1) 71.2 (1.1) 74.8 (5.4) 72.6 (7.2) 73.0 (7.4)

Inception ResNet V2 94.5 (16.7) 90.3 (15.2) 69.6 (1.4) 74.0 (3.2) 78.0 (2.6) 77.0 (3.3)

DenseNet 121 93.8 (12.0) 82.9 (10.2) 68.8 (1.3) 73.0 (3.6) 69.8 (3.9) 71.7 (4.1)

DenseNet 169 93.8 (11.7) 84.2 (9.1) 50.3 (1.3) 72.3 (4.0) 67.6 (2.8) 71.3 (3.7)
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UAPs with p = 2 against the Inception V3 models and 

examples of adversarial images for the medical image 

datasets are shown in Fig. 2. �e UAPs with ζ = 4% for 

the skin lesions and chest X-ray image datasets and with 

ζ = 6% for the OCT image dataset were almost imper-

ceptible. �e models predicted the original images as 

their actual classes; however, they classified the adversar-

ial images into incorrect classes owing to the nontargeted 

UAPs. �e UAPs with p = ∞ and those against the other 

DNN models were also almost imperceptible for the skin 

lesion (Additional file 1: Fig. S6), OCT (Additional file 1: 

Fig. S7), and chest X-ray image datasets (Additional file 1: 

Fig. S8).

Moreover, we found that different UAP patterns were 

observed in the different model architectures for each 

medical image dataset (Additional file 1: Figs. S6–S8). We 

hypothesized that the UAPs have no transferability, which 

indicates that UAPs generated based on DNNs with one 

model architecture can be used to deceive DNNs with 

another model architecture and to evaluate the trans-

ferability of UAPs. As expected, transferability was not 

confirmed for the OCT (Additional file 1: Table S3) and 

chest X-ray image datasets (Additional file  1: Table  S4); 

however, a weak transferability of UAPs was observed 

in the skin lesions image dataset (Additional file  1: 

Table S5). Specifically, the nontargeted UAPs with p = 2 

generated based on the Inception V3 models achieved 

Rf  of approximately 45%, ~ 2%, and ~ 10% on average 

against the DNNs with another model architecture for 

the skin lesions, OCT, and chest X-ray image datasets, 

respectively.

Targeted universal adversarial attacks

We have developed targeted UAPs in our previous study 

[13]. We evaluated whether the DNNs are vulnerable 

not only to nontargeted UAPs but also to targeted UAPs 

(i.e., whether UAPs can control DNN outputs). Table  2 

shows the targeted attack success rates Rs of the UAPs 

with p = 2 against the DNN models for the test images in 

the medical image datasets. As representative examples, 

we considered targeted attacks to be the most significant 

case and the control in each medical image dataset. For 
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skin lesion image datasets, targeted attacks on MEL and 

NV were considered. For the OCT image dataset, tar-

geted attacks on CNV and NM were considered. For the 

chest X-ray image dataset, targeted attacks on PNEU-

MONIA and NORMAL were considered. Overall, a high 

(> 85%) Rs was observed regardless of the model architec-

ture, despite small UAPs (with ζ = 2% for the skin lesions 

and chest X-ray image datasets, and ζ = 6% for the OCT 

image dataset). Furthermore, the confusion matrices 

(Fig.  3) indicate that the UAP-based targeted attacks 

were successful: most ( Rs% of ) test images were classi-

fied into the targeted class owing to the UAPs (Table 2). 

However, a smaller Rs was partially observed according to 

the model architectures and datasets. For the skin lesions 

image dataset, Rs of the UAPs against VGG16 (~ 40%) and 

VGG19 (~ 65%) models were lower than those (~ 90%) 

of the UAPs against the other models. For the targeted 

attacks on NM in the OCT image dataset, Rs (30–40%) 

of the UAPs against the VGG and DensNet models were 

lower than those (~ 85%) of the UAPs against the other 

models. Further, Rs of random UAPs was almost equiva-

lent to those of the baselines. �e Rs values of the UAPs 

were significantly higher than those of the random UAPs. 

Furthermore, a high Rs for a small ζ was observed for the 

targeted UAPs with p = ∞ (Additional file 1: Table S2). 

However, Rs for targeted attacks on MEL was lower over-

all than Rs of the UAPs with p = 2 . For example, Rs of the 

UAPs with p = 2 and p = ∞ against the Inception V3 

model were ~ 95% and ~ 75%, respectively.

We investigated whether the targeted UAPs were 

perceptible. As a representative example, the targeted 

UAPs with p = 2 against the Inception V3 models and 

examples of adversarial images for the medical image 

datasets are shown in Fig.  4. �e targeted UAPs with 

ζ = 2% for the skin lesions and chest X-ray image data-

sets and ζ = 6% for the OCT image dataset were also 

almost imperceptible. �e models predicted the original 

images as their actual classes; however, they classified the 

adversarial images into the targeted class owing to the 

UAPs. �e UAPs with p = ∞ and those against the other 

DNN models were also almost imperceptible. For the 

skin lesion image dataset, Additional file 1: Figures S9 and 

S10 show the targeted attacks on NV and MEL, respec-

tively. For the OCT image dataset, Additional file 1: Fig-

ures S11 and S12 show the targeted attacks on NM and 

CNV, respectively. For the chest X-ray image dataset, 

Additional file 1: Figures S13 and S14 show the targeted 

attacks on NORMAL and PNEUMONIA, respectively.

We also evaluated whether UAP patterns depend on 

model architectures and found that they did so for each 

medical image dataset (Additional file  1: Figs. S9–S14). 

�e non-transferability of UAPs was also confirmed for 

the skin lesions (Additional file 1: Table S6), OCT (Addi-

tional file  1: Table  S7), and chest X-ray image datasets 

(Additional file  1: Table  S8); specifically, Rs observed 

when the targeted UAPs with p = 2 generated based 

on the Inception V3 model that attacked the DNN 

models with another architecture were almost equiva-

lent to their baselines of Rs ~ 10%, ~ 25%, and ~ 50% for 

the skin lesions, OCT, and chest X-ray image datasets, 

respectively.

Adversarial retraining

We analyzed the usefulness of adversarial retraining 

against universal adversarial attacks (both nontargeted 

and targeted UAPs). We considered Inception V3 mod-

els because well-known previous studies on DNN-based 

medical image classification used the Inception V3 archi-

tecture [2, 3].

Figure  5 shows the effect of adversarial retraining on 

Rf  of nontargeted UAPs with p = 2 against Inception V3 

models for the skin lesions, OCT, and chest X-ray image 

datasets, ζ = 4% for the skin lesions and chest X-ray 

image datasets, and ζ = 6% for the OCT image dataset. 

Adversarial retraining did not affect test accuracy. For the 

OCT image dataset, Rf  decreased with the adversarial 

Table 2 Targeted attack success rates Rs (%) of targeted UAPs with p = 2 against various DNN models to each target class

Rs was for test images, ζ = 2% for the skin lesions and chest X-ray image datasets, and ζ = 6% for the OCT image dataset. Values in brackets are Rs of random UAPs 

(random controls)

Model architecture/target 
class

Skin lesions OCT Chest X-ray

NV MEL NM CNV NORMAL PNEUMONIA

Inception V3 93.3 (65.6) 94.4 (12.2) 84.1 (25.7) 95.9 (24.8) 96.1 (52.8) 93.3 (47.2)

VGG16 89.6 (71.7) 40.4 (8.3) 32.4 (25.4) 97.7 (24.9) 95.6 (50.2) 95.0 (49.8)

VGG19 91.6 (72.1) 64.6 (8.7) 41.2 (25.9) 97.5 (24.9) 97.6 (51.7) 95.2 (48.3)

ResNet50 97.9 (66.5) 92.4 (11.8) 84.9 (25.8) 98.5 (24.5) 95.7 (53.5) 95.2 (46.5)

Inception ResNet V2 92.4 (61.0) 97.3 (16.1) 84.5 (25.6) 96.2 (24.7) 98.3 (53.1) 93.9 (46.9)

DenseNet 121 92.1 (65.2) 90.5 (13.4) 41.8 (25.3) 88.1 (24.7) 94.8 (51.9) 92.0 (48.1)

DenseNet 169 92.9 (65.8) 92.9 (12.2) 41.7 (25.0) 92.7 (24.2) 95.7 (52.0) 93.1 (48.0)
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retraining iterations; specifically, Rf  decreased from 70.2 

to 13.1% after five iterations (Fig. 5b); however, ~ 40% of 

the NM images were still classified into an incorrect class 

(DME, Fig.  5e). �e adversarial retraining effect on Rf  

was limited for the skin lesions (Fig. 5a) and chest X-ray 

image datasets (Fig. 5b). For the chest X-ray image data-

set, Rf  decreased from 81.7 to 46.7%. A Rf  of ~ 50% indi-

cates that the model classified most images into either 

one of two classes; specifically, most images were classi-

fied into NORMAL at the fifth iteration (Fig. 5f ). For the 

skin lesions image dataset, no remarkable decrease in Rf  

due to adversarial retraining was confirmed; specifically, 

Rf  decreased from 92.2 to 82.1% (Fig.  5a). Most images 

were classified into MEL at the fifth iteration (Fig.  5c). 

However, the dominant classes changed for each itera-

tion. For example, the dominant classes were AKIEC and 

BKL at the third and fourth iterations, respectively (Fig. 

S15 in Additional file 1).

Figure 6 shows the effect of adversarial retraining on the 

Rs of targeted UAPs with p = 2 against the Inception V3 

models for the skin lesions, OCT, and chest X-ray image 

datasets. As representative examples, we considered tar-

geted attacks on the most significant cases, namely, MEL, 

CNV, and PNEUMONIA for the skin lesions, OCT, and 

chest X-ray image datasets, respectively; ζ = 2% for the 

skin lesions and chest X-ray image datasets; and ζ = 6% 

for the OCT image dataset. Adversarial retraining did 

not affect the test accuracy and reduced Rs for all medical 

image datasets (Fig. 6a–c). For the OCT and chest X-ray 

image dataset, Rs decreased from ~ 95% to the baseline Rs 

(~ 25% and ~ 50%, respectively) after five iterations. For 

the skin lesions image dataset, Rs decreased from ~ 95 

to ~ 30%; however, Rs at the fifth iteration was higher than 

the baseline (~ 10%). �e confusion matrices (Fig. 6d–f) 

indicated that adversarial retraining was useful against 

UAP-based targeted attacks: most images were correctly 
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classified into the original classes despite the adversarial 

attacks. However, the effect of adversarial retraining was 

partially limited for the skin lesions image dataset. For 

example, 30% of the NV images were still classified into 

the target class (MEL) despite five iterations of adver-

sarial retraining (Fig. 6c). Furthermore, ~ 20% of the BKL 

and VASC images were still classified into the target 

class.

Discussion
We showed the vulnerability of the DNN models for 

medical image classification to small UAPs. Previous 

studies [10, 11] have indicated the vulnerability to adver-

sarial attacks toward medical DNNs; however, they were 

limited to input image-dependent perturbations. In this 

study, we demonstrated that almost imperceptible UAPs 

caused DNN misclassifications. Unlike previous assump-

tions, these results indicate that a DNN-based medi-

cal image diagnosis is easier to deceive. Adversaries can 

result in failed DNN-based medical image diagnoses at 

lower costs (i.e., using a single perturbation). Specifically, 

they do not need to consider the distribution and diver-

sity of input images when attacking DNNs using UAPs, as 

UPAs are image agnostic.

We demonstrated that nontargeted attacks based 

on UAPs were possible (Figs.  1 and 2, Table  1). Most 

images were classified into a few specific classes for 

the skin lesions and OCT image (multiclass) datasets. 

�is result is consistent with the existence of domi-

nant classes in UAP-based nontargeted attacks [12]. 
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For the skin lesions image dataset, the AKIEC and DF 

dominant classes observed in this study may be owing 

to the imbalanced dataset. �e number of AKIEC and 

DF images is relatively lower than that of the other class 

images. As the algorithm considers maximizing Rf  , a 

relatively large Rf  is achieved when all inputs are clas-

sified into AKIEC and DF owing to UAPs. �e use of 

imbalanced datasets may be one of the causes of vul-

nerability to UAPs. To avoid this problem, domain 

adaptation [25, 26] may be useful. For the OCT image 

(binary-class) dataset, the DNN models wrongly pre-

dicted the actual labels because of Rf  maximization; 

however, the existence of dominant classes was par-

tially confirmed according to the model architecture. 

�ese misclassifications result in false positives and 

false negatives in medical diagnosis. False positives 

may cause unwanted mental stress to patients, whereas 

false negatives may result in significant misdiagnoses 

involving human lives; specifically, they fail to perform 

early detection and render therapeutic strategies dif-

ficult. Moreover, they can cause the social credibility 

of medical doctors and medical organizations to be 

undermined.

�e transferability of nontargeted UAPs across model 

architectures was limited (Additional file  1: Tables S3–

S5). �is indicates that UAPs are architecture-specific, 

which is inconsistent with a previous study [12]. �is 

discrepancy might be due to differences in the image 

datasets. Specifically, the number of classes (2–7) in 

the medical image datasets was lower than that (1000) 

of the dataset used in the previous study. �is study 

partly considered grayscale images, whereas the previ-

ous study used colored images only. Transferability may 

be observed in datasets comprising colored images with 

more classes. In fact, a weak transferability was observed 

for the skin lesions image dataset (Additional file  1: 

Table S5).

Furthermore, we showed that targeted attacks based on 

UAPs were possible in medical image diagnosis (Figs.  3 

and 4, Table  2), although the UAPs were not trans-

ferable across model architectures (Additional file  1: 

Tables S6–S8). �e results imply that adversaries can 
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control DNN-based medical image diagnoses. As tar-

geted attacks are more realistic, they may result in more 

significant security concerns compared with nontargeted 

attacks. In particular, adversaries can obtain any diag-

nosis; specifically, they can intentionally cause not only 

problems resulting from misdiagnosis, but also various 

social disturbances. As mentioned in a previous study 

[10], adversarial attacks can be used for insurance fraud, 

as well as drug and device approval adjustments, thereby 

fraudulently providing and obtaining high-quality care 

when DNNs are used for decision making.

We considered adversarial retraining, which is known 

to be an effective method for adversarial defenses [14], to 

reduce the vulnerability to UAPs. However, the effect of 

adversarial retraining was limited for nontargeted UAPs 

(Fig.  5). For targeted attacks, adversarial retraining sig-

nificantly reduced the vulnerability to UAPs, but did 

not completely avoid it (particularly for the skin lesions 

image dataset, Fig.  6). Additionally, adversarial retrain-

ing requires high computational costs, as it is an iterative 

fine-tuning method. Simpler alternative methods, such 

as dimensionality reduction (e.g., principle component 

analysis), distributional detection (e.g., maximum mean 

discrepancy), and normalization detection (e.g., dropout 

randomization) are available; however, they are known to 

be easily detected as adversarial examples [15]. Despite 

the recent development in adversarial defenses, such as 

regularized surrogate loss optimization [27], the use of 

a discontinuous activation function [28], and improving 

the generalization of adversarial training with domain 

adaptation [29], many promising defense methods have 

failed [30]. Defending against adversarial attacks is a cat-

and-mouse game [10]. Furthermore, properties inher-

ent to image processing may cause misclassification. For 

instance, DNN-based image reconstructions are often 

performed to purify adversarial examples [31]; however, 

they cause image artifacts, resulting in misclassifications 

by DNNs [32]. It may be difficult to completely avoid 

security concerns caused by adversarial attacks.

�e vulnerability to UAPs was confirmed in various 

model architectures. Vulnerability to UAPs may be a uni-

versal feature in DNNs. However, VGG16 and VGG19 

were relatively robust against UAPs compared to the 

other model architectures. �is result is consistent with 
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Fig. 6 Effect of adversarial retraining on robustness of targeted UAPs with p = 2 against Inception V3 models for skin lesions, OCT, and chest X-ray 

image dataset. ζ = 2% for skin lesion and chest X-ray image datasets. ζ = 6% for OCT image dataset. Top panels indicate scatter plots of targeted 

attack success rate Rs (%) of UAPs versus number of iterations for adversarial retraining. Bottom panels indicate normalized confusion matrices for 

fine-tuned models obtained after five iterations of adversarial retraining. These confusion matrices are on adversarial test images
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the fact that shallower neural networks are more robust 

against adversarial attacks for the same task [33]. �e use 

of these model architectures may be a simple solution for 

avoiding vulnerability to UAPs. However, such a solution 

may be unrealistic. �e effect of the use of these model 

architectures on the decrease in Rf  and Rs was limited 

(Tables  1 and 2). Simpler models may show a relatively 

low prediction performance. Given the tradeoffs between 

prediction performance and robustness against adversar-

ial attacks [27], it may be difficult to develop DNNs with 

both high prediction performance and high robustness 

against UAPs.

Another simple solution for avoiding adversarial 

attacks is to render DNNs closed source and publicly 

unavailable; however, this hinders the accelerated devel-

opment of medical DNNs and practical applications 

of DNNs to automated support for clinical diagnosis. 

Because the amount of medical image data is limited, 

collaboration among multiple institutions is required to 

achieve high diagnostic performance [34]. For similar 

reasons, medical DNNs are often developed by fine-tun-

ing existing DNNs, such as VGG, ResNet, and Inception, 

pretrained using the ImageNet dataset (i.e., via transfer 

learning), although a previous study [34] debated the 

effect of transfer learning on the improvement in pre-

diction performance for medical imaging; consequently, 

model architectures and model weights may be impor-

tant. Furthermore, DNNs are aimed at real-world usage 

(e.g., automated support for clinical diagnosis). �e 

assumption that DNNs are a closed source and publicly 

unavailable may be unrealistic. Even if DNNs are black-

box (e.g., model architectures and weights are unknown 

and loss gradient is not accessible), adversarial attacks on 

DNNs may be possible. Several methods for adversarial 

attacks on black-box DNNs, which estimate adversarial 

perturbations using only model outputs (e.g., confidence 

scores), have been proposed [35–37]. �e development 

and operation of secure, privacy-preserving, and feder-

ated DNNs are required in medical imaging [6].

Conclusion
Our study is the first to show the vulnerability of DNN-

based medical image classification to both nontargeted 

and targeted UAPs. Our findings emphasize that careful 

consideration is required in the development of DNNs 

for medical imaging and their practical applications. 

Inspired by the high prediction performance of DNNs, 

many studies have applied DNNs to medical image clas-

sification; however, they have ignored the vulnerability 

of UAPs. Our study highlights such facile applications of 

DNNs. Our findings enhance our understanding of the 

vulnerabilities of DNNs to adversarial attacks and may 

help increase the security of DNNs. UAPs are useful for 

reliability evaluation and for designing the operation 

strategy of medical DNNs.
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