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ABSTRACT

In this paper, we explain the universal approximation capabilities of deep resid-
ual neural networks through geometric nonlinear control. Inspired by recent work
establishing links between residual networks and control systems, we provide a
general sufficient condition for a residual network to have the power of univer-
sal approximation by asking the activation function, or one of its derivatives, to
satisfy a quadratic differential equation. Many activation functions used in prac-
tice satisfy this assumption, exactly or approximately, and we show this property
to be sufficient for an adequately deep neural network with n + 1 neurons per
layer to approximate arbitrarily well, on a compact set and with respect to the
supremum norm, any continuous function from Rn to Rn. We further show this
result to hold for very simple architectures for which the weights only need to
assume two values. The first key technical contribution consists of relating the
universal approximation problem to controllability of an ensemble of control sys-
tems corresponding to a residual network and to leverage classical Lie algebraic
techniques to characterize controllability. The second technical contribution is to
identify monotonicity as the bridge between controllability of finite ensembles and
uniform approximability on compact sets.

1 INTRODUCTION

In the past few years, we have witnessed a resurgence in the use of techniques from dynamical and
control systems for the analysis of neural networks. This recent development was sparked by the
papers (Weinan, 2017; Haber & Ruthotto, 2017; Lu et al., 2018) establishing a connection between
certain classes of neural networks, such as residual networks (He et al., 2016), and control systems.
However, the use of dynamical and control systems to describe and analyze neural networks goes
back at least to the 70’s. For example, Wilson-Cowan’s equations (Wilson & Cowan, 1972) are dif-
ferential equations and so is the model proposed by Hopfield in (Hopfield, 1984). These techniques
have been used to study several problems such as weight identifiability from data (Albertini & Son-
tag, 1993; Albertini et al., 1993), controllability (Sontag & Qiao, 1999; Sontag & Sussmann, 1997),
and stability (Michel et al., 1989; Hirsch, 1989).

The objective of this paper is to shed new light into the approximation power of deep neural net-
works and, in particular, of residual deep neural networks (He et al., 2016). It has been empirically
observed that deep networks have better approximation capabilities than their shallow counterparts
and are easier to train (Ba & Caruana, 2014; Urban et al., 2017). An intuitive explanation for this
fact is based on the different ways in which these types of networks perform function approxima-
tion. While shallow networks prioritize parallel compositions of simple functions (the number of
neurons per layer is a measure of parallelism), deep networks prioritize sequential compositions of
simple functions (the number of layers is a measure sequentiality). It is therefore natural to seek
insights using control theory where the problem of producing interesting behavior by manipulating
a few inputs over time, i.e., by sequentially composing them, has been extensively studied. Even
though control-theoretic techniques have been utilized in the literature to showcase the controllabil-
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ity properties of neural networks, to the best of our knowledge, this paper is the first to use tools
from geometric control theory to establish universal approximation properties with respect to the
infinity norm.

1.1 CONTRIBUTIONS

In this paper we focus on residual networks (He et al., 2016). This being said, as explained in (Lu
et al., 2018), similar techniques can be exploited to analyze other classes of networks. It is known
that deep residual networks have the power of universal approximation. What is less understood
is where this power comes from. We show in this paper that it stems from the activation functions
in the sense that when using a sufficiently rich activation function, even networks with very simple
architectures and weights taking only two values suffice for universal approximation. It is the power
of sequential composition, analyzed in this paper via geometric control theory, that unpacks the
richness of the activation function into universal approximability. Surprisingly, the level of richness
required from an activation function also has a very simple characterization; it suffices for activa-
tion functions (or a suitable derivative) to satisfy a quadratic differential equation. Most activation
functions in the literature either satisfy this condition or can be suitably approximated by functions
satisfying it.

More specifically, given a finite ensemble of data points, we cast the problem of designing weights
for training a deep residual network as the problem of driving the state of a finite ensemble of initial
points with a single open-loop control input to the finite ensemble of target points produced by the
function to be learned when evaluated at the initial points. In spite of the fact that we only have
access to a single open-loop control input, we prove that the corresponding ensemble of control
systems is controllable. This result can also be understood in terms of the memorization capacity of
deep networks, almost any finite set of samples can be memorized, see (Yun et al., 2019; Vershynin,
2020) for some recent work on this problem. We then utilize this controllability property to obtain
universal approximability results for continuous functions in a uniform sense, i.e., with respect to
the supremum norm. This is achieved by using the notion of monotonicity that lets us conclude
uniform approximability on compact sets from controllability of finite ensembles.

1.2 RELATED WORK

Several papers have studied and established that residual networks have the power of universal ap-
proximation. This was done in (Lin & Jegelka, 2018) by focusing on the particular case of residual
networks with the ReLU activation function. It was shown that any such network with n states and
one neuron per layer can approximate an arbitrary Lebesgue integrable function f : Rn → R with
respect to the L1 norm. The paper (Zhang et al., 2019) shows that the functions described by deep
networks with n states per layer, when these networks are modeled as control systems, are restricted
to be homeomorphisms. The authors then show that increasing the number of states per layer to
2n suffices to approximate arbitrary homeomorphisms f : Rn → Rn under the assumption the
underlying network already has the power of universal approximation. Note that the results in (Lin
& Jegelka, 2018) do not model deep networks as control systems and, for this reason, bypass the
homeomorphism restriction. There is also an important distinction to be made between requiring
a network to exactly implement a function and to approximate it. The homeomorphism restriction
does not prevent a network from approximating arbitrary functions; it just restricts the functions that
can be implemented as a network. Closer to this paper are the results in (Li et al., 2019) establishing
universal approximation, with respect to theLp norm, 1 ≤ p <∞, based on a general sufficient con-
dition satisfied by several examples of activation functions. These results are a major step forward in
identifying what is needed for universal approximability, as they are not tied to specific architectures
or activation functions. In this paper we establish universal approximation in the stronger sense of
the infinity norm L∞ which implies, as a special case, universal approximation with respect to the
Lp norm for 1 ≤ p <∞.

At the technical level, our results build upon the controllability properties of deep residual networks.
Earlier work on controllability of differential equation models for neural networks, e.g., (Sontag
& Qiao, 1999), assumed the weights to be constant and that an exogenous control signal was fed
into the neurons. In contrast, we regard the weights as control inputs and that no additional con-
trol inputs are present. These two different interpretations of the model lead to two very different
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technical problems. More recent work in the control community includes (Agrachev & Caponigro,
2009), where it is shown that any orientation preserving diffeomorphism on a compact manifold,
can be obtained as the flow of a control system when using a time-varying feedback controller. In
the context of this paper those results can be understood as: residual networks can represent any
orientation preserving diffeomorphism provided that we can make the weights depend on the state.
Although quite insightful, such results are not applicable to the standard neural network models
where the weights are not allowed to depend on the state. Another relevant topic is ensemble con-
trol. Most of the work on the control of ensembles, see for instance (Li & Khaneja, 2006; Helmke
& Schönlein, 2014; Brockett, 2007), considers parametrized ensembles of vector fields. In other
words, the individual systems that drive the state of the whole ensemble are different, whereas in
our setting the ensemble consists of exact copies of the same system, albeit initialized differently.
In this sense, our work is most closely related to the setting of (Agrachev & Sarychev, 2020a;b)
where controllability results for ensembles of infinitely many control systems are provided. In this
paper, in contrast, we use Lie algebraic techniques to study controllability of finite ensembles and
obtain approximation results for infinite ensembles by using the notion of monotonicity rather than
Lie algebraic techniques as is done in (Agrachev & Sarychev, 2020a;b). Moreover, by focusing on
the specific control systems arising from deep residual networks we are able to provide easier to
verify controllability conditions than those provided in (Agrachev & Sarychev, 2020a;b) for more
general control systems. Controllability of finite ensembles of control systems motivated by neural
network applications was investigated in (Cuchiero et al., 2019) where it is shown that controllabil-
ity is a generic property and that, for control systems that are linear in the inputs, 5 inputs suffice.
These results are insightful but they do not apply to specific control systems such as those describing
residual networks and studied in this paper. Moreover the results in (Cuchiero et al., 2019) do not
address the problem of universal approximation in the infinity norm.

To conclude the review of related work, we note that universal approximation with respect to the in-
finity norm for non-residual deep networks, allowing for general classes of activation functions, was
recently established in (Kidger & Lyons, 2020). In particular, it is shown in (Kidger & Lyons, 2020)
that under very mild conditions on the activation functions any continuous function f : K → Rm,
where K ⊂ Rn is compact, can be approximated in the infinity norm using a deep neural network
of width n + m + 2. Even though these results do not directly apply to residual networks (due to
the presence of skip connections), they require 2n + 2 neurons for the case discussed in this paper
where n = m. In contrast, one of our main results, Corollary 4.5, asserts that a width of n + 1 is
sufficient for universal approximation.

When preparing the final version of this paper we became aware of the paper (Park et al., 2021),
published at the same venue and addressing a similar problem. Although the results of (Park et al.,
2021) do not directly apply to residual networks (due to the presence of skip connections), they
establish that max{n+ 1,m} neurons per layer suffice for universal approximation. When n = m,
the case discussed in this paper, both papers provide the same number of neurons n + 1. However,
there are several technical nuances across the results (for instance, some results in (Park et al.,
2021) require a layer of step activation functions, in addition to, e.g., ReLUs, whereas others hold
even if the domain of f is not compact when approximating in the Lp norm) that deserve further
investigation.

2 CONTROL-THEORETIC VIEW OF RESIDUAL NETWORKS

2.1 FROM RESIDUAL NETWORKS TO CONTROL SYSTEMS AND BACK

We start by providing a control system perspective on residual neural networks. We mostly follow
the treatment proposed in (Weinan, 2017; Haber & Ruthotto, 2017; Lu et al., 2018), where it was
suggested that residual neural networks with an update equation of the form:

x(k + 1) = x(k) + S(k)Σ(W (k)x(k) + b(k)), (2.1)

where k ∈ N0 indexes each layer, x(k) ∈ Rn, and (S(k),W (k), b(k)) ∈ Rn×n × Rn×n × Rn,
can be interpreted as a control system when k is viewed as indexing time. In (2.1), S, W , and b are
the weights functions assigning weights to each time instant k, and Σ : Rn → Rn is of the form
Σ(x) = (σ(x1), σ(x2), . . . , σ(xn)), where σ : Rn → Rn is an activation function. By drawing
an analogy between (2.1) and Euler’s forward method to discretize differential equations, one can
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interpret (2.1) as the time discretization of the continuous-time control system:

ẋ(t) = S(t)Σ(W (t)x(t) + b(t)), (2.2)

where x(t) ∈ Rn and (S(t),W (t), b(t)) ∈ Rn×n × Rn×n × Rn; in what follows, and in order to
make the presentation simpler, we sometimes drop the dependency on time. To make the connec-
tion between the discretization and (2.2) precise, let x : [0, τ ] → Rn be a solution of the control
system (2.2) for the control input (S,W, b) : [0, τ ] → Rn×n × Rn×n × Rn, where τ ∈ R+. Then,
given any desired accuracy ε ∈ R+ and any norm | · | in Rn, there exists a sufficiently small time
step T ∈ R+ so that the function z : {0, 1, . . . , bτ/T c} → Rn defined by:

z(0) = x(0), z(k + 1) = z(k) + TS(kT )Σ(W (kT )z(k) + b(kT )),

approximates the sequence {x(kT )}k=0,...,bτ/Tc with error ε, i.e.:

|z(k)− x(kT )| ≤ ε,
for all k ∈ {0, 1, . . . , bτ/T c}. Intuitively, any statement about the solutions of (2.2) holds for
the solutions of (2.1) with arbitrarily small error ε, provided that we can choose the depth to be
arbitrarily large since by making T small we increase the depth, given by 1 + bτ/T c.

2.2 NEURAL NETWORK TRAINING AND CONTROLLABILITY

Given a function f : Rn → Rn and a finite set of samples Esamples ⊂ Rn, the problem of training a
residual network so that it maps x ∈ Esamples to f(x) can be phrased as the problem of constructing
an open-loop control input (S,W, b) : [0, τ ] → Rn×n × Rn×n × Rn so that the resulting solution
of (2.2) takes the states x ∈ Esamples to the states f(x). It should then come as no surprise that
the ability to approximate a function f is tightly connected with the control-theoretic problem of
controllability: given, one initial state xinit ∈ Rn and one final state xfin ∈ Rn, when does there
exist a finite time τ ∈ R+ and a control input (S,W, b) : [0, τ ] → Rn×n × Rn×n × Rn so that the
solution of (2.2) starting at xinit at time 0 ends at xfin at time τ?

To make the connection between controllability and the problem of mapping every x ∈ Esamples to
f(x) clear, it is convenient to consider the ensemble of d = |Esamples| copies of (2.2) given by the
matrix differential equation:

Ẋ(t) = [S(t)Σ(W (t)X•1(t) + b(t))|S(t)Σ(W (t)X•2(t) + b(t))| . . . |S(t)Σ(WX•d(t) + b(t)))] ,
(2.3)

where for time t ∈ R+
0 the ith column of the matrix X(t) ∈ Rn×d, denoted by X•i(t), is the

solution of the ith copy of (2.2) in the ensemble. If we now index the elements of Esamples as
{x1, . . . , xd}, where d is the cardinality ofEsamples, and consider the matricesX init = [x1|x2| . . . |xd]
and Xfin = [f(x1)|f(x2)| . . . |f(xd)], we see that the existence of a control input resulting in a
solution of (2.3) starting at X init and ending at Xfin, i.e., controllability of (2.3), is equivalent to
existence of an input for (2.2) so that the resulting solution starting at xi ∈ Esamples ends at f(xi),
for all i ∈ {1, . . . , d}.
Note that achieving controllability of (2.3) is especially difficult, since all the copies of (2.2) in (2.3)
are identical and they all use the same input. Therefore, to achieve controllability, we must have
sufficient diversity in the initial conditions to overcome the symmetries present in (2.3), see (Aguilar
& Gharesifard, 2014). Our controllability result, Theorem 4.2, describes precisely such diversity.
As mentioned in the introduction, this observation also distinguishes the problem under study here
from the classical setting of ensemble control (Li & Khaneja, 2006; Helmke & Schönlein, 2014),
with the exception of the recent work (Cuchiero et al., 2019; Agrachev & Sarychev, 2020a;b), where
a collection of systems with different dynamics are driven by the same control input.

3 PROBLEM FORMULATION

Our starting point is the control system:

ẋ(t) = s(t)Σ(W (t)x(t) + b(t)), (3.1)

a slightly simplified version of (2.2), where x(t) ∈ Rn, (s(t),W (t), b(t)) ∈ R × Rn×n × Rn, and
the input S in (2.2) is now the scalar-valued function s; as we will prove in what follows, this model
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is enough for universal approximation. In fact, we will later see1 that it suffices to let s assume two
arbitrary values only (one positive and one negative). Moreover, for certain activation functions, we
can dispense with s altogether.

Assumption 1. We make the following assumptions regarding the model (3.1):

• The function Σ is defined as Σ : x 7→ (σ(x1), σ(x2), . . . , σ(xn)), where the activation
function σ : R→ R, or a suitable derivative of it, satisfies a quadratic differential equation,
i.e., Dξ = a0 + a1ξ + a2ξ

2 with a1, a2, a3 ∈ R, a2 6= 0, and ξ = Djσ for some j ∈ N0.
Here, Djσ denotes the derivative of σ of order j and D0σ = σ.

• The activation function σ : R→ R is Lipschitz continuous, Dσ ≥ 0, and ξ = Djσ defined
above is injective.

Table 1: Activation functions and the differential equations they satisfy.

Function name Definition Satisfied differential equation
Logistic function σ(x) = 1

1+e−x Dσ − σ + σ2 = 0

Hyperbolic tangent σ(x) = ex−e−x

ex+e−x Dσ − 1 + σ2 = 0

Soft plus σ(x) = 1
r log(1 + erx) D2σ − rDσ + r(Dσ)2 = 0

Several activation functions used in the literature are solutions of quadratic differential equations
as can be seen in Table 1. Moreover, activation functions that are not differentiable can also be
handled via approximation. For example, the ReLU function defined by max{0, x} can be approx-
imated by σ(x) = log(1 + erx)/r, as r → ∞, which satisfies the quadratic differential equation
given in Table 1. Similarly, the leaky ReLU, defined by σ(x) = x for x ≥ 0 and σ(x) = rx for
x < 0, is the limit as k → ∞ of α(x) = rx + log(1 + e(1−r)kx)/k, and the function α satisfies
D2α− k(1 + r)Dα+ k(Dα)2 + kr = 0.

The Lipschitz continuity assumption is made to simplify the presentation and can be replaced with
local Lipschitz continuity, which then does not need to be assumed, since σ is analytic in virtue
of being the solution of an analytic (quadratic) differential equation. Moreover, all the activation
functions in Table 1 are Lipschitz continuous, have positive derivative and are thus injective.

To formally state the problem under study in this paper, we need to discuss a different point of
view on the solutions of the control system (3.1) given by flows. A continuously differentiable
curve x : [0, τ ] → Rn is said to be a solution of (3.1) under the piecewise continuous input
(s,W, b) : [0, τ ]→ R× Rn×n × Rn if it satisfies (3.1). Under the stated assumptions on σ, given a
piecewise continuous input and a state xinit ∈ Rn, there is one and at most one solution x(t) of (3.1)
satisfying x(0) = xinit. Moreover, solutions are defined for all τ ∈ R+

0 . We can thus define the flow
of (3.1) under the input (s,W, b) as the map φτ : Rn → Rn given by the assignment xinit 7→ x(τ).
In other words, φτ (xinit) is the point reached at time τ by the unique solution starting at xinit at time
0. When the time τ is clear from context, we denote a flow simply by φ. It will also be convenient
to denote the flow φτ by Zτ when φ is defined by the solution of the differential equation ẋ = Z(x)
for some vector field Z : Rn → Rn.

We will use flows to approximate arbitrary continuous functions f : Rn → Rm. Since flows have
the same domain and co-domain, and f : Rn → Rm may not, we first lift f to a map f̃ : Rk → Rk.
When n > m, we lift f to f̃ = ı ◦ f : Rn → Rn, where ı : Rm → Rn is the injection given by
ı(x) = (x1, . . . , xn, 0, . . . , 0). In this case k = n. When n < m, we lift f to f̃ = f ◦π : Rm → Rm,
where π : Rm → Rn is the projection π(x1, . . . , xn, xn+1, . . . , xm) = (x1, . . . , xn). In this case
k = m. Although we could consider factoring f through a map g : Rn → Rm, i.e., to construct
f̃ : Rn → Rn so that f = g ◦ f̃ as done in, e.g., (Li et al., 2019), the construction of g requires
a deep understanding of f , since a necessary condition for this factorization is f(Rn) ⊆ g(Rn).
Constructing g so as to contain f(Rn) on its image requires understanding what f(Rn) is and this
information is not available in learning problems. Given this discussion, in the remainder of this
paper we directly assume we seek to approximate a map f : Rn → Rn.

1See the discussion after the proof of Theorem 4.2 in (Tabuada & Gharesifard, 2020).
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The final ingredient we need before stating the problem solved in this paper is the precise notion
of approximation. Throughout the paper, we will investigate approximation in the sense of the L∞
(supremum) norm, i.e.:

‖f‖L∞(E) = sup
x∈E
|f(x)|∞,

where E ⊂ Rn is the compact set over which is the approximation is going to be conducted and
|f(x)|∞ = maxi∈{1,...,n} |fi(x)|. Some approximation results will be stated for networks modeled
by a control system (3.1) with state space Rn. In such cases the approximation quality is measured
by ‖f − φ‖L∞(E) where φ is the flow of (3.1). Other results will require networks with state space
Rm for m > n. For those cases the approximation quality is measured by ‖f − β ◦ φ ◦ α‖L∞(E)

where α : Rn → Rm is an injection and β : Rm → Rn is a projection. These maps will be linear
and can be implemented as the first and last layers of a residual network.

We are now ready to state the two problems we study in this paper.

Problem 3.1. Let f : Rn → Rn be a continuous function, Esamples ⊂ Rn be a finite set, and ε ∈ R+
0

be the desired approximation accuracy. Under Assumption 1, does there exist a time τ ∈ R+ and
an input (s,W, b) : [0, τ ]→ R×Rn×n×Rn so that the flow φτ : Rn → Rn defined by the solution
of (3.1) with state space Rn under the said input satisfies:

‖f − φτ‖L∞(Esamples) ≤ ε?

Note that we allow ε to be zero in which case the flow φτ matches f exactly on Esamples, i.e.,
f(x) = φτ (x) for every x ∈ Esamples. The next problem considers the more challenging case of
approximation on compact sets and allows for residual networks with m > n neurons per layer
when approximating functions on Rn.

Problem 3.2. Let f : Rn → Rn be a continuous function, E ⊂ Rn be a compact set, and
ε ∈ R+ be the desired approximation accuracy. Under Assumption 1, does there exist m ∈ N,
a time τ ∈ R+, an injection α : Rn → Rm, a projection β : Rm → Rn, and an input
(s,W, b) : [0, τ ]→ R× Rn×n × Rn such that the flow φτ : Rn → Rn defined by the solution
of (3.1) with state space Rn+1 under the said input satisfies:

‖f − β ◦ φτ ◦ α‖L∞(E) ≤ ε?

In the next section, we will show the answer to both these problems to be affirmative. For the second
problem we can take m = n under the additional assumption of monotonicity which is satisfied by
construction when we allow m = n+ 1 neurons per layer.

4 MAIN RESULTS

The proofs of all the results in this section are provided in (Tabuada & Gharesifard, 2020).

We first discuss the problem of constructing an input for (3.1) so that the resulting flow φ satisfies
φ(x) = f(x) for all the points x in a given finite set Esamples ⊂ Rn. We explained in Section 2.2 that
this is equivalent to determining if the ensemble control system (2.3) is controllable. It is simple to
see that controllability of (2.3) cannot hold on all of Rn×d, since if the initial state X(0) satisfies
X•i(0) = X•j(0) for some i 6= j, we must have X•i(t) = X•j(t) for all t ∈ [0, τ ] by uniqueness of
solutions of differential equations.

Our first result establishes that the controllability property holds for the ensemble control sys-
tem (2.3) on a dense and connected submanifold of Rn×d, independently of the (finite) number
of copies d, as long the activation function satisfies Assumption 1. Before stating this result, we
recall the formal definition of controllability.

Definition 4.1. A point Xfin ∈ Rn×d is said to be reachable from a point X init ∈ Rn×d for the
control system (2.3) if there exist τ ∈ R+ and a control input (s,W, b) : [0, τ ] → R × Rn×n × Rn
so that the solution X of (2.3) under said input satisfies X(0) = X init and X(τ) = Xfin. Control
system (2.3) is said to be controllable on a submanifold M of Rn×d if any point in M is reachable
from any point in M .
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Theorem 4.2. Let N ⊂ Rn×d be the set defined by:

N =

A ∈ Rn×d |
∏

1≤i<j≤d

(A`i −A`j) = 0, ` ∈ {1, . . . , n}

 .

Let n > 1 and suppose that Assumption 1 holds. Then the ensemble control system (2.3) is control-
lable on the submanifold M = Rn×d\N .

It is worth mentioning that the assumption of n 6= 1 ensures connectedness of the submanifold
M , which we rely on to obtain controllability. The following corollary of Theorem 4.2 weakens
controllability to reachability but applies to a larger set.
Corollary 4.3. Let M ⊂ Rn×d be the submanifold defined in Theorem 4.2. Under assumptions of
Theorem 4.2, any point in M is reachable from a point A ∈ Rn×d for which:

A•i 6= A•j ,

holds for all i 6= j, where i, j ∈ {1, . . . , d}.

The assumption A•i 6= A•j in Corollary 4.3 requires all the columns of A to be different and is
always satisfied when A =

[
x1|x2| . . . |xd

]
, xi ∈ Esamples. Hence, for any finite set Esamples there

exists a flow φ of (3.1) satisfying f(x) = φ(x) for all x ∈ Esamples provided that f(Esamples) ⊂ M ,
i.e., Problem 3.1 is solved with ε = 0. Moreover, since M is dense in Rn×d, when f(Esamples) ⊂M
fails, there still exists a flow φ of (3.1) taking φ(x) arbitrarily close to f(x) for all x ∈ Esamples, i.e.,
Problem 3.1 is solved for any ε > 0. This result also sheds light on the memorization capacity of
residual networks as it states that almost any finite set of samples can be memorized, independently
of its cardinality. See, e.g., (Yun et al., 2019; Vershynin, 2020), for recent results on this problem
that do not rely on differential equation models.

Some further remarks are in order. Theorem 4.2 and Corollary 4.3 do not directly apply to the ReLU
activation function, defined by max{0, x}, since this function is not differentiable. However, the
ReLU is approximated by the activation function:

1

r
log(1 + erx),

as r →∞. In particular, as r →∞ the ensemble control system (2.3) with σ(x) = log(1 + erx)/r
converges to the ensemble control system (2.3) with σ(x) = max{0, x} and thus the solutions of
the latter are arbitrarily close to the solutions of the former whenever r is large enough. Moreover,
ξ = Dσ satisfies Dξ = rξ− rξ2 and Dξ = rerx/(1 + erx)2 > 0 for x ∈ R and r > 0 thus showing
that ξ is an increasing function and, consequently, injective.

The conclusions of Theorem 4.2 and Corollary 4.3 also hold if we weaken the assumptions on the
inputs of (3.1). It suffices for the entries of W and b to take values on a set with two elements
(one positive and one negative), see the discussion after the proof of Theorem 4.2 in (Tabuada &
Gharesifard, 2020) for details. Moreover, when the activation function is and odd function, i.e.,
σ(−x) = −σ(x), as is the case for the hyperbolic tangent, the conclusions of Theorem 4.2 hold for
the simpler version of (3.1), where we fix s to be 1.

In order to extend the approximation guarantees from a finite set Esamples ⊂ Rn to an arbitrary com-
pact set E ⊂ Rn, we rely on the notion of monotonicity. On Rn we consider the ordering relation
x � x′ defined by xi ≤ x′i for all i ∈ {1, . . . , n} and x, x′ ∈ Rn. A map f : Rn → Rn is said to be
monotone when it respects this ordering relation, i.e., when x � x′ implies f(x) � f(x′). When f
is continuous differentiable, monotonicity admits a simple characterization (Hirsch & Smith, 2006):

∂fi
∂xj
≥ 0, ∀i, j ∈ {1, . . . , n}. (4.1)

A vector field Z : Rn → Rn is said to be monotone when its flow φτ : Rn → Rn is a monotone
map. Monotone vector fields admit a characterization similar to (4.1), see (Smith, 2008):

∂Zi
∂xj
≥ 0, ∀i, j ∈ {1, . . . , n}, i 6= j. (4.2)
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Theorem 4.4. Let n > 1 and suppose that Assumption 1 holds. Then, for every monotone analytic
function f : Rn → Rn, for every compact set E ⊂ Rn, and for every ε ∈ R+ there exist a time
τ ∈ R+ and an input (s,W, b) : [0, τ ] → R × Rn×n × Rn so that the flow φτ : Rn → Rn defined
by the solution of (3.1) with state space Rn under the said input satisfies:

‖f − φτ‖L∞(E) ≤ ε. (4.3)

When the function to be approximated is simply continuous, we can first approximate it by a poly-
nomial function using Stone-Weierstass’ Theorem and then embed it into a monotone function.
Although such embeddings typically require doubling the dimension, we leverage the existence of
the projection map β to introduce a novel embedding that only requires increasing n to n+ 1.
Corollary 4.5. Let n > 1 and suppose that Assumption 1 holds. Then, for every continuous
function f : Rn → Rn, for every compact set E ⊂ Rn, and for every ε ∈ R+ there exist
a time τ ∈ R+, an injection α : Rn → Rn+1, a projection β : Rn+1 → Rn, and an input
(s,W, b) : [0, τ ]→ R× R(n+1)×(n+1) × Rn+1 so that the flow φτ : Rn+1 → Rn+1 defined by the
solution of (3.1) with state space Rn+1 under the said input satisfies:

‖f − β ◦ φτ ◦ α‖L∞(E) ≤ ε.

It is worth pointing out that, contrary to Theorem 4.4, no requirements are placed on f in addition to
continuity. In (Agrachev & Sarychev, 2020a;b), sufficient conditions for the existence of a flow φτ

satisfying (4.3) are given for a more general class of control systems. The assumptions used in The-
orem (4.4) are not easy to compare with the assumptions in Theorem 5.1 of (Agrachev & Sarychev,
2020b). However, by employing a deep network of width n+ 1, i.e., by using Corollary 4.5, we rely
on much simpler assumptions on the activation functions which are satisfied by the networks used
in practice. In contrast, (Agrachev & Sarychev, 2020b, Theorem 5.1) requires a strong Lie algebra
approximation property to be satisfied by the ensemble control system that does not appear to be
easy to verify.

KEY NOVEL TECHNICAL IDEAS

We find it fruitful to sketch the proofs, available in (Tabuada & Gharesifard, 2020), of the main
results to give the reader a flavor of some of the novel technical ideas.

• In Theorem 4.2, we use the notion of ensemble controllability to find the open-loop control
inputs that map the finite set of sample Esamples ⊂ Rn to the corresponding state under f .
The use of Lie algebraic techniques to study controllability is standard practice in nonlin-
ear control (Jurdjevic, 1996). To give the unfamiliar reader a glimpse on this, given two
smooth vector fields f1, f2 : Rn → Rn, one can show that the reachable set of the control
system ẋ = u1f1(x) + u2f2(x), i.e., the set of points that can be reached by selecting u1
and u2 appropriately, is equivalent to the one for ẋ = u1f1(x) + u2f2(x) + u3[f1, f2](x),
where [f1, f2](x) := ∂f2

∂x f1(x) − ∂f1
∂x f2(x) is the Lie bracket of f1 and f2. Continuing

in this fashion, the closure of the set of all brackets generated by f1 and f2, i.e., the Lie
algebra generated by these, corresponds to the directions that we can steer the system to.
Now the setting considered here is far from this classical setting and three challenges arise
when attempting to apply these techniques to (2.3). The first one is that we are steering an
ensemble of data points, rather than one point, using a single control system. The second
challenge is that most existing Lie algebraic controllability results are for control systems
that are affine in the input, such as the one above, whereas (2.3) is not. To address this
challenge, we identified a subset of inputs that, when used in a piecewise constant manner,
lead to a control system that is easier to analyze. The third challenge is that computing
the dimension of the associated Lie algebra is difficult, since one has to establish linear
(in)dependence of highly nonlinear functions. To proceed, we had to identify which as-
sumptions to place on σ so that the dimension of the Lie algebra could be computed while
allowing for a quite general class of activation functions. Strikingly, by assuming that σ
satisfies a quadratic differential equation, which still includes many of the known activa-
tion functions, we were able to provide a closed form expression for the determinant of the
matrix (A.1) in Lemma A.1 in (Tabuada & Gharesifard, 2020) thereby showing that, for
every point in the open and dense submanifold M , the dimension of the Lie algebra is the
dimension of the state space.
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• The novel idea in the proof of Theorem 4.4 is the link between monotonicity and approx-
imability in the L∞ sense. We already know from Theorem 4.2 that deep residual networks
can memorize to arbitrary accuracy any continuous function f evaluated on a finite sample
setEsamples. The question left open is, what is the mismatch between f and the flow of (3.1)
for points in the domain of f but not in Esamples? Lemma A.3 in (Tabuada & Gharesifard,
2020) provides an upper bound for such gap provided that the flow of (3.1) is monotone.
With this upper bound in hand, the proof of Theorem 4.2 shows that when f is mono-
tone, there exists a monotone flow of (3.1) that approximates, with arbitrary accuracy, f
evaluated on Esamples and the result then follows. In summary, the proof of Theorem 4.4
establishes that monotonocity is the key property that allows to extend approximation on
finite sample sets (Theorem 4.2) to approximation on compact sets (Theorem 4.4).
• Our final step is in Corollary 4.5 where we construct an embedding of f into a monotone

mapping by increasing the domain and co-domain of f by one, i.e., by working on Rn+1.
Embedding non-monotone maps into monotone maps typically requires doubling the di-
mension. The key novel idea here is to add a linear correction to f that is compensated
by the linear function β implemented as the last layer of a deep residual network. With
this linear compensation it suffices to increase the domain and co-domain of f by one, i.e.,
n+ 1 neurons suffice for universal approximation.
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