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Abstract  18 

Genome-wide maps of chromatin marks such as histone modifications and open chromatin sites 19 

provide valuable information for annotating the non-coding genome, including identifying 20 

regulatory elements. Computational approaches such as ChromHMM have been applied to 21 

discover and annotate chromatin states defined by combinatorial and spatial patterns of 22 

chromatin marks within the same cell type. An alternative ‘stacked modeling’ approach was 23 

previously suggested, where chromatin states are defined jointly from datasets of multiple cell 24 

types to produce a single universal genome annotation based on all datasets. Despite its potential 25 

benefits for applications that are not specific to one cell type, such an approach was previously 26 

applied only for small-scale specialized purposes. Large-scale applications of stacked modeling 27 

have previously posed scalability challenges. In this paper, using a version of ChromHMM 28 

enhanced for large-scale applications, we applied the stacked modeling approach to produce a 29 

universal chromatin state annotation of the human genome using over 1000 datasets from more 30 

than 100 cell types, denoted the full-stack model. The full-stack model states show distinct 31 

enrichments for external genomic annotations, which we used in characterizing each state. 32 

Compared to cell-type-specific annotations, the full-stack annotation directly differentiates 33 

constitutive from cell-type-specific activity and is more predictive of locations of external 34 

genomic annotations. Overall, the full-stack ChromHMM model provides a universal chromatin 35 

state annotation of the genome and a unified global view of over 1000 datasets. We expect this to 36 

be a useful resource that complements existing cell-type-specific annotations for studying the 37 

non-coding human genome. 38 

  39 
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Introduction 40 

Genome-wide maps of histone modifications, histone variants and open chromatin provide 41 

valuable information for annotating the non-coding genome features, including various types of 42 

regulatory elements [1–5]. These maps -- produced by assays such as chromatin immunoprecipitation 43 

followed by high-throughput sequencing to map histone modifications or DNase-seq to map open 44 

chromatin-- can facilitate our understanding of regulatory elements and genetic variants that are 45 

associated with disease [6–12]. Efforts by large scale consortia as well as many individual labs have 46 

resulted in these maps for many different human cell and tissue types for multiple different chromatin 47 

marks [1,9,13–20]. 48 

The availability of maps for multiple different chromatin marks in the same cell or tissue type 49 

motivated the development of methods such as ChromHMM and Segway that learn ‘chromatin states’ based 50 

on the combinatorial and spatial patterns of marks in such data [21–23]. These methods then annotate 51 

genomes in a cell-type-specific manner based on the learned chromatin states. They have been applied to 52 

annotate more than a hundred diverse cell and tissue types [3,16,24]. Previously, large collections of cell-53 

type-specific annotations have been generated using either (1) independent models that learn a different set 54 

of states in each cell or tissue type or (2) a model that is learned across all cells and tissues, resulting in a 55 

common set of states across cell types, yet generating cell-type-specific state annotations. This latter 56 

approach has previously been referred to as a ‘concatenated’ approach (Supp. Fig. 1) [22,25]. Variants of 57 

this approach allow information from other cell types to influence the state annotations in one cell type at 58 

a position, but still produce cell-type-specific state annotations [26,27]. These models that produce cell-59 

type-specific annotations are natural for cell-type-specific analyses. 60 

A complementary approach to applying ChromHMM to data across multiple different cell types 61 

referred to as the ‘stacked’ modeling approach was also previously suggested (Supp. Fig. 1) [22,25]. 62 

Instead of learning cell-type-specific annotations based on a limited number of datasets per cell type, the 63 

stacked modeling approach learns a single universal genome annotation based on the combinatorial and 64 
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spatial patterns in datasets from multiple marks across multiple cell types. This approach differs from the 65 

concatenated and independent modeling approaches as those approaches only identify combinatorial and 66 

spatial patterns present among datasets within one cell type.  67 

Such a universal annotation from stacked modeling provides potential complementary benefits to 68 

existing cell-type-specific chromatin state annotations. First, stacked models may help differentiate regions 69 

with constitutive chromatin activities from those with cell-type-specific activities. Previously, specific 70 

chromatin states from ‘concatenated’ cell-type-specific annotations were post-hoc clustered to analyze 71 

chromatin dynamics across cell and tissue types, yet such an approach does not provide a systematic and 72 

global view of the dynamics of all the data [3,16]. Second, the stacked modeling approach bypasses the 73 

need to pick a specific cell or tissue type when analyzing a single partitioning and annotation of the genome. 74 

Focusing on a single cell or tissue type may not be desirable for many analyses involving other annotations 75 

that are not inherently cell-type-specific, such as those involving conserved DNA sequence or genetic 76 

variants. Alternatively, compared to analyzing chromatin state annotations across all cells or tissue types, 77 

while the stacked model state definitions are more complex, the resulting genome annotations are simpler 78 

and non-overlapping. With the stacked modeling, each location is simply assigned to one of N universal 79 

states, whereas in the concatenated model, each location is assigned to one of M states in K cell types. The 80 

value of N can be selected to be much smaller than the number of possible combinations of chromatin state 81 

annotations across cell types at a location with the concatenated modeling, MK, as well as the number of 82 

possible combinations of cell types and states, M*K. Finally, annotations by the stacked modeling leverages 83 

a larger set of data for annotation, and thus has the potential to be able to identify genomic elements with 84 

greater sensitivity and specificity.  85 

Despite the potential complementary advantages of the ‘stacked’ modeling approach, it has only 86 

been applied on a limited scale to combine data from a small number of cell types for highly specific 87 

purposes [28,29]. No large-scale application of the stacked modeling approach to many diverse cell and 88 

tissue types has been previously demonstrated. This may have in part been due to large-scale applications 89 

of stacked modeling raising scalability challenges not present in cell-type-specific modeling.  90 
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Here, we present a large-scale application of the stacked modeling approach with more than a 91 

thousand human epigenomic datasets as input, using a version of ChromHMM of which we enhanced the 92 

scalability. We conduct various enrichment analyses on the states resulting from the stacked modeling and 93 

give biological interpretations to them. We show that compared to the cell-type-specific annotations, the 94 

stacked model’s annotation shows greater correspondence to various external genomic annotations not used 95 

in the model learning. We analyze the states in terms of enrichment with different types of genetic variants, 96 

and highlight specific states of the stacked model that are enriched with phenotypically associated genetic 97 

variants. Additionally, we identify specific states enriched with cancer-associated somatic mutations. We 98 

expect the stacked model annotations and detailed characterization of the states that we provide will be a 99 

valuable resource for studying the epigenome and non-coding genome, complementing existing cell-type-100 

specific annotations. 101 

  102 
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Results 103 

Annotating the human genome into universal chromatin states 104 

We used the stacked modeling approach of ChromHMM to produce a universal chromatin state 105 

annotation of the genome based on data from over 100 cell and tissue types from the Roadmap Epigenomics 106 

and ENCODE projects (Fig. 1) [14,16]. In total we applied ChromHMM to 1032 datasets for 30 histone 107 

modifications, a histone variant (H2A.Z), and DNase I hypersensitivity (Supp. Fig. 2). The set of cell and 108 

tissue types were the same as those for which cell-type-specific annotations were previously generated by 109 

applying the ‘concatenated’ modeling approach of ChromHMM [22,25]. We note that not all chromatin 110 

marks were profiled in all cell or tissue types, but the stacked modelling can still be applied directly. 111 

         We focused our analysis on a model with 100 states. We used a larger number of states than 112 

typically used for cell-type-specific models to reflect the greater information available when defining states 113 

based on data from many cell types. At the same time, we limited the model to 100 states to ensure 114 

manageable biological interpretation of different states (Supp. Fig. 3) (Methods). We denote the model’s 115 

output chromatin state annotation the ‘full-stack’ genome annotation.  116 

   117 

Major groups of full-stack states 118 

We characterized each state of the model by analyzing the model parameters (emission probabilities 119 

and transition probabilities) and state enrichments for other genome annotations (Fig.2, 3A, Supp. Fig. 4-120 

7). The other genomic annotations include previous cell-type-specific chromatin state annotations (Supp. 121 

Fig. 8), cell-type-specific gene expression data (Supp. Fig. 9-10), and various independent existing 122 

genomic annotations (Fig. 3A). These independent genomic annotations included annotated gene features, 123 

evolutionary constrained elements, and assembly gaps, among others (Methods). 124 

These analyses led us to group the 100 full-stack states into 16 groups (Fig. 2A). One group 125 

includes states associated with assembly gaps (state GapArtf1) and alignment artifacts (states GapArtf2-3). 126 

Some other groups are associated with repressive or inactive states, including quiescent states (states 127 

Quies1-5) (low emissions of all experiments, except possibly weak signals in H3K9me3), heterochromatin 128 
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states associated with H3K9me3 (states HET1-9), and polycomb repressed states associated with 129 

H3K27me3 (states ReprPC1-9). There is an acetylations group marked primarily by high emission of 130 

various acetylation marks (states Acet1-8). We also formed active and weak candidate enhancers groups 131 

(states EnhW1-8 and EnhA1-20, respectively) associated with H3K4me1, DNase,  H2A.Z, and/or 132 

H3K27ac. Four groups are associated with transcriptional activities, including a group of transcribed 133 

enhancers (states TxEnh1-8), two groups of weak or strong transcription (states TxWk1-2, Tx1-8, 134 

respectively), and one group associated with exon and transcription (states TxEx1-4). These transcriptional 135 

activities groups are associated with at least one of these marks H3K36me3, H3K79me1, H3K79me2, and 136 

H4K20me1. Another group consists of two zinc finger (ZNF) gene states associated with H3K36me3 and 137 

H3K9me3 (states ZNF1-2). A DNase group consists of one state (DNase1) with strong emission of only 138 

DNase in all profiled cell types.  Three groups are associated with promoter activities, marked by emission 139 

of some promoter marks such as H3K4me3, H3K4me2, and H3K9ac. One promoter group was of bivalent 140 

states associated with promoter marks and H3K27me3 (states BivProm1-4). The other two promoter groups 141 

were flanking promoter states (PromF1-7) and transcription start sites (TSS) states (TSS1-2) where the 142 

flanking promoter states also show emission of H3K4me1.  143 

Enrichments for external annotations supported these state groupings (Fig. 3A), as well as further 144 

distinctions or characterizations among states within each group. For example, the state in the assembly gap 145 

group (GapArt1) had ~8 fold enrichment for assembly gaps and contained 99.99% of all assembly gaps 146 

(Fig. 3A). The states in the zinc finger gene group, ZNF1-2, had 20.8 and 68.6 fold enrichment for zinc 147 

finger named genes, respectively (Fig. 3A). States in the transcription groups (TxEnh1-8, TxWk1-2, Tx1-148 

8, TxEx1-4) were all at least 2.1 fold enriched for annotated genes, which covered 88.8–97.5% of the states. 149 

These states are associated with higher expression of genes across different cell types, particularly when 150 

downstream of their TSS (Fig 3A, C, Supp. Fig. 9-10). Distinctions were seen among these states, for 151 

example, in terms of their positional enrichments relative to TES (Fig. 3A, D, Supp. Fig. 11). States in the 152 

flanking promoter group (PromF1-7) showed 6.5-28 fold enrichment for being within 2kb of annotated 153 

TSS, and genes whose TSS regions overlapped these states had higher average gene expression across 154 
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different cell types (Fig. 3A, C, Supp. Fig. 9-10). These states differed among each other in their 155 

enrichments with upstream or downstream regions of the TSS (Fig. 3E, Supp. Fig. 11). The states in the 156 

transcription start site group (TSS1-2) had particularly high enrichments around the TSS, with >= 100 fold 157 

enrichment (Fig. 3A, E). The DNase specific group, which comprised of the state DNase1, showed strong 158 

enrichment for CTCF-specific chromatin states defined in six cell types [30] (Fig. 3F, Supp. Fig. 12). A 159 

detailed characterization of all states can be found in Supplementary Data. 160 

 161 

Stacked Model Differentiates Cell-Type-Specific from Constitutive Activity 162 

While the major groups of states outlined above can correspond to states in cell-type-specific models [3,16], 163 

the full-stack states provide additional information. For example, the states directly differentiate cell-type-164 

specific from constitutive activities. Consistent with previous findings that enhancers tend to be relatively 165 

cell-type-specific while promoters tend to be shared across cell types [3,31], enhancer states exhibited 166 

clearer cell-type-specific associations than those of the promoter states (Figure 2C, Supplementary 167 

Data.). This is also reflected in the states’ coefficients of variation across different cell groups in terms of 168 

emission probabilities for the marks DNase, H3K27ac, H3K4me1, H3K4me2, H3K4me3 and H3K9ac. On 169 

average, states of enhancer and weak enhancer groups (EnhW1-8, EnhA1-20) show at least two fold higher 170 

of the coefficients of variations compared to states in the TSS, flanking promoter and bivalent promoters 171 

groups (TSS1-2, PromF1-7, BivProm4) (Supp. Fig. 13). The enhancer states differed among each other in 172 

their associations with different cell/tissue types such as brain (EnhA6), blood (EnhA7-9 and EnhWk6), 173 

digestive tissue (EnhA14-15), and embryonic stem cells (EnhA18) (Fig. 1-2, Supp. Fig. 14-15). These 174 

differences in cell-type-specific activities are also associated with different gene expression levels of 175 

overlapping genes with the states. For example, some blood enhancer states (EnhA8, EnhA9, EnhWk6) 176 

overlapped genes with higher average gene expression in cell types of the blood group, while some enhancer 177 

states specific to digestive group or liver tissues (EnhA14, EnhA15) showed higher gene expression in the 178 

corresponding cell or tissue types (Fig. 3C, Supp. Fig. 9).  179 
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Other groups of states besides enhancers also had individual states with cell-type-specific 180 

differences. For example, four of the nine states in the heterochromatin group show higher emission 181 

probabilities of H3K9me3 in only subsets of cell types (states HET1-2 with IMR90 and Epithelial cells; 182 

state HET4 with adipose, mesench, neurospheres, ESC, HSC&B-cells; state HET9 with ESC/iPSC) 183 

(Supplementary Data). In addition, some quiescent states (Quies1-2, Quies4-5) show weak signals of 184 

H3K9me3 in specific groups of cell types (Supplementary Data). States in the polycomb repressed and 185 

bivalent promoter groups (ReprPC1-9, BivProm1-4) also show differences in signals across cell groups, 186 

such as state ReprPC9, which showed H3K27me3 signals in only ESC/iPSC cell types (Supplementary 187 

Data). The ability of the stacked modeling approach to explicitly annotate both cell-type-specific and 188 

constitutive patterns for diverse classes of chromatin states highlights an advantage of this approach relative 189 

to the concatenated modeling.  190 

 191 

Full-stack states are more predictive of external annotations than cell-type-specific models  192 

Another benefit of the stacked modeling approach is its ability to more accurately identify genomic 193 

elements shared across cell and tissue types. To demonstrate this, we compared the full-stack state 194 

annotation against two sets of cell-type-specific chromatin state annotations in terms of recovering locations 195 

of various external genome annotations (Methods). One set was the previously published 18-chromatin 196 

state annotations defined in 98 cell or tissue types (equivalently, reference epigenomes) using a common 197 

set of six chromatin marks from Roadmap Epigenomics with the concatenated modeling approach [16]. 198 

The other set of annotations we compared the full-stack annotation against were 100-state cell-type-specific 199 

annotations that we generated separately for each of the 127 cell or tissue types using all available chromatin 200 

marks in the respective cell or tissue type (Methods).  201 

The external genome annotations we used for the evaluations included locations of coding 202 

sequences, assembly gaps, CpG Islands, lamina associated domains (laminB1lads), PhastCons elements, 203 

pseudogenes, exons, gene body, transcription end sites, transcription start sites and the 2kb neighboring 204 

regions, repeat elements, and zinc finger named (ZNF) genes. The full-stack annotation resulted in the best 205 
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AUROC (area under the receiver operating curve) in predicting all genomic annotations compared to the 206 

previous 18-state cell-type-specific annotations across all cell types (Supp. Fig. 16-17). The full-stack 207 

model also showed the best AUROC in recovering locations of these genomic annotations for 10 of 13 208 

evaluations compared to all 100-state cell-type-specific annotations (Fig. 4). The only evaluations in which 209 

the full-stack model did not outperform all 100-state cell-type-specific models were those involving 210 

assembly gaps, laminB1lads, and ZNF genes (Fig. 4B, Supp. Fig. 18), where at most 6 of the 127 100-state 211 

cell-type-specific models performed better. Additionally, we obtained similar results in comparing full-212 

stack annotations with cell-type-specific annotations in predicting CTCF specific chromatin states in 213 

multiple cell types, where the full-stack annotation resulted in highest AUROC in all cases (Supp. Fig. 214 

19).  215 

         Overall, these results demonstrate the benefits of full-stack chromatin state annotations, which 216 

showed better predictive power in recovering the locations of a variety of independent genomic annotations. 217 

The increased predictive power of the stacked modeling approach can be attributed to it taking into account 218 

information from more datasets that cover a large number of cell types when inferring state annotations. 219 

  220 

Full-stack states show distinct enrichments for repeat elements 221 

As the full-stack model showed greater predictive power for repeat elements than cell-type-specific models 222 

(Fig. 4A, Supp. Fig. 29-31), we next analyzed which states contributed most to this power. The full-stack 223 

state enrichments for bases in repeat elements ranged from 10-fold depletion to 2-fold enrichment (Fig. 224 

3A). The top ten states most enriched with repeat elements were chromatin states that were associated with 225 

H3K9me3 marks and in the heterochromatin, artifact, quiescent, or ZNF genes groups (Fig. 5A-B).  226 

We also observed that individual full-stack states had distinct enrichments for different repeat classes (Fig. 227 

5C, Supp. Fig. 20). For example, Acet1, a state associated with various acetylation marks and H3K9me3 228 

had a 23-fold enrichment for simple repeats (Supp. Fig. 20). The two states in the artifact group, GapArtf2-229 

3, had a particularly high enrichment for satellite (181 and 145 fold, respectively) and rRNA repeat classes 230 

(75 and 580 fold, respectively) (Fig. 5C, Supp. Fig. 20). States in the transcription start site group, TSS1-231 
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2, were most strongly enriched with tRNA and low complexity repeat class (~10-60 fold) (Supp. Fig. 20). 232 

We also saw specific states associated with the largest repeat classes of the genome, SINEs, LINEs, and 233 

LTRs. SINE repeats were most enriched in state Tx5 (3.7 fold) (Fig. 5C), which had high emission of 234 

H3K36me3 (Fig. 2A-B, Supp. Fig. 4-5). LINEs and LTRs repeats were most enriched for states in the 235 

H3K9me3-associated heterochromatin group with LINE most enriched in HET3 (3.4 fold), while LTRs 236 

were most enriched in HET5 (4.7 fold) (Fig. 5C, Supp. Fig. 20). We also confirmed that the increased 237 

predictive power of the full-stack model over cell-type-specific models, which was previously seen for 238 

repeat elements overall, also held for most of the individual repeat classes (Supp. Fig. 21). 239 

  240 

Full-stack states show distinct enrichments for constrained elements and conservation states 241 

Sequence constrained elements are another class of genomic elements that are not cell-type-specific and for 242 

which the full-stack model showed greater predictive power than the cell-type-specific models (Fig. 4B, 243 

Supp. Fig. 16-18). We next sought to better understand the relationship between full-stack states and 244 

sequence conservation annotations. We observed 10 states that had at least a 3.4 fold enrichment for 245 

PhastCons elements (Fig. 5A). These states were associated with the TSSs or being proximal to them 246 

(TSS1-2 and PromF4-5), transcription with strong H3K36me3 signals (TxEx2 and TxEnh4), or enhancers 247 

associated with mesenchymal, muscle, heart, neurosph, adipose (EnhA2) (Fig. 5A-B). In contrast, seven 248 

states (HET3-4,6-7,9, Quies4, Gap Artf2) were more than two fold depleted for PhastCons elements, which 249 

all had more than a 1.5 fold enrichment for repeat elements (Fig. 5A). 250 

To gain a more refined understanding of the relationship between the full-stack chromatin states 251 

and conservation, we analyzed their enrichment using 100 previously defined conservation states by the 252 

ConsHMM method [32]. These conservation states were defined based on the patterns of other species’ 253 

genomes aligning to or matching the human reference genome within a 100-way vertebrate alignment. We 254 

observed 29 different conservation states maximally enriched for at least one full-stack state (Fig. 3B, 255 

Supp. Fig. 22-23).  256 
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These states included, for example, ConsHMM state 1, a conservation state corresponding to bases 257 

aligning and matching through all vertebrates and hence most associated with constraint. ConsHMM state 258 

1 had >= 10 fold enrichment for exon associated full stack states TxEx1-4 and TxEnh4 (Supp. Fig. 22). 259 

Another ConsHMM state, state 28, which is associated with moderate aligning and matching through many 260 

vertebrates and strongly enriched around TSS and CpG islands, had a 44.5 and 47.8 fold enrichment for 261 

TSS-associated full-stack states TSS1 and TSS2, respectively (Supp. Fig. 22). Additionally, this 262 

conservation state is consistently the most enriched conservation state for full stack states associated with 263 

flanking and bivalent promoters (Fig. 3B, Supp. Fig. 22). ConsHMM state 2, which has high aligning and 264 

matching frequencies for most mammals and a subset of non-mammalian vertebrates and previously 265 

associated with conserved enhancer regions [32], showed >2.7 fold enrichment for some full-stack enhancer 266 

states for Brain (EnhWk4 and EnhA6), ESC & iPSC (EnhA17,19 and EnhWk8), neurosph (EnhWk4, 267 

EnhA2,17), and mesenchymal, muscle, heart, adipose (EnhA2) (Fig. 3B, Supp. Fig. 22).  268 

ConsHMM state 100, a conservation state associated with alignment artifacts, was 10.9 folds 269 

enriched for full-stack state ZNF1, which showed 20.8 fold enrichment with ZNF genes (Fig. 3A-B, Supp. 270 

Fig. 22). This is consistent with previous analysis using cell-type-specific annotations showing that 271 

ConsHMM state 100 was enriched in a ZNF gene-associated chromatin state [32]. Interestingly though, 272 

another full-stack state (ZNF2) that was even more strongly enriched for ZNF genes (68.6 folds), had 0.4 273 

fold enrichment for ConsHMM state 100, and instead was most enriched with ConsHMM state 1 (Fig. 3A-274 

B, Supp. Fig. 22). Therefore, the full-stack annotation helped distinguish two ZNF-gene associated states 275 

that are associated with distinct conservation states. As this example illustrates, the full-stack annotation 276 

captured conservation state enrichments that were generally consistent with those seen in cell-type-specific 277 

annotations, but could also identify additional refined enrichment patterns. 278 

  279 

Specific full stack states show distinct enrichments and depletions for structural variants 280 

We also analyzed the enrichment of the full-stack states for overlap with structural variants (SVs) mapped 281 

in 17,795 deeply sequenced human genomes [33]. We focused on the two largest classes of SVs, deletions 282 
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and duplications, that were previously analyzed using 15-state cell-type-specific chromatin state models 283 

[16,33]. In those analyses, enrichments were computed for 1-kb windows that were stratified based on the 284 

number of cell or tissue types each state was present. ZNF gene and heterochromatin states were enriched 285 

for deletions and duplications, with the enrichments being strongest when bases were annotated as those 286 

states in larger numbers of cell or tissue types [33]. 287 

Consistent with those previous results, using the full-stack model, we observed that of the 13 states 288 

that were in the top 10 maximally enriched states with either deletions or duplications (1.18 fold or greater), 289 

seven were in the heterochromatin group (HET1-2,4-7,9) and one was in the ZNF gene state (ZNF2) (Fig. 290 

6A, Supp. Fig. 24). The other five states included one artifact state (GapArtf2), three quiescent states 291 

(Quies1-2,4) and a polycomb repressed state (ReprPC8) (Fig. 6A). The quiescent states Quies1-2,4, despite 292 

the generally low frequencies for all marks, did have higher emission probabilities for H3K9me3 compared 293 

to other chromatin marks (Fig. 6B). While the full-stack states showed generally consistent patterns of 294 

enrichments with the analysis of [33], it allowed a more refined analysis of enrichment patterns with 295 

structural variants. For example, it identified a polycomb repressed state (ReprPC8) that was enriched with 296 

duplication (1.21 fold enriched) and yet depleted with deletions (5 fold depleted) (Fig. 6A).  297 

The full-stack model was also more predictive of SV than cell-type-specific annotations. In 298 

comparing with cell-type-specific annotations, the full-stack model had better AUROCs for predicting 299 

locations of deletions and duplications than the 18-state model in all cases, and the 100-state cell-type-300 

specific model in all cases except for two out of 127 cell-types (Supp. Fig. 25-26). Additionally, we verified 301 

that the full-stack model had higher AUROC in predicting duplications and deletions compared to 302 

annotations obtained by ranking genomic bases based on the number of cell or tissue types that a state was 303 

observed separately for each state in the 15-state model, as in the approach of [33] (Methods, Supp. Fig. 304 

27). These results show that the full-stack annotation can uncover enrichment patterns with SVs that are 305 

consistent with cell-type-specific annotations, yet highlight states with greater predictive power and offer a 306 

more refined chromatin annotation of the regions enriched with SVs.   307 

  308 
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Full stack-state gives insights into bases prioritized by different variant prioritization scores 309 

Various scores have been proposed to prioritize deleterious variants in non-coding regions of the 310 

genome or genome-wide. These scores are based on either conservation or on integrating diverse sets of 311 

genomic annotations. Though the scores all serve to prioritize variants, they can vary substantially from 312 

each other and it is often not clear the differences among the types of bases that different scores prioritize. 313 

To better understand the epigenomic contexts of bases that each score tends to prioritize, we analyzed the 314 

full-stack state enrichment for bases they prioritize. As the scores we considered are not specific to a single 315 

cell type, the full-stack states have the potential to be more informative for this analysis than cell-type-316 

specific annotations. We considered a set of 14 different variant prioritization scores that were previously 317 

analyzed in the context of conservation state analysis [32]. The 14 scores for which we analyzed prioritized 318 

variants  in non-coding regions were CADD(v1.4), CDTS, DANN, Eigen, Eigen-PC, FATHMM-XF, FIRE, 319 

fitCons, FunSeq2, GERP++, LINSIGHT, PhastCons, PhyloP, and REMM [34–46]. For each of these 320 

scores, we first analyzed the full-stack state enrichments for the top 1% prioritized non-coding variants 321 

relative to the background of non-coding regions on the genome (Methods). 322 

In the top 1% prioritized non-coding bases, 19 states were among the top five most enriched states 323 

ranked by at least one of the 14 scores (Fig. 6C, Supp. Fig. 28, 29). These 19 states include six states in 324 

flanking promoter and TSS groups, three states in the bivalent promoter group, five states in enhancers and 325 

transcribed enhancers groups, three states in the exon-associated transcription group, one polycomb 326 

repressed state, and one DNase state (Fig. 6C). Seven scores (DANN, Eigen, Eigen_PC, funSeq2, CDTS, 327 

CADD and REMM) had their top five enriched states exclusively associated with promoter and TSS states 328 

(PromF2-5, TSS1-2, BivProm1-2,4), with enrichments ranging between 8.6 and 70 fold (Fig. 6C). Some 329 

other scores, however, showed relatively weak enrichments or even depletions for these promoter- and 330 

TSS- associated states. For example, state PromF4, which had over 30 fold enrichment for non-coding 331 

variants prioritized by four different scores, had a 5-fold depletion for those prioritized by fitCons (Fig. 332 

6C). Similarly, state TSS1 was in the top five most enriched states with bases prioritized by 10 scores (~ 5-333 

62 folds), including the aforementioned seven scores, yet was depleted with prioritized variants by fitCons 334 
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(~ 1.2 fold depletion) (Fig. 6C). Enhancer states EnhA2-3,17 were among the states in the top five most 335 

enriched for FATHMM, GERP++, LINSIGHT, PhastCons, and PhyloP prioritized non-coding variants. 336 

These states also showed consistent enrichments with variants prioritized by Eigen, funSeq2, CADD, and 337 

REMM, though those scores showed even stronger relative enrichments for promoter states. In contrast, 338 

FIRE, DANN and CDTS were depleted for prioritized variants in all these enhancer states, and Eigen_PC 339 

showed both enrichments and depletions (Fig. 6C). FIRE and fitCons showed strong enrichment for exon 340 

states (TxEx1-3), which are associated with coding regions, even though coding bases were excluded in 341 

this analysis (Fig. 6C). FATHMM had the greatest relative enrichment for the primary DNase state 342 

associated with CTCF cell type-specific chromatin states (DNase1) (~10 fold), and was the only score for 343 

which this state was among the top five most enriched states (Fig. 6C, Supp. Fig. 28). 344 

We conducted similar analyses based on top 5% and 10% prioritized non-coding variants and 345 

observed relatively similar patterns of enrichments, though there did exist some differences at these 346 

thresholds (Supp. Fig. 28, 30-31). One difference was that alignment artifact associated states GapArtf2-3 347 

were among the top two states most enriched with top 5% and 10% non-coding bases prioritized by 348 

FATHMM (Supp. Fig. 28). In addition, we analyzed top 1%, 5%, and 10% prioritized variants genome-349 

wide from the 12 scores that were defined genome-wide (Methods). Compared to the non-coding analysis, 350 

we saw a larger number of scores that have exon-associated transcription states (TxEx1-TxEx4) among the 351 

top five enriched states with top 1% variants genome-wide, while we saw no enhancer state among the top 352 

five enriched states with top 1% variants by any score and only one enhancer state among the top five by 353 

one score (GERP++) for top 5% and 10% variants (Supp. Fig. 32).  354 

We verified that the full-stack annotation showed the highest AUROC in recovering the top 1% 355 

non-coding variants compared to all 18-state cell-type-specific annotations for all 14 scores (Supp. Fig. 356 

33). Compared to all 100-state cell-type-specific annotations, the full-stack model showed the highest 357 

AUROC for 13 out of 14 scores in all 127 cell types (Supp. Fig. 33).  358 

 359 

Full-stack states show distinct enrichments and depletions for human genetic variation 360 
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We next analyzed full-stack states for their enrichment with human genetic sequence variation. We 361 

calculated enrichments of full-stack states with genetic variants sequenced in 15,708 genomes from 362 

unrelated individuals in the GNOMAD database stratified by minor allele frequencies (MAFs) [47]. Across 363 

eleven ranges of MAFs, the state enrichments ranged from a 2-fold enrichment to a 4-fold depletion (Supp. 364 

Fig. 34). As expected, the state associated with assembly gaps (GapArtf1) is most depleted with variants, 365 

regardless of the MAF range. At the other extreme, state Acet1, which is associated with simple repeats, is 366 

the most enriched state with variants for all ten minor allele frequency (MAF) ranges that are greater than 367 

0.0001, with fold enrichments between 1.8 and 2.0 (Supp. Fig. 34). We verified that the high enrichment 368 

for state Acet1 was not specific to GNOMAD’s calling of variants as it had a 2.0 fold enriched with common 369 

variants from dbSNP (Methods) (Supp. Fig. 34). TSS and promoters associated states, PromF4 and TSS1-370 

2, were maximally enriched for variants in the lowest range of MAF (0 < MAF <= 0.0001), 1.5-1.7 fold. 371 

The enrichment of variants for these states decreased as the MAF ranges increased, falling to 0.8-1.2 fold 372 

for variants of the highest range of MAF (0.4-0.5) (Supp. Fig. 34). The high enrichment for states PromF4 373 

and TSS1-2 for rare variants is consistent with these states having high enrichment for CpG islands (75-374 

100 fold) (Fig. 3A) and the high mutation rate for CG dinucleotides [48]. We observed a similar though 375 

weaker pattern of decreasing enrichments for increasing MAF for other states associated with 376 

transcriptional activities, enhancers, DNase, or promoters (Supp. Fig. 26). This pattern was not observed 377 

in most states from other groups such as heterochromatin, polycomb repressed, quiescent, and acetylations 378 

only (Supp. Fig. 26).  379 

To better identify states with a depletion of common variants that are more likely due to selection, 380 

we ranked states based on their ratios of enrichments for the rarest variants (MAF < 0.0001) relative to the 381 

most common variants (MAF 0.4-0.5) (Fig. 6D). The states with the highest ratio included a number of 382 

flanking promoter (PromF3-4) and exon-transcription states (TxEx1,2,4) that were also associated with 383 

strong sequence conservation across species (Fig. 6D, Fig. 3B). These results are consistent with previous 384 

analyses supporting a depletion of common human genetic variation in evolutionary conserved regions 385 

[49]. States associated with assembly gaps and alignment artifacts (GapArtf1-3), quiescent (Quies3), or 386 
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acetylations and simple repeats (Acet1) were most depleted for rare variants relative to the common variant 387 

enrichment (Fig. 6D).  388 

 389 

Full-stack states show enrichment for phenotype-associated genetic variants 390 

We next analyzed the relationship between the full-stack states and phenotypic associated genetic 391 

variants. We first evaluated the enrichment of the full-stack state for variants curated into the Genome-wide 392 

Association Study (GWAS) catalog relative to a background of common variation [50]  (Methods). This 393 

revealed six states with at least a two-fold enrichment (Supp. Fig. 35). Four of these states, TxEx1-2,4 and 394 

TxEnh4, were all transcription associated states that are >= 10-fold enriched with coding sequences and 395 

>=11 fold for ConsHMM state 1, associated with the most constraint in a sequence alignment of 100 396 

vertebrates (Fig. 3B). This observation is consistent with previous results that GWAS catalog variants show 397 

enrichments for coding sequence and sequence constrained bases [32,49,51]. The other two states with 398 

greater than two-fold enrichment for GWAS catalog variants relative to common variants were two 399 

promoter states, PromF2-3 (Supp. Fig. 35). On the other hand, four states were more than two-fold depleted 400 

for GWAS catalog variants, and were associated with artifacts (GapArtf2-3), or quiescent and polycomb 401 

repressed states with weak signals of H3K9me3 (Quies5) or H3K27me3 (ReprPC8) (Supp. Fig. 35).  402 

We also analyzed the full-stack state enrichments for fine-mapped variants previously generated 403 

from a large collection of GWAS studies from the UK Biobank database and other public databases [52]. 404 

Specifically, we considered separately the fine mapped variants from two fine-mapping methods, CAVIAR 405 

[53] and FINEMAP [54], for 3052 traits. For each method and trait, we identified the single variants that 406 

had the greatest probability of being causal at a set of distinct loci, and computed the enrichment of these 407 

variants for the full-stack states relative to a background of common variants (Methods).  408 

Fold enrichment results of full-stack states for the most likely causal variants were highly consistent 409 

between fine-mapping methods (FINEMAP and CAVIAR) (Supp. Fig. 36). The ten states maximally 410 

enriched with fine-mapped variants relative to common variants, which were the same states by both 411 

methods, included five states associated with flanking and bivalent promoter activities (PromF2-5, 412 
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BivProm4), an enhancer state in blood and thymus (EnhA9) and an enhancer state in most other cell types 413 

except blood (EnhA1), and three highly conserved transcription-associated states (TxEnh4,6, TxEx4) (Fig. 414 

6E). Notably, five of 10 states maximally enriched with fine-mapped variants, PromF2-5, BivProm4, were 415 

associated with promoter regions and also among the 19 states most enriched with top 1% prioritized 416 

variants by at least two of the 14 different variant prioritization scores (Fig. 6E, C). These results show that 417 

there are agreements in the types of chromatin states preferentially overlapped by phenotype-associated 418 

fine mapped variants and variants predicted to have greater effects based on variant prioritization 419 

scores.  We also confirmed that the full-stack model consistently resulted in higher AUROC in predicting 420 

locations of fine-mapped variants within a background of common variants, compared to the 18-state and 421 

100-state cell-type-specific annotations in all cell types (Supp. Fig. 37-38). 422 

  423 

Full-stack states show enrichments for cancer-associated variants 424 

In addition to investigating germline variants, we also investigated the enrichment of full-stack 425 

states for somatic variants identified from whole genome sequencing of cancer samples. We analyzed data 426 

of variants from four cancer types that have the largest number of somatic variants in the COSMIC database 427 

[55]: liver, breast, pancreas and haematopoietic_and_lymphoid_tissue (Methods). Sixteen states were 428 

among the top 10 most enriched with at least one type of cancer’s associated variants (1.2-1.4 fold in breast 429 

cancer, 1.2-5.6 fold in lymphoid cancer, 1.2-5.4 in liver cancer, 1.4-4.2 in pancreas cancer) (Fig. 6F). 430 

Among these states, 15 states showed higher signals of H3K9me3 compared to most other chromatin marks, 431 

including seven states in heterochromatin group (HET1-2, 4-7,9), four states in quiescent group with weak 432 

emissions of H3K9me3 (Ques 1-2,4-5), one state in the polycomb repressed group with weak signals of 433 

H3K9me3 and H3K27me3 (ReprPC8), one state in the acetylation group with signals of H3K9me3 and 434 

various acetylation marks (Acet1), two artifact-associated states with higher signals of H3K9me3 and 435 

DNase relative to other marks (GapArtf2-3) (Fig. 6G). These results are consistent with previous findings 436 

on an association of H3K9me3 and somatic cancer-associated variants [56,57].  Acet1 was also the state 437 

most enriched with simple repeats, dbSNP 151 common variants, and variants of ten ranges of MAF from 438 
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GNOMAD (Fig. 5C, Supp. Fig. 34). Notably, the GapArtf2-3 states, associated with satellite repeat 439 

enrichments (Fig. 5C, Supp. Fig. 20), were the top two most enriched states with somatic variants 440 

associated with liver, pancreas and haematopoietic and lymphoid tissue cancers with 2.0-5.6 enrichment 441 

fold (Fig. 6F, Supp. Fig. 39). We note that the association between the full-stack annotations and presence 442 

of cancer variants is stronger than for the 18-state and 100-state cell-type-specific chromatin state 443 

annotations for all four cancer types, as evidenced by the higher AUROC of the full-stack annotation at 444 

predicting somatic variants (Supp. Fig. 40-41).   445 

 446 

Discussion 447 

We demonstrated a large-scale application of the stacked modeling approach of ChromHMM using 448 

over a thousand epigenomic datasets to annotate the human genome. In the datasets, 32 chromatin marks 449 

and 127 reference epigenomes were represented. We note that even though not every chromatin mark was 450 

profiled in every reference epigenome we were still able to directly apply the stacked modeling to such 451 

data. We conducted extensive enrichment analyses of the states with various other genomic annotations and 452 

datasets including gene features, genetic variation, repetitive elements, comparative genomic annotations, 453 

and bases prioritized by different variant prioritization scores. These analyses highlighted diverse 454 

enrichment patterns of the states. Using these enrichments along with the model parameters, we provided 455 

a detailed characterization of each of the 100 states in the model. 456 

We grouped these 100 states into 16 groups that included promoters, enhancers, transcribed 457 

regions, polycomb repressed regions, zinc finger genes among others. We also highlighted important 458 

distinctions among states within the groups. In many cases, identifying these distinctions was enabled by 459 

the full-stack modeling using data from multiple cell types for genome annotation. For example, we 460 

identified enhancer and repressive states that were active in different subsets of cell types. We also 461 

highlighted how different states in some of the groups such as those associated with transcribed and ZNF 462 

genes showed distinct enrichments for conservation states. Overall, the full-stack model showed enrichment 463 

patterns supporting observations held for cell-type-specific annotations, yet it provided more detailed 464 
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stratification of genomic regions into chromatin states with heterogeneous associations with other genomic 465 

information. 466 

The full-stack modeling has advantages to commonly used cell-type-specific chromatin state 467 

annotations in several respects. First, the full-stack model is not specific to one cell or tissue type and thus 468 

is able to provide a unified view of all the data and directly uncover states that correspond to constitutive 469 

or cell-type-specific activities. Second, the full-stack annotation consistently showed better recovery of 470 

various genomic features compared to cell-type-specific annotations. This improvement is expected since 471 

full-stack models can leverage information from multiple cell types for genome annotations. Third, in cases 472 

where it is not desirable to focus on only one specific cell or tissue for analysis, the full-stack modeling can 473 

bypass the need to pick one such cell or tissue type or to consider a large number of different cell-type-474 

specific chromatin state annotations simultaneously. Such cases may arise when studying other genomic 475 

information that is not inherently cell-type-specific such as genome variation and sequence conservation. 476 

However, we emphasize that the stacked modeling approach should be considered a complement 477 

to and not a replacement of the cell-type-specific annotations, which have their own advantages. Cell-type-478 

specific annotations may be preferable when one is interested in a specific cell type or in directly comparing 479 

the chromatin state maps among individual cell types. Additionally, the cell-type-specific chromatin states 480 

have fewer parameters and thus can be easier to interpret relative to stacked model states.  481 

We expect many applications of the full-stack annotations that we generated here. The full-stack 482 

annotation can be used as a resource to interpret genetic variation. A possible avenue for future work is to 483 

incorporate the full-stack annotation into scoring methods to better predict genetic variants’ phenotypic 484 

influences. Future work could apply the stacked modeling approach to even larger sets of data that are 485 

accumulating in human as well as large datasets in key model organisms such as mouse. This work provides 486 

a new annotation resource for studying the human genome, non-coding genetic variants, and their 487 

association with diseases. 488 

 489 
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Figure 1: Illustration of full-stack modeling annotations. The figure illustrates the full-stack modeling 491 

at two loci. The top track shows chromatin state annotations from the full-stack modeling colored based on 492 

the legend at right. Below it are signal tracks for a subset of the 1032 input datasets. Data from seven 493 

(DNase I hypersensitivity, H3K27me3, H3K36me3, H3K4me1, H3K4me2, H3K4me3, and H3K9me3) of 494 

the 32 chromatin marks are shown, colored based on the legend at right. These data are from 15 of the 127 495 

reference epigenomes each representing different cell and tissue groups. The loci on left highlights a 496 

genomic region for which a portion is annotated as constitutive promoter states (TSS1-2). The loci on right 497 

panel highlights a region for which a portion is annotated as a brain enhancer state (EnhA6), which has high 498 

signals of H3K27ac in reference epigenomes of the group Brain.  499 
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Figure 2: Full-stack state emission parameters. (A) Each of the 100 rows in the heatmap corresponds to 543 

a full-stack state. Each of the 1032 columns corresponds to one experiment. For each state and each 544 

experiment, the heatmap gives the probability within the state of observing a binary present call for the 545 

experiment’s signal. Above the heatmap there are two rows, one indicating the cell or tissue type of the 546 

experiment and the other indicating the chromatin mark. The corresponding color legends are shown 547 

towards the bottom. The states are displayed in 16 groups with white space between each group. The states 548 

were grouped based on biological interpretations indicated by the color legend at the bottom. Full 549 

characterization of states is available in Supplementary Data. The model’s transition parameters between 550 

states can be found in Supp. Fig. 6. Columns are ordered such that experiments profiling the same 551 

chromatin marks are next to each other. 552 

(B) Each row corresponds to a full-stack state as ordered in (A). The columns correspond to the top 10 553 

experiments with the highest emission value for each state, in order of decreasing ranks, colored by their 554 

associated chromatin marks as in (A).  555 

(C) Similar to (B), but experiments are colored by the associated cell or tissue type group. We noted on the 556 

right the cell or tissue groups of some cell-type-specific enhancer states.  557 
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Figure 3: Full stack states enrichments for external genomic annotations. (A) Fold enrichments of full-595 

stack states with external genome annotations (Methods). Each row corresponds to a state and each column 596 

corresponds to one external genomic annotation: CpG Islands, Exons, coding sequences, gene bodies, 597 

transcription end sites (TES), transcription start sites (TSS), TSS and 2kb surrounding regions, lamina 598 

associated domains (laminB1lads), assembly gaps, annotated ZNF genes, repeat elements and PhastCons 599 

constrained element. The color is normalized to range from minimum values (white) to maximum values 600 

(red) within each column.  601 

(B) Each row indicates the ConsHMM state [32] that has highest enrichment fold in each full-stack state as 602 

ordered in (A). Legends of the ConsHMM state groups indicated with different colors are shown below the 603 

heatmap in (A).  604 

(C) Average weighted expression of genes that overlap each full-stack state in different groups of cells 605 

(Methods). Each column corresponds to a cell group indicated at the bottom. Each row corresponds to a 606 

state, as ordered in (A).  607 

(D-E) Positional enrichments of full-stack states relative to annotated (D) transcription end sites (TES) and 608 

(E) transcription start sites (TSS). Positive coordinate values represent the number of bases downstream in 609 

the 5’ to 3’ direction of transcription, while negative values represent the number of bases upstream. Each 610 

line shows the positional enrichments in a state. Lines are colored as indicated in (A).  611 

(F) Enrichments of full-stacks states with cell-type-specific chromatin states associated with CTCF and 612 

open chromatin, but limited histone modifications in six cell types [30] (Methods). The six cell types are 613 

indicated along the bottom of the figure. States are displayed horizontally in the same order as (A). The 614 

DNase1 state showed the strongest enrichment for the cell-type-specific chromatin states associated with 615 

CTCF and open chromatin in all six cell types. 616 

 617 
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 618 

Figure 4: Full-stack annotation’s recovery of external genome annotations 619 

(A) ROC curves in recovering annotated exons by full-stack annotation (solid black line) and 127 cell-type-620 

specific 100-state annotations (blurred blue lines). Full stack model yielded the highest AUROC (0.83). 621 

(B) A comparison of the AUROC for full-stack annotation and cell-type-specific models for recovering 622 

positions of different external annotations. Each box plots show the range of AUROC of 100-state cell-623 

type-specific chromatin state annotations for recovery of one external annotation and the large blue point 624 

shows the AUROC for the full-stack annotation. The external annotations in order were coding sequences, 625 

assembly gaps, CpG Islands, lamina associated domains, phastCons conserved elements, pseudogenes, 626 

exons, gene bodies, transcription end sites (TES), transcription start sites (TSS), TSS and 2kb surrounding 627 

regions, repeat elements, annotated ZNF genes. These annotations are similar to Fig. 3A. ROC curves 628 

corresponding to these AUROC values can be found in Supp. Fig. 18.    629 
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 630 

Figure 5: Full-stack states enrichments with conserved elements and repeat classes. 631 

(A) The first ten rows show the states most enriched with PhastCons elements and concurrently least 632 

enriched with RepeatMasker repeat elements, ordered by decreasing enrichments with PhastCons elements. 633 

The bottom ten rows show the states most enriched with repeat elements and concurrently least enriched 634 

with PhastCons elements, ordered by increasing enrichments with repeat elements. The columns from left 635 

to right list the state ID, the percent of the genome that each state covers, and the fold enrichments for repeat 636 

elements and PhastCons elements. 637 

(B) Heatmap of the state emission parameters from Fig. 2A for the subset of states highlighted in panel (A). 638 

The colors are the same in Fig. 2A. 639 

(C) Fold enrichments of full-stack states with different repeat classes (Methods). Rows correspond to states 640 

and columns to different repeat classes. Only states that are most enriched with at least one repeat class are 641 

shown. Fold enrichment values that are maximal for a given are shown in dark red. Other fold enrichments 642 

greater than one are shaded light red.  643 
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Figure 6: Full-stack states’ relationship with human genetic variants. 645 

(A) Enrichments of full-stack states with duplications and deletions from [33]. Only states that are in the 646 

top ten most enriched states are shown. Top five fold-enrichments for each class of structural variants are 647 

colored in increasing darker shades of red for higher ranked enrichments. Enrichment values below one, 648 

corresponding to depletions, are colored yellow. The columns from left to right are the state label, percent 649 

of genome the state covers, the fold enrichment for deletions, and fold enrichment for duplications. 650 

(B) Emission probabilities corresponding to states in (A). The coloring is the same as Fig. 2A. The figure 651 

highlights how states most associated with structural variants generally had higher emission of H3K9me3 652 

compared to other chromatin marks. 653 

(C) Enrichments of full-stack states with top 1% prioritized bases in the non-coding genome by 14 variant 654 

prioritization scores previously analyzed [32]. Only states that are among the top five most enriched states 655 

by at least one score are shown. The top five enrichment values for each score are colored in increasing 656 

darker shades of red for higher ranked enrichment values. Enrichment values below one, corresponding to 657 

depletions, are colored in yellow. The columns from left to right are the state label, percent of the genome 658 

covered, the 14 score enrichments, and a detailed description of the state. 659 

(D) Log base 10 of ratios of states’ enrichment with GNOMAD variants with the lowest MAFs (< 0.0001) 660 

vs. GNOMAD variants with the highest MAFs (0.4-0.5). States are ordered as in Fig. 2A. Top five states 661 

that with the highest and lowest enrichment ratios are labeled to the right.  662 

(E) States most enriched with fine-mapped phenotypic variants against the background of common variants. 663 

Fine-mapped phenotypic variants were identified by either CAVIAR [53] or FINEMAP [54] (Methods). 664 

(F) State enrichments with somatic mutations associated with four cancer types in the non-coding genome. 665 

Only states that are among the ten most enriched with variants from at least one cancer type are shown. 666 

States in the top five are colored according to their ranks. The top five enrichment values for each cancer 667 

type are colored in increasing darker shades of red for higher ranked enrichment values. The columns are 668 

the state label, the percent of the genome the state covers, and the fold enrichments of variants from breast, 669 

haematopietic and lymphoid, liver, and pancreas cancer types. 670 
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(G) Emission probabilities corresponding to states in (G), as subsetted from Fig. 2A. The coloring is the 671 

same as Fig. 2A. The figure highlights how states with the greatest enrichments for cancer-associated 672 

variants tend to have higher emission probabilities for H3K9me3 compared to other chromatin marks. 673 
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Methods 695 

Input data and processing 696 

We obtained coordinates of reads aligned to Human hg19 in .tagAlign format for the consolidated 697 

epigenomes as processed by the Roadmap Epigenomics Consortium from  698 

https://egg2.wustl.edu/roadmap/data/byFileType/alignments/consolidated/. In total we obtained data for 699 

1032 experiments and their corresponding input control data. The experiments correspond to 127 reference 700 

epigenomes, 111 of which were generated by the Roadmap Epigenomics Consortium and 16 were generated 701 

by the ENCODE Consortium. Of the 1032 experiments, 979 were of ChIP-seq data targeting 31 different 702 

epigenetic marks and 53 were of DNase-seq (Sup Fig. 2). For each of the 127 reference epigenomes there 703 

was a single ChIP-seq input control experiment. For the 53 reference epigenomes that had a DNase-seq 704 

experiment available there was an additional DNase control file.  705 

We next binarized the data at 200 base pair resolution using the BinarizeBed command of 706 

ChromHMM (v.1.18). To apply BinarizeBed in stacked mode we generated a cell_mark_file input table for 707 

ChromHMM with four tab-delimited columns. The first column had the word ‘genome’ for all datasets, the 708 

second column contained entries of the form ‘<EID>-<mark>’ where ‘EID’ is the epigenome ID and ‘mark’ 709 

is the mark name, the third column specifies the name of the corresponding file with aligned reads, and the 710 

fourth column is the name of the file with the corresponding control reads. Each row in the table corresponds 711 

to one of the 1032 experiments. 712 

  713 

In order to reduce the memory and time needed to execute BinarizeBed on a large number of 714 

datasets, we split the cell_mark_file table into 104 smaller tables with each table having at most 10 entries 715 

corresponding to at most 10 datasets to be processed. This was done with a custom script, but the same 716 

functionality has been included with the ‘-splitcols’ and ‘-k’ flags of BinarizedBed in ChromHMM 717 

v1.22.  We then ran BinarizeBed in parallel for each of these smaller cell_mark_file tables and generated 718 

output into separate sub-directories. We ran BinarizeBed with the option ‘-gzip’ which generates gzipped 719 

files. 720 
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To merge data from the 104 subdirectories from the previous step into files containing binarized 721 

data of all experiments, we ran the command ‘MergeBinary’, which we added in v1.18 of ChromHMM. 722 

We ran the command with the options ‘-gzip -splitrows’. The ‘-splitrows’ option generates multiple files 723 

of merged binarized data for each chromosome, where, under the default settings that we used, each file 724 

contains data for a genomic region of at most 1MB. Splitting each chromosome into smaller regions allows 725 

the model learning step of ChromHMM to scale in terms of memory and time to the large number of input 726 

data tracks (i.e. features) that we were using. We used chr1-22, chrX, chrY, and chrM in the binarization 727 

and model learning. 728 

  729 

Training full-stack model and generating genome-wide state annotations 730 

We learned the full-stack chromatin state model for the 1032 datasets using the LearnModel 731 

command of ChromHMM (v1.18). This version of ChromHMM includes several options that we added to 732 

improve the scalability when training with large numbers of features. One of these features was to randomly 733 

sample different segments of the genome for training during each iteration, instead of training on the full 734 

genome. This sampling strategy was previously used by ConsHMM [32], which was built on top of 735 

ChromHMM. To learn the full-stack model with input data processed as outlined above, we used 736 

ChromHMM’s LearnModel command with the options ‘-splitrows -holdcolumnorder -pseudo -many -p 6 737 

-n 300 -d -1 -lowmem -gzip’.  738 

The ‘-splitrows’ flag informs ChromHMM that binarized data for a chromosome is split into 739 

multiple files, which reduces the memory requirements and allows ChromHMM to select a subset of the 740 

genome to train on for each iteration. The ‘-holdcolumnorder’ flag prevents ChromHMM from reordering 741 

the columns of the output emission matrix, which saves time when there is a large number of features.  742 

The ‘-pseudo’ flag specifies that in each update of model parameters, ChromHMM adds a pseudo 743 

count of one to the numbers of observations of transition between each pair of states, presence and absence 744 

of each mark from each state, and initial state assignments of the training chromatin state sequence. This 745 
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prevents model parameters from being set to zero, which is needed for numerical stability when some 746 

features are sparse and ChromHMM does not train on the full genome in each iteration.  747 

The ‘-many’ flag specifies ChromHMM to use an alternative procedure for calculating the state 748 

posterior probabilities that is more numerically stable when there are a large number of features. The 749 

procedure is designed to prevent all states from having zero posterior probability at any genomic position, 750 

which can happen due to the limits of floating-point precision. The procedure does this by leveraging the 751 

observation that only the relative product of emission probabilities across states are needed at each position 752 

to determine the posterior probabilities. Specifically, for each position, the procedure initializes the product 753 

of emission probabilities for all features, i.e. the emission product, from each state to one. For each feature, 754 

the procedure then multiplies the current emission products from each state by the emission probability of 755 

the feature in the state, and divides all the resulting products by their maximum to obtain updated emission 756 

products. We iteratively repeat these steps of multiplication and normalization until all features have been 757 

included into the calculation of relative emission products across states.   758 

The ‘-p 6’ flag specifies to ChromHMM to train the model in parallel using 6 processors. The ‘-n 759 

300’ flag specifies to ChromHMM to randomly pick 300 files of binarized data, corresponding to 300 760 

regions of 1 MB (or less if the last segment of the chromosome was selected) for training in each iteration. 761 

The ‘-d -1’ option has ChromHMM not require an evaluated likelihood improvement between iterations to 762 

continue training since likelihood decreases are expected as on each iteration the likelihood is evaluated on 763 

a different subset of data.  The ‘-lowmem’ flag has ChromHMM reduce main memory usage by not storing 764 

in main memory all the input data and instead re-loading from disk when needed. 765 

 766 

Choice of number of states 767 

We trained full-stack models with 20, 40, 60, 80, 100 and 120 states, using the data and procedure 768 

outlined above. We then quantitatively compared the chromatin state annotations from these models in 769 

terms of their power to predict locations of various other genomic annotations not used in the model 770 

training: Exon, Gene Body, TSS, TSS2kb, CpG Islands, TES, laminB1lads elements (listed in section 771 
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External Annotation Sources section). Specifically, we evaluated the predictive power using the AUROCs 772 

that are calculated as described in a subsection below. Across different genomic contexts, as the number of 773 

full-stack states increased, the AUROC increased, but the marginal increase was smaller as the number of 774 

states increased (Supp. Fig. 3). To balance the additional information available in models with increased 775 

number of states, while keeping the number of states manageable for interpretation and downstream 776 

analysis, we choose to focus on a model with 100 states. We note that this choice is greater than previously 777 

used for cell-type-specific chromatin state models [3,16,21], reflecting the additional information available 778 

for genome annotation based on the large number of datasets spanning many cell types that we are using. 779 

 780 

Lifting chromatin state annotations to hg38 781 

The chromatin state annotation resulted from stacked modeling was in hg19. In order to obtain the 782 

annotations for hg38, we first wrote the chromatin state map hg19 in .bed format such that each line 783 

corresponds to a genomic region of 200bp. We then used liftOver tools downloaded from UCSC utilities  784 

to generate the chromatin state annotation in hg38. In total, there are 1,186,379 200-bp segments that were 785 

not mapped from hg19 to hg38. 786 

  787 

Summary sets of experiments 788 

To construct a summary visualization of the emission parameters with a reduced set of features that 789 

approximate the annotation from the full model, we applied a greedy search over the 1032 input datasets as 790 

described in Supplementary Methods.  We applied this procedure to reduce the 1032 input datasets to 80 791 

summary datasets. 792 

 793 

Identifying states with differential association of marks for individual tissue groups 794 

For each state, we tested for combinations of the 8 most profiled marks, and 19 tissue groups 795 

previously defined [16], whether the emission probabilities of features associated with one chromatin mark 796 
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and in one tissue group was significantly greater than those of features associated with the same mark and 797 

not in the tissue group. The eight marks that we tested were H3K9me3, H3K4me1, H3K4me3, H3K27me3, 798 

H3K36me3, H3K27ac, H3K9ac, and DNase. H3K27ac, H3K9ac and DNase were profiled in 98, 62 and 53 799 

reference epigenomes, respectively, and the remaining five marks in 127 reference epigenomes. For tests 800 

involving H3K27ac, H3K9ac, and DNase, we excluded tissue groups for which there were no experiments. 801 

In total, there were 14,200 tests among 100 states, 8 chromatin marks and 19 tissue groups. For each 802 

combination of state, chromatin mark and tissue group being tested, we applied a one-sided Mann-Whitney 803 

test to test whether the emission probabilities of the state for the features associated with the tested mark in 804 

the tested tissue group are greater than those in other tissue groups. The Bonferroni-corrected p-value 805 

threshold based on a significance level of 0.05 to declare a test significant was 3.5e-6.  806 

 807 

Computing coefficients of variation across different tissue groups 808 

For each state, we looked into the emission probabilities of experiments associated with six 809 

chromatin marks strongly associated with promoter and enhancer activities (DNase, H3K27ac, H3K4me1, 810 

H3K4me2, H3K4me3, H3K9ac). We grouped these experiments based on their associated chromatin mark 811 

and tissue groups, and calculated the average emission probabilities of experiments in each chromatin mark-812 

tissue group combination. For each state and chromatin mark combination, we then calculated the 813 

coefficient of variation across different tissue groups, in terms of average emission probabilities from the 814 

previous step. For each group of states, we averaged the resulting coefficients of variation across states of 815 

the same group. The results show the average coefficients of variation of emission probabilities across 816 

different tissue groups for each state group- chromatin mark combination.  817 

 818 

Computing fold enrichments for other annotations 819 

All overlap enrichments for external annotations were computed using the ChromHMM 820 

OverlapEnrichment command. We used the ‘-b 1’ flag, which specifies a binning resolution of the 821 

annotations. This ‘-b 1’ flag is necessary when computing enrichments based on the hg38 liftOver 822 
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annotations, which no longer respects the 200bp segment coordinate intervals from hg19. Including this 823 

flag gives the same results when applied to annotations from hg19 with 200bp segments, though with extra 824 

computational costs. We also included the ‘-lowmem’ flag to specify the lower memory usage option. The 825 

ChromHMM command OverlapEnrichment computes fold enrichment between chromatin states and 826 

provided external annotations relative to a uniform genome-wide background distribution. More 827 

specifically, the fold enrichments are calculated as: 828 

𝐹𝐸𝑥,𝑠  =  #𝑆𝑋#𝑋#𝑆#𝐺 =  #𝑆𝑋#𝑆#𝑋#𝐺 =  #𝑆𝑋 ⋅  #𝐺#𝑆 ⋅  #𝑋  829 

where 830 𝐹𝐸𝑥,𝑠: fold enrichment of state s in genomic context x 831 #𝑆: number of genomic positions belonging to the state S 832 #𝑋: number of genomic positions where genomic context X is present 833 #𝑆𝑋: number of genomic bins that overlap both state S and genomic context X 834 #𝐺: number of genomic positions in the entire genome 835 

 836 

Enrichment with cell-type-specific ChromHMM annotations 837 

We computed the enrichments of the full-stack states for cell-type-specific ChromHMM chromatin 838 

state annotations. For the cell-type-specific chromatin state annotations we used 25-state ChromHMM 839 

annotations of 127 reference epigenomes from the Roadmap Epigenomics project. This model was trained 840 

using the concatenated modeling approach using imputed data of 12 chromatin marks [16,22]. For each of 841 

the 100 full-stack states, we calculated the enrichment for the 25 states separately in each of the 127 842 

reference epigenomes, resulting in 127 tables of 25 enrichment values for each of the 100 states. We 843 

summarized this information by reporting, for each of the 100 full-stack states, and 127 reference 844 

epigenomes, the cell-type-specific state among the 25 states that is maximally enriched, resulting in a 100-845 

by-127 table. We also summarized the information by reporting for each of the 100 full-stack states and 25 846 
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cell-type-specific states, the maximum and median fold enrichments across the 127 reference epigenomes 847 

(Supplementary Data).     848 

  849 

Receiver operator characteristic curve analysis for predicting external annotations 850 

To evaluate the information available in the chromatin state annotations from a chromatin state 851 

model that can help predict locations of an external genomic annotation, we computed the Receiver 852 

Operator Characteristic (ROC). To do this, we first divided the genome into 200bp bins, and randomly 853 

partitioned 50% of the bins for training and the remaining 50% for testing. For a target external genome 854 

annotation, we computed the enrichment of such annotation with each chromatin state on the training data. 855 

We then ranked states in decreasing order of enrichments for the target annotation. We used this ranking of 856 

states to iteratively add genomic bases assigned to the added state to our predictions of bases overlapping 857 

the target annotation in the testing dataset. Based on the overlap of the predictions and the target annotation 858 

at each iteration, we plotted ROC curves and summarized the information by computing area under the 859 

ROC curves (AUROC). 860 

 861 

Cell-type-specific ChromHMM annotations for comparing predictive information  862 

We compared the full-stack model to two sets of cell-type-specific annotations in terms of their 863 

ability to predict external annotations. One set of cell-type-specific annotations was the 18-state 864 

ChromHMM from Roadmap Epigenomic Project [16], which was trained using observed data for six 865 

chromatin marks: H3K4me1, H3K4me3, H3K9me3, H3K27ac, H3K27me3 and H3K36me3, using the 866 

concatenated approach. 867 

The second set of cell-type-specific ChromHMM annotations were annotations we generated here 868 

to have a more stringent comparison. We partitioned the 1032 datasets we used to learn the full-stack model 869 

into 127 subsets based on their associated reference epigenome. For each of these 127 subsets, we applied 870 

ChromHMM to learn a cell-type-specific model with 100 states. We learned these models with the same 871 

procedure as described above for the full-stack model, with the exception of using the ‘-init random’ flag 872 
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to randomly initialize models’ parameters. This flag was necessary since for some reference epigenomes, 873 

the number of specified states (100) was greater than the number of combinations of input datasets, which 874 

is the maximum number of states supported by ChromHMM default initialization. We specified the number 875 

of states as 100 in these cell-type-specific models to control for the number of states in comparing with the 876 

full-stack model.  However, we note that due to the large number of states relative to the input tracks, some 877 

of these models ended up having fewer than 100 states being assigned to positions in the genome.  878 

  879 

Computing fine-mapped variant enrichment 880 

To compute enrichment of full-stack states for phenotypically associated fine-mapped variants, we 881 

downloaded data on fine-mapped variants for 3052 traits from CAUSALdb [52]. Specifically we obtained 882 

posterior probabilities of variants being causal based on two fine-mapping methods, FINEMAP [54] and 883 

CAVIAR [53], which do not use epigenomic annotations as part of the fine mapping procedure. For each 884 

method and trait combination, we separately partitioned the provided set of potential causal variants into 885 

distinct loci. To form the distinct loci, we merged neighboring variants into the same loci until there was at 886 

least 1MB-gap between the two closest variants from different loci. Separately for each fine-mapping 887 

method, trait, and locus combination, we selected the single variant with the highest posterior probability 888 

of being causal. For each fine-mapping method, we took the union of variants across 3052 traits, and then 889 

calculated the fold enrichments for the union of these lead variants with stacked ChromHMM states relative 890 

to the enrichment with a background set of common variants from dbSNP build 151 (hg19). To do this, we 891 

separately computed the enrichments of both of these sets relative to a genome-wide background, and then 892 

divided the enrichment of the foreground set (lead fine-mapped variants) by the enrichment of the 893 

background set (common variants). The dbSNP variants were obtained from the UCSC genome browser.  894 

 895 

Computing structural variant enrichments 896 

To compute enrichment of the full-stack states for structural variant enrichments, we obtained data 897 

of structural variants from [33]. We used the B38 call set, which was in hg38 and used for the analysis 898 
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presented in [33]. We filtered out structural variants that did not pass the quality control criteria of [33]. We 899 

then separately considered structural variants annotated as either a deletion or a duplication, for which there 900 

were, 112,328 and 28,962 sites respectively.  901 

Since the structural variants were defined in hg38, we computed their enrichment for ChromHMM 902 

state annotations in full-stack and cell-type-specific models that were lifted over from hg19 to hg38, 903 

following the procedure outlined above. Next, we followed the enrichment analysis procedure outlined 904 

above to compare full-stack vs. cell-type-specific chromatin state segmentations’ power in recovering 905 

structural variants. 906 

To compare the power of full-stack state annotations vs. cell-type-specific state annotation 907 

frequency, we utilized 15-state genome-wide chromatin state data for 127 cell types (reference epigenomes) 908 

from Roadmap Epigenomics Consortium. We followed the analysis outlined in [33], for each of the 15 909 

ChromHMM states, we annotated genomic positions based on the number of cell types in which the state 910 

is present (ranging from 0 to 127), resulting in 15 state-specific models’ annotations. We then applied the 911 

procedure above to compare the predictive power of different models’ annotations against the full-stack 912 

annotation. For the state-specific models, the enrichment values are calculated for structural variants and 913 

number of cell types that a ChromHMM state is assigned to. 914 

 915 

Computing enrichments with cancer-associated variants 916 

We obtained data of somatic mutations associated with different types of cancer from COSMIC 917 

non-coding variants dataset v.88 in hg38 [55]. We selected from this dataset variants that were from whole-918 

genome sequencing. We filtered out variants that overlap with any of the following: the hg38 black-listed 919 

regions from the ENCODE Data Analysis Center (DAC) [58], hg38 dbSNP (v151) set of common variants 920 

from the UCSC genome browser database, or regions annotated as coding sequence (‘CDS’) based on 921 

GENCODE v.30 hg38 [59] gene annotations. We decided to restrict this analysis to the four cancer types 922 

with the most number of variants present in the dataset in hg38: liver (1,351,417), pancreas (500,930), 923 

haematopoietic and lymphoid tissue (354,501), and breast (323,751), we then lifted over these sets of 924 
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variants from hg38 to hg19, resulting in 1,351,159, 500,798, 354,351, and 323,685, variants respectively. 925 

To obtain a background set of genomic locations for the enrichment analysis, we filtered from the genome 926 

the same set of hg38 annotations of black-listed regions, common variants, and coding sequences. We then 927 

lifted over these remaining positions from hg38 to hg19 to obtain the background. We calculated the 928 

enrichment of chromatin states with cancer-associated variants by first calculating the enrichment values 929 

of chromatin states with filtered variants associated with each of the four cancer types, and the enrichment 930 

values with background set of genomic bases, all relative to the whole genome. We then divided the cancer-931 

associated variant enrichment values by the background bases enrichments. 932 

 933 

External annotations sources 934 

The sources for external annotations for enrichments analyses, not given above, were as follows: 935 

• CpG island annotations were those included in the ChromHMM (v1.18) and originally obtained 936 

from the UCSC genome browser. 937 

• Annotations of exon, gene bodies, transcription start (TSS), and transcription end sites (TES), 938 

2kb windows surrounding TSSs (TSS2kb) were RefSeq annotations included in ChromHMM 939 

(v1.18) and originally based on annotations obtained from the UCSC genome browser. 940 

• Lamina associated domains were for human embryonic lung fibroblasts that were included in 941 

ChromHMM (1.18), which were lifted over to hg19 from hg18 positions originally provided 942 

by [60].  943 

• Annotations of assembly gaps were obtained from the UCSC genome browser and correspond 944 

to the Gap track. 945 

• Annotations of zinc finger (ZNF) genes correspond to coordinates of genes whose name 946 

contained ‘ZNF’ from GENCODE’s hg19 gene annotation, v30 [59]. 947 

• Annotations of coding sequences correspond to coordinates of genes whose feature type is 948 

‘CDS’ from GENCODE’s hg19 gene annotation, v30 [59]. 949 
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• Annotations of pseudogenes correspond to coordinates of genes those whose gene type or 950 

transcript type contained ‘pseudogene’ from GENCODE’s hg19 gene annotation, v30 [59]. 951 

• Annotations of repeat elements were obtained from UCSC genome browser RepeatMasker 952 

hg19 tracks. 953 

• Cell-type-specific ChromHMM chromatin state annotations were obtained from the Roadmap 954 

Epigenomics Consortium through http://compbio.mit.edu/roadmap [16]. These include data of 955 

the 15-state and 18-state models based on observed data and the 25-state chromatin model 956 

based on imputed data for 127, 98 and 127 reference epigenomes, respectively. 957 

• CTCF- cell-type-specific chromatin states were based on the ChromHMM chromatin state 958 

annotations for six human cell types (GM12878, H1ESC, Helas3, Hepg2, Huvec, K562) for a 959 

25-state model from the ENCODE integrative analysis [22,30]. We extracted coordinates of 960 

region annotated to the ‘Ctcf’ and ‘CtcfO’, both associated with CTCF signal and limited 961 

histone mark signal.  962 

• Blacklisted regions were those provided by the ENCODE Data Analysis Center (DAC) for 963 

hg19 and hg38 [58].  964 

• ConsHMM conservation state annotations for human (hg19) were those from [32].  965 

• Annotations of human genetic variants and their allele frequency were from GNOMAD v2.1.1 966 

[47]. The dataset includes 229 million SNVs and 33 million indels from 15,708 genomes of 967 

unrelated individuals, which are aligned against the GRCg37/hg19 reference.  968 

• GWAS catalog variants were obtained from the NHGRI-EBI Catalog, accessed on December 969 

5th, 2016 [50]. 970 

  971 

  972 

Analysis of gene expression across states 973 
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To analyze the relationship between gene expression and the full-stack states, we downloaded gene 974 

expression data from the Roadmap Epigenomics Consortium [16]. Specifically, we downloaded a matrix 975 

of gene expression values, in RPKM (Reads Per Kilobase Million), for protein coding genes for 56 reference 976 

epigenomes that were among the 127 used as part of the full-stack model. In total, we obtained expression 977 

values for 19,795 Ensembl protein coding genes. 978 

The gene expression data was obtained from  979 

(https://egg2.wustl.edu/roadmap/data/byDataType/rna/expression/57epigenomes.exon.RPKM.pc.gz). We 980 

also obtained the corresponding genomic coordinates for these genes from 981 

(https://egg2.wustl.edu/roadmap/data/byDataType/rna/expression/Ensembl_v65.Gencode_v10.ENSG.gen982 

e_info). For this analysis, we filtered out genes that are not classified as protein-coding. We transformed 983 

the gene expression values by adding a pseudo-count of 1 to the raw counts in RPKM, and taking the log 984 

of the resulting values. 985 

For each full-stack-state and 56 reference epigenomes, we calculated the average gene expression 986 

of all genes overlapping with the state, taking into account the genes’ length. For each gene 𝑔 we denote 987 

its length 𝐿𝑔 and expression 𝐸𝑔. We let 𝑠𝑖 denote the state assigned at the 200-bp bin 𝑖 and 𝐺𝑖 denote the 988 

set of genes overlapping the 200bp bin 𝑖. Let 𝐵𝑠 denote the set of 200bp bins that are assigned to state 𝑠. 989 

The average normalized expression with state 𝑠 then becomes: 990 

𝑎𝑣𝑔 exp 𝑏𝑝 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑠 =  ∑ ∑ 𝐸𝑔 𝐿𝑔⁄𝑔∈𝐺𝑖𝑖∈𝐵𝑠∑ ∑ 1 𝐿𝑔⁄𝑔∈𝐺𝑖𝑖∈𝐵𝑠  991 

We also calculated for each state the average and coefficient of variation of these averages across 992 

reference epigenomes. We used the BEDTools bedtools intersect command to obtain the chromatin state 993 

assignments for 200bp segments that totally or partially overlap with any gene. To obtain average gene 994 

expressions of a state in a cell group as presented in Fig. 3C, we averaged the reported bp-normalized 995 

average gene expressions of the corresponding state across cell types within the group.  996 

We also analyzed average gene expression values for each state as a function of the position of the 997 

state annotations relative to TSS, following a procedure similar to what was used previously [3]. We first 998 
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identified a gene’s outer transcription start site (TSS) based on the reported coordinates of the gene and 999 

strand in the gene annotation file noted above. For each 200bp bin that is within 25kb upstream or 1000 

downstream of an annotated TSS, including those that directly overlap with an annotated TSS, we 1001 

determined the assigned full-stack state at this bin, and the position of the bin relative to those TSSs. Bins 1002 

directly overlapping an annotated TSS were at position 0. If the gene was on the positive strand, the 1003 

segments’ genomic coordinates lower than the TSSs’ correspond to upstream regions at negative points 1004 

(minimum value: -250000), while genomic coordinates higher than the TSSs’ correspond to downstream 1005 

regions at positive points (maximum value: 25000). If the gene is on the negative strand, the upstream and 1006 

downstream positions are reversed. For each state and each 200-bp bin position relative to TSS, we 1007 

determined the subset of genes where there is a 200bp bin annotated to that state at that position relative to 1008 

their TSSs, and calculated their average expression. This produces a 100-by-251 table for one reference 1009 

epigenome, corresponding to the number of full-stack states and 200-bp segments intersecting the 50kb 1010 

windows surrounding genes’ TSSs and one segment directly overlapping the TSSs. We then smoothened 1011 

the averaged expression data spatially by applying the sliding window average algorithm with a window 1012 

size of 21, i.e. each segment’s smoothened gene expression is the average of data in that segment and 21 1013 

surrounding genomic segments. Data of average gene expression in the first and last 10 segments within 1014 

the 50kb window are not included in the window of smoothened data. We averaged results of 56 tables 1015 

corresponding to 56 reference epigenomes as the final output from this procedure.  1016 

 1017 

Computing enrichment for bases prioritized by variant prioritization scores 1018 

To compute state enrichments for bases prioritized by different variant prioritization scores, we 1019 

followed the approach of [32]. We obtained coordinates of bases containing prioritized variants based on 1020 

14 different methods as processed and described in [32]. The scores were Eigen and Eigen-PC version 1.1, 1021 

funSeq2 version 2.1.6, and CADD v1.4, REMM, FIRE, fitCons, CDTS, LINSIGHT, FATHMM, GERP++, 1022 

phastCons, phyloP and DANN [34–46]. For 12 of the 14 scores, we separately considered prioritized 1023 

variants genome-wide and in non-coding regions only. Two of the variant prioritization scores, LINSIGHT 1024 
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and FunSeq2 [36,38], were defined only in the non-coding regions, so these scores were only used in the 1025 

non-coding region analysis. As described in [32], the regions included in the non-coding analysis were 1026 

defined as the bases where both LINSIGHT and FunSeq2 provided scores, which was 90.4% of the genome. 1027 

For both the non-coding and whole genome analysis we computed the enrichment for bases ranked in the 1028 

top 1%, 5% or 10% using the variant prioritization scores. We note that because of ties in some scores, the 1029 

score-threshold above which we classified the bases as prioritized was chosen to be as close as possible to 1030 

the target percentage (1%, 5% or 10%). We also note that if there were any bases with missing values for 1031 

any particular score, then that base was assigned with the minimum values of such scores.  1032 

Enrichment values for the whole genome were computed as described above with the 1033 

OverlapEnrichment command from ChromHMM. For computing enrichments restricted to non-coding 1034 

regions, we first calculated enrichment of the non-coding prioritized variants relative to the whole genome 1035 

and the enrichment of non-coding regions as defined above relative to the whole genome. We then divided 1036 

these two enrichment values to obtain the enrichment of prioritized non-coding variants within non-coding 1037 

regions. 1038 

 1039 

Data availability 1040 

Full-stack chromatin state annotation of the genome is available at 1041 

https://github.com/ernstlab/full_stack_ChromHMM_annotations. An updated version of ChromHMM is 1042 

available at https://ernstlab.biolchem.ucla.edu/ChromHMM/ 1043 
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