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Abstract – We show by a meta-analysis of the available Quantum Monte Carlo (QMC) results
that two-dimensional fermions with repulsive interactions exhibit universal behavior in the strongly
correlated regime, and that their freezing transition can be described using a quantum general-
ization of the classical Hansen-Verlet freezing criterion. We calculate the liquid-state energy and
the freezing point of the 2D dipolar Fermi gas (2DDFG) using a variational method by taking
ground-state wave functions of 2D electron gas (2DEG) as trial states. A comparison with the
recent fixed-node diffusion Monte Carlo analysis of the 2DDFG shows that our simple variational
technique captures more than 95% of the correlation energy, and predicts the freezing transition
within the uncertainty bounds of QMC. Finally, we utilize the ground-state wave functions of
2DDFG as trial states and provide a variational account of the effects of finite 2D confinement
width. Our results indicate significant beyond mean-field effects. We calculate the frequency of
collective monopole oscillations of the quasi-2D dipolar gas as an experimental demonstration of
correlation effects.

Copyright c© EPLA, 2013

An intriguing behavior of fermions with strong repul-
sive interactions is the spontaneous breaking of the trans-
lation symmetry in the ground state and the formation of
the so-called Wigner crystal (WC) phase. While originally
proposed for the electron gas [1], a large body of evidence
from quantum Monte Carlo (QMC) simulations and first-
principle considerations have shown that the WC transi-
tion is indeed a universal aspect of repulsively interacting
particles, independent of their quantum statistics, number
of spatial dimensions, interaction law or spin degeneracy.
Some of the extensively studied models that exhibit the
WC transition are the electron gas in 2D [2–4] and 3D [5],
2D Coulomb bosons [6], 2D Yukawa bosons [7], 2D dipolar
bosons [8] and fermions [9], and 2D hard-core bosons [10]
and fermions [11].

The conventional explanation of WC transition at zero
temperature is based on the competition between quan-
tum fluctuations (kinetic energy) and the inter-particle
repulsion, favoring delocalized and localized states, re-
spectively. The symmetry broken state is energetically
favorable when the ratio of the interaction over kinetic

energy becomes sufficiently large. The ordered state is a
triangular crystal in 2D which has the largest packing ra-
tio. While general arguments from the Landau-Ginzburg
theory suggest that the WC transition is a direct first-
order transition, for interaction laws falling slower than
1/r3 [12], the first-order transition may be replaced by
a series of second-order transitions through intermediate
“microemulsion” phases such as stripes and bubbles [13].
Such transitions, however, generally take place only over
a very narrow window of densities and remain yet to be
observed in QMC simulations due to finite-size limita-
tions [9,14].

In this letter, we investigate the features of the strongly
correlated liquid phase of fermions in the vicinity of the
WC transition and show that models with significantly
different interaction laws exhibit universal features. For
concreteness, we restrict our analysis to single-component
fermions in 2D. Throughout this letter, we use the termi-
nology “universal” to refer to properties that depend very
weakly on the microscopic interaction laws. As a first
step, we present a meta-analysis of the available QMC
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Table 1: Characteristics of single-component 2D quantum liquids at the freezing point. γm is the Lindemann ratio at melting,
kmax is the location of the main peak of the static structure factor S(k), kF ≡

√
4πn is the Fermi wave vector, and Mroton is

the roton mass calculated from the Bijl-Feynman formula. The dashed entries could not be determined from the available data.
The error bounds reflect both the statistical error of fitting/interpolating as well as the uncertainty in the value of the critical
coupling. The dimensionless coupling constants are defined as rs ≡ me2/(�2√πn) (the Wigner-Seitz radius), gd ≡ kF mD2/�

2

for dipolar interactions (m and D denote the mass and dipole moment of a single particle), and σ̃ ≡ kF σ for hard-core gases (σ
is the diameter of the hard-core disk).

V (r) Statistics Critical coupling kmax/kF γm Sf Mroton/m Reference(s)
e2/r Fermion rs = 28(3) 1.86 0.25(-) 1.53(4) 0.042(4) [2–4,15]
D2/r3 Fermion gd = 25(3) 1.89 – 1.55(3) 0.041(5) [9]
(σ/r)∞ Fermion σ̃ = 1.62(4) 1.93 – 1.54(3) 0.043(2) [11]
−e2 ln r Boson rs = 12(1) – 0.24(1) – – [6]
D2/r3 Boson gd = 60(3) 1.87 0.230(6) 1.70(4) 0.061(5) [8]
(σ/r)∞ Boson σ̃ = 2.00(5) 1.93 0.279 1.54(-) 0.065(-) [10]
εK0(σ/r) Boson cf. ref. [7] – 0.235(15) – – [7]

studies of different models and point out their universal
and non-universal features. As a useful application and a
token of evidence for the universality (in the above sense)
of strongly correlated liquid-state wave functions, we esti-
mate the energy and the WC transition point of 2D dipo-
lar fermionic gas (2DDFG) using 2D electron gas (2DEG)
wave functions as variational trial states. We show that
the obtained results are in a remarkable agreement with
the available QMC results [9]. Finally, we make a con-
nection to experiments with ultracold dipolar gases and
investigate the effects of strong correlations in quasi-2D
dipolar fermions in optical traps. Our results suggest an
unexpectedly weak dependence of the total energy and the
collective modes on the transverse confinement width.

Universality in the “roton regime”. – Classical
liquid-solid phase transitions are known to follow universal
patterns, such as the Lindemann criterion of melting and
the Hansen-Verlet (HV) criterion of freezing [16]. The for-
mer states that the solid melts once the Lindemann ratio
γL ≡ 〈u2〉1/2/a0 exceeds a universal constant, γm (here, u
is the particle displacement in the crystal lattice and a0

is the lattice constant). The HV criterion states that the
liquid freezes once the main peak of the static structure
factor, S(kmax), exceeds a universal constant Sf . Despite
the lack of a rigorous first-principle explanation, simula-
tions and experiments have shown that both criteria are
universally applicable to simple liquids with a 5% to 10%
variation in the constants [16].

By analyzing the published QMC results for a variety
of quantum models, we find that both criteria apply to
quantum melting and freezing transitions as well, albeit
at different values of γm and Sf compared to the classi-
cal case (see table 1). The quantum generalization of the
Lindemann criterion had been indicated before [17] and is
often used heuristically. The most significant finding here
is the universality of the HV constant for 2DEG, dipolar
and hard-core fermions despite their fundamentally differ-
ent interaction laws. This surprising result implies that al-
though 2DEG and dipolar/hard-core fermions crystallize
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Fig. 1: (Color online) (a) The liquid-state static structure fac-
tor S(k) for 2D electron gas, dipolar fermions and hard-core
fermions at the critical point. The horizontal bar indicates the
uncertainty in S(kmax). The inset plot shows the upper-bound
dispersion of the collective modes E(k) from the Bijl-Feynman
formula (in units of εF = k2

F /2m). (b) The pair distribution
function g(r) at the critical point.

in the opposite low- and high-density regimes, they still
comply with the same freezing criterion.

The universality of the HV constant suggests that the
physics of 2D Fermi liquids in the regime k ∼ kmax ≈ 2kF

may be in fact universal near the freezing point. To
shed light into this matter, we examine the liquid-state
static structure factor S(k) and the associated pair dis-
tribution function (PDF) g(r) = n−2〈n(r)n(0)〉 ≡ 1 +∫

d2k[S(k) − 1]eik·r/(4π2n) for 2DEG, dipolar and hard-
core fermions at the critical point (fig. 1). The inset plot of
fig. 1(a) shows an upper bound to the density wave disper-
sions from the Bijl-Feynman single-mode approximation,
E(k) = k2/[2mS(k)] (exact in the k � kF limit). Save for
differences in the short- and long-wavelength regimes, the
models manifestly exhibit a universal behavior in the in-
termediate “roton regime” k ∼ 2kF : the same “roton gap”
E(k∗) and the same “roton mass” Mroton ≡ �

2/E′′(k∗) (k∗

is the location of the minimum of E(k)). Provided that
the Bijl-Feynman expression remains reliable in the roton
regime, the universality of the HV constant is equivalent
to the universality of the roton gap at the transition.
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The model-dependent features show up in the short-
wavelength k � kF and long-wavelength k � kF regimes.
The former is seen as different degrees of flatness of the
plots of g(r) in the kF r � 1 regime (fig. 1(b)). The
“pair amplitude”

√
g(r) obeys the two-body Schrödinger’s

equation in this limit [18] and directly reflects the hard-
ness of the repulsive core of the potential. The long-
wavelength behavior of the models is most easily seen in
the density wave dispersion plots: while E(k) ∼ k (zero-
sound/phonon) for the dipolar and hard-core fermions,
E(k) ∼ k1/2 (plasmon) for 2DEG. While the non-
universality of the long-wavelength physics may play a
significant role in the narrow critical regime (e.g., the sta-
bility of mesoscopic phases), it is immaterial as far as the
thermodynamical stability of the pure phases is concerned.

The universal features of critical liquids in the roton
regime are expected to persist in an extended neigh-
borhood of the critical point, as long as the crystal
correlations are strong. This statement will be examined
and verified below, but for the moment, it can be moti-
vated by observing that in the strongly-correlated regime,
the short-range part of the interaction law (kF r � 1) is
effectively masked by the localized exchange-correlation
hole [19], i.e., the combined effects of Pauli exclusion and
short-range inter-particle repulsion. Moreover, the mo-
mentum dependence of the power-law potentials is smooth
and does not vary appreciably in the roton regime while
the long-range tails have little contribution due to screen-
ing. As a consequence, the dispersion of the density waves
in the roton regime is expected to have a weak dependence
on the shape of the interaction potential.

A significant fraction of the total energy results from the
roton regime in the strongly correlated regime due to the
reduced roton gap. Therefore, a practical application of
the roton universality is that the ground-state wave func-
tions of one model will be well suited as variational trial
states for another model. Such variational approaches has
been used earlier by two of the authors [20,21]. The qual-
ity of the variational results, in particular in the strongly
correlated regime, constitutes a stringent test for the sim-
ilarity between the wave functions of different systems.
Here, we will estimate the ground-state energy and the
freezing point of 2DDFG by taking the ground-state wave
functions of 2DEG as trial states. The details of this pro-
cedure is described in the next section.

The variational mapping method. – Let |Ψξ〉A,
εA
K[n; ξA] and gA(r; ξA) be the normalized ground-state

wave function, kinetic energy per particle, and the PDF
of a reference system “A” at a fixed density n. Here,
ξA is a dimensionless coupling constant of “A” (e.g.,
in case of 2DEG, ξ can be taken as the Wigner-Seitz
radius rs). We use {|Ψξ〉A} as a family of varia-
tional wave functions for the target system “B”. Let
εB
K[n; ξvar] and εB

int[n; ξvar] be the kinetic and interaction
energy densities of “B” obtained by using |Ψξvar〉A as a
trial wave function. Since the kinetic energy operator

K̂ ≡ −
∑

i �
2∇2

i /(2m) is identical for both systems,
εB
K[n; ξvar] ≡ A〈Ψξvar |K̂|Ψξvar〉A = εA

K[n; ξvar]. The inter-
action energy per particle of “B” in the same trial state
can be calculated using the PDF of “A”:

εB
int[n; ξvar] =

n

2

∫ ∞

0

gA(r; ξvar)V B
(
r; ξB)2πrdr, (1)

where V B(r; ξB) is the two-body interaction potential of
“B” and ξB is a dimensionless coupling constant of “B”
(e.g., for 2DDFG, ξB can be taken as gd ≡ mD2kF /�

2).
Minimizing εB [n; ξvar] ≡ εB

K[n; ξvar] + εB
int[n; ξvar] with re-

spect to ξvar at fixed density, we obtain a) a variational
upper bound for the ground-state energy of “B”, and b) a
mapping φ: ξB → ξA that associates the ground states
of “A” with the (approximate) ground-states of “B”. We
refer to this scheme as variational mapping (VM), and
the results obtained using the wave functions of “A” as
VMA. Note that only the knowledge of gA(r; ξA) and
εA
K[n; ξA] is required. Furthermore, if the microscopic in-

teraction is a power-law function, the kinetic energy den-
sity can be extracted from the total energy using the virial
theorem [21,22].

The quantum HV freezing criterion allows us to the esti-
mate the freezing point of the target system “B” once the
variational mapping φ to the ground states of a reference
system is constructed: if the freezing transition occurs at
ξA
c in the reference system, it (supposedly) fulfills the HV

criterion. Since the same wave function is variationally
associated to the target system at ξB

c ≡ φ−1(ξA
c ), it will

also satisfy the HV criterion at ξB
c .

As a final remark, we note that a necessary condition for
the applicability of the variational mapping method is the
convergence of the integral in eq. (1). For large r, gA ≈ 1
and the integral converges provided that V B(r) falls faster
than 1/r2. If V A(r) ∼ 1/rn with n ≥ 3, the solution of
the two-body Schrödinger’s equation shows that gA(r) and
its derivatives vanish at r = 0 to all orders. Therefore,
the small-r convergence of the integral is guaranteed for
all target potentials with a power-law repulsive core with
finite n (hence, excluding the hard-core gas). Finally, if
V A(r) ∼ 1/r, gA ∼ r2 for small r [23] and convergence
requires the repulsive core of V B to softer than 1/r4.

Variational mapping from 2DEG to 2DDFG. –
The dipolar gas is assumed, for the moment, to be

single component and with an interaction law V (r) =
D2/r3. The strength of dipolar interactions can be
parametrized using the dimensionless coupling constant
gd ≡ mD2kF /�

2. We use ferromagnetic 2DEG ground-
state energies from ref. [3] and the analytical representa-
tion of the 2DEG PDF given in ref. [23]. Figure 2(a) shows
the variationally obtained energies (green dashed lines)
along with the QMC result from ref. [9] (solid lines). The
inset plots shows the fraction of the captured correlation
energy. We find that the 2DEG wave functions remark-
ably represent more than 95% of the correlation energy
of 2DDFG in the strongly correlated regime (gd > 20).
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Fig. 2: (Color online) (a) The correlation (εc), kinetic (εK),
and total (εtot) energy per particle of 2DDFG in units of
εHF = (�2πn/m)[1 + 128gd/(45π)] [9,22]. The red triangles
show the QMC results of ref. [9], the black solid lines are ana-
lytic fits. The green dashed lines are variational results based
on 2DEG wave functions (VM2DEG). The cyan bar shows the
WC transition region as predicted by QMC, gd = 25 ± 3. The
gray vertical bar is the variational estimate based on VM2DEG

and the Hansen-Verlet criterion, gd = 29 ± 4. The inset plot
shows the ratio of the correlation energy of VM2DEG over QMC.
(b) The PDF g(r) of 2DDFG from QMC (solid lines) and
VM2DEG (dashed lines). The black, green, blue and red lines
correspond to gd = 0 (Hartree-Fock), 2, 10, 20.

The difference between the exact 2DDFG PDFs and the
variationally associated 2DEG PDFs (fig. 2(b)) is barely
noticeable for large gd. The plots of εK and εint (fig. 2(a))
indicate that the main overestimation comes from the in-
teraction energy part. The error, however, is reduced for
larger gd, which indicates that the small-r mismatch of the
dipolar and Coulomb potentials is masked more effectively
by the correlation hole.

In 2DEG, the transition from the ferromagnetic liquid
to the WC phase takes place at rs = 28 ± 3 [4]. The
2DEG wave functions in this interval variationally map to
gd = 28 ± 4 for 2DDFG, which we take as an estimate
for the WC transition of 2DDFG using the HV criterion.
This estimate is remarkably close to the QMC prediction
gd = 25±3 [9]. The remarkable quality of the variationally
obtained results in the strongly interacting regime and the
decent estimate of the WC transition can be taken as a
token of evidence for the presence of strong universal fea-
tures in the strongly correlated wave functions of the two
models. Our estimate of the WC transition point is also a
significant improvement over the available analytical esti-
mates: the Hartree mean-field stability criterion predicts
the transition at gd ≈ 0.5 [24], inclusion of exchange ef-
fects result in a slight improvement gd ≈ 1.4 [25,26], and
inclusion of correlation effects using the Singwi-Tosi-Land-
Sjölander scheme yields gd ≈ 6 [27].

Quasi-2D dipolar Fermi gas. – So far, we have only
discussed the system of dipolar fermions in a strictly 2D
configuration. This model can be experimentally sim-
ulated by optical or magnetic confinement of fermionic
polar molecules [28] or magnetic atoms [29] about a

plane, and polarizing the dipoles perpendicular to the
confinement plane using an external dc field. Assuming
a harmonic confining potential Utrap ≈ mω2

zz2/2, the 2D
limit corresponds to the limit ωz/μ → ∞, where μ is the
chemical potential. The trap frequency ωz is finite in real-
ity and the 2D layer has a finite width of the order of the
transverse oscillator length az ≡ [�/(mωz)]−1/2. Provided
that �ωz > μ, only the lowest transverse band will be pop-
ulated [30]. We refer to dipolar fermions in this setting as
quasi-2D dipolar Fermi gas (q2DDFG). Finite transverse
confinement modifies the short-range r � az behavior of
the effective two-body interactions, which is given by

Vq2D
dip (r) =

∫
dzdz′|φ0(z)|2|φ0(z′)|2V3D

dip(r, z − z′), (2)

where V3D
dip(r, z − z′) = D2(|r|2 − 3z2)/|r|5 is the

dipole-dopole interaction in 3D space and φ0(z) =
e−z2/(2a2

z)/(
√

πaz)
1
2 is the transverse wave function of par-

ticles in the lowest band. The analytical expression for
Vq2D

dip (r) is given in the ref. [31] and yields

Vq2D
dip (r) =

{
[2D2/(

√
2πa3

z)] ln(az/r) + O(1), r � az,

D2/r3 − 9a2
z/(2r5) + O(r−7), r � az.

(3)
The much weaker repulsion in the region r � az is due to
the strong anisotropy of dipole-dipole interactions in 3D
space. When the separation between the dipoles exceeds
az, the ideal dipole-dipole interaction is asymptotically
recovered. We use the variational mapping method to cal-
culate the properties of q2DDFG using 2DDFG wave func-
tions. In light of the analysis of the previous section, we
expect the ground-state wave functions of 2DDFG to com-
prise a decent set of variational trial states for q2DDFG
since the long-range behavior of the two models asymp-
totically match.

The ground states of q2DDFG are parametrized by two
dimensionless quantities (gd, ãz), where ãz =

√
naz. Fig-

ure 3(a) shows the variationally obtained energies along
with the Hartree-Fock result. The phase diagram as a
function of gd and az is obtained using the HV criterion
and is shown in fig. 3(b). We have also calculated the vari-
ational energies using 2DEG wave functions separately for
comparison (shown as red lines in fig. 3(a)). We find that
both variational estimates lie remarkably close to each
other and follow the same trend as a function of gd and
az. The estimated energies based on 2DEG wave functions
consistently lie slightly above those based on 2DDFG, as
expected.

An interesting consequence of correlations is the qual-
itatively different dependence of the ground-state energy
on az, as compared to the Hartree-Fock theory. Indeed, for
small

√
naz, Hartree-Fock theory predicts a linear depen-

dence of the total energy on az (see the black dashed lines
in fig. 3(a); the exact Hartree-Fock energy expression is
also given in ref. [22]), while both VM2DDFG and VM2DEG

strongly suggest a quadratic az-dependence (see the solid
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Fig. 3: (Color online) (a) The energy of quasi-2D dipolar Fermi
gas (q2DDFG) as a function of the dipole-dipole interaction
strength gd and the layer width az in units of ε0 ≡ �

2πn/m.
The upper surface and the accompanying black dashed lines
show the result from the Hartree-Fock theory, the lower surface
and the black solid lines represent the variational result using
2DDFG ground states, and the solid red lines show the varia-
tional result using 2DEG ground states. The weak quadratic
az-dependence of the variational results is a manifestation of
the strong short-range correlations. (b) The phase diagram of
q2DDFG obtained using 2DDFG ground states and the quan-
tum Hansen-Verlet freezing rule. FL and WC stand for Fermi
liquid and Wigner crystal phases. The dashed lines indicate
the lower and upper uncertainty bounds for the WC transition.
The gray region in the top is where the single-band (quasi-2D)
limit is not applicable anymore.

black/red lines in fig. 3(a)). In fact, VM2DDFG ener-
gies can be parametrized to an excellent approximation as
εq2DDFG(gd, az) ≈ ε2DDFG(gd) − (�2πn2)(c0 + c1gd)a2

z/m
in the parameter regime 5 < gd < 30 and

√
naz < 0.1,

where c0 = 12.8 and c1 = 1.45 as obtained by fitting, and
ε2DDFG(gd) is given in ref. [9] (cf. ref. [22] for an analytical
fit). The quadratic dependence of εq2DDFG on az can be
understood in simple terms: for large gd, the short-range
part of the effective dipole-dipole interaction is masked by
the exchange-correlation hole and the az-dependence of
the energy results from the leading correction to the quasi-
2D interaction law in the large-r limit, which is ∼ a2

z/r5

(see eq. (3)). The WC transition line is parametrized as
gd ≈ 25 + c2na2

z, where c2 = 4.82 × 102. In contrast, the
Hartree-Fock theory again spuriously predicts a linear az-
dependence for the liquid stability phase boundary [25].

Experimental observation of correlation effects
in q2DDFG. – A prominent aspect of experiments with
ultracold quantum gases is the possibility of carrying out
direct and precise measurement of important quantities
such as the static and dynamic structure factors [32], equa-
tion of state [33] and the energy of collective modes in
traps [34]. Here, we show that the effects of strong cor-
relations can be directly observed by measuring collec-
tive monopole (breathing) oscillation frequency Ωmon of
q2DDFG in shallow traps.

We consider a q2DDFG in a harmonic in-plane trap
potential Uxy = mω2

0(x2 + y2)/2, where ω0 � μ. The col-
lective excitations can be studied within the local density
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Fig. 4: (Color online) The monopole oscillation frequency Ωmon

of q2DDFG in an isotropic trap at T = 0. The yellow sur-
face and red lines show the mean-field (HF) result. The blue
surface and blue lines indicate the lower bound to Ωmon once
correlations are included using the VMDFG scheme. The upper
bound is shown as black lines. The lower and upper bounds are
obtained from ideal hydrodynamic theory and sum rules, re-
spectively. Inclusion of correlations changes the az-dependence
of Ωmon significantly.

approximation (LDA) scheme. The equilibrium state of
the trapped gas is obtained from balancing the trap restor-
ing force and the pressure gradient, i.e., ∂rP [neq(r)] +
neq(r)∂rUtrap(r) = 0. Here, neq(r) is the local equilib-
rium density and P [n] is the LDA pressure functional.
At zero temperature, the pressure is given by P [n] =∫ n

0
dn′n′∂(μ[n′])/∂n′ , where μ[n] = ∂(nε)/∂n is the chemi-

cal potential. The equilibrium condition yields dneq/dr =
−mω2

0κ[neq]n2
eqr, where κ[n] ≡ n−2[∂2(nε[n])/∂2n]−1 is

the compressibility, which can be calculated from the en-
ergies presented earlier. The density profile in the trap is
obtained by solving the LDA equilibrium equation under
the global particle number constraint,

∫
d2rneq(r) = N .

Correlations reduce the pressure at a given density, mak-
ing the gas more compressible and resulting in a consis-
tently smaller equilibrium radius of the trapped gas as
compared to mean-field theory.

An exact treatment of collective oscillations at T = 0
requires solving the Landau kinetic equation which is not
feasible without the knowledge of the Landau parameters.
Nevertheless, a lower bound to the frequency of collective
oscillations can be found using the ideal hydrodynamic
approximation. At zero temperature, the hydrodynami-
cal description of the gas is provided by the conservation
laws for the mass and momentum currents, i.e., ∂tn +
∂r(nv) = 0 and m(∂tv + v · ∂rv) = −n−1∂rP − ∂rUtrap,
where v is the macroscopic velocity field. Linearizing
these equations about the equilibrium state and solving
for δn ≡ n − neq gives

∂2
t δn + ∂r ·

[
neq∂r

(
δn

mκ[neq]n2
eq

)]
= 0. (4)

The absence of dynamical Fermi surface deformations in
the hydrodynamic approximation (which strictly increase
the sound velocity in the case of isotropic repulsive in-
teractions) implies that the obtained collective excitation
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energies are strictly lower than the exact values [35].
On the other hand, a rigorous upper bound is given by
(�Ωmon)2 ≤ m

(3)
M/m

(1)
M , where m

(1)
M and m

(3)
M are the first

and third moments of the monopole response function and
can be evaluated using exact sum rules [36]. The numerical
method for solving eq. (4) and calculating the required mo-
ments are discussed in detail in ref. [22]. We calculate the
mean-field Ωmon by solving the Boltzmann-Vlasov equa-
tion using the numerically exact method given in ref. [37].

Figure 4 shows the obtained results. We notice that the
different az-dependence of the mean-field vs. correlated
theory pointed out earlier also persists in Ωmon. For small
values of āz, correlations have a tendency to decrease the
frequency of oscillations as compared to the prediction of
the mean-field theory. This scenario is reversed, however,
as āz is increased. This reversal can be understood as a
consequence of the weak dependence of the correlated the-
ory on az in contrast to the erroneously strong dependence
of the mean-field theory. Although the results presented
here correspond to the T = 0 limit, the correlation effects
are expected to persist as long as T < TF . Suitably large
dipolar interactions for observing such strong correlation
effects are expected to be achievable in experiments with
polar molecules such as KRb and NaK [28].

By modifying the shape of dipolar interactions using
microwave fields, a wide gamut of soft repulsive potentials
ranging from 1/r6 to 1/r3 is experimentally accessible [8],
allowing a direct experimental test of the universal behav-
ior by directly measuring the structure factor using Bragg
spectroscopy [32].
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