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Abstract: We propose a minimal model of a Coulomb-coupled fermionic quantum dot thermal diode
that can act as an efficient thermal switch and exhibit complete rectification behavior, even in the
presence of a small temperature gradient. Using two well-defined dimensionless system parameters,
universal characteristics of the optimal heat current conditions are identified. It is shown to be
independent of any system parameter and is obtained only at the mean transitions point “−0.5”,
associated with the equilibrium distribution of the two fermionic reservoirs, tacitly referred to as
“universal magic mean”.
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1. Introduction

Heat management devices have attracted recent interest in nanoscale systems; they
prevent overheating due to heat flow in desired areas of electronic circuits [1–12]. Follow-
ing the theoretical proposal of a quantum dot thermal diode by Roukola and Ojanen [13],
a number of studies have been carried out to achieve the rectification effect using simple
quantum systems [14–23,23–30]. Yet, most of the works conducted to date rely on either
temperature gradients of bosonic reservoirs or different coupling strengths between the sys-
tem and the bath to break the inversion symmetry of the overall system [30]. For example,
Werlang et al. [19] explored heat transport under the influence of strong coupling between
two spins interacting with their respective bosonic baths. Miranda et al. [26] identified
similar diode characteristics in the presence of different excitation frequencies between
the coupled spins. Based on two- and four-terminal quantum dot setups, Tesser et al. [30]
recently explored the roles of level degeneracy and temperature bias. However, much less
attention is paid to achieving the rectification effect by means of the statistical properties
of the reservoir. Here, we provide a general framework to capture the invariant aspect
of the fermionic diodes in terms of two dimensionless physical parameters and statistical
distribution of the reservoir—the uniqueness of which is independent of the system energy
levels, interaction strength, bath spectrum, its temperature, and chemical potentials.

To showcase our findings, we considered a Coulomb-coupled quantum dot system
and studied the interaction with two fermionic reservoirs with different temperatures and
chemical potential. We find that, while the temperature gradient governs the overall heat
flow direction, the magnitude of the heat current is primarily controlled by the chemical
potential gradient. In contrast to the bosonic counterpart, the fermionic rectifier allows
us to control the heat current and switching effects in a much more efficient way, even in
the presence of tiny temperature differences. Most remarkably, we identified the universal
nature of complete, partial, and no rectification conditions that are valid for all Coulomb-
coupled fermionic diodes.

The present work is organized as follows: We introduce the model and dynamics in
Section 2, and the steady-state heat current in Section 3. The microscopic picture behind the
thermodynamically consistent heat flow direction is summarized in Section 4. Universal
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characteristics based on two dimensionless parameters are presented in Section 5, and the
role of an efficient thermal switch and the ideal rectification effects are discussed in Section 6.
Finally, we conclude in Section 7.

2. Model and Dynamics

Our model consists of two quantum dots (QDs) that are strongly and capacitively coupled
to each other and interact through a long-range Coulomb force so that they can exchange
energy (but no particles). We consider this model following References [13,27,30–32], who
recently introduced the study of thermal diodes and transistor effects in a wide variety
of Coulomb blockade quantum dot devices. We further assume that each QD is tunnel-
coupled to its fermionic reservoir [33]. While the electron transports between QDs are
forbidden due to the Coulomb blockade [31], electron tunneling between QDs and their
respective reservoirs permit heat flow from one reservoir to another through the coupled
QD system. Within sequential tunneling [32] under the Coulomb blockade regime, each
QD can only have two levels with the occupation number as either zero or one. The two
QDs, as well as the temperature and chemical potential of the baths to which they are
connected, are labeled by indices L and R [Figure 1]. The Hamiltonian of the coupled QDs
is then given by,

HD = ∑
α=L,R

εαd†
αdα + ∑

α,β=L,R;α 6=β

Uαβd†
αdαd†

βdβ. (1)

Here, εα is the lowest single-particle energy of QDs. Without loss of any generality, we
further assume εL < εR. Here, Uαβ is the positive Coulomb interaction energy between the
electrons in different QDs, and d†

α(dα) denotes the creation (annihilation) operator for the
α-th QD, whose eigenstates are |0〉 and |1〉 with eigenvalues 0 and εα, respectively. Since
the interaction energy in Equation (1) is diagonal in the eigenbases of the individual QDs,
the eigenstates of HD w.l.o.g can be written in terms of the eigenstates of the two QDs,
in decreasing energy order, as |1〉 = |00〉, |2〉 = |10〉, |3〉 = |01〉, |4〉 = |11〉. For details,
please refer to References [13,31,32]. The Hamiltonian of the α-th fermionic reservoir is
defined as Hα

R = ∑k(εk − µα)c†
αkcαk [30], where εk is the energy of the non-interacting

reservoir electron, the continuous wavenumber k, µα is the chemical potential, and c†(c)
represents the creation (annihilation) operator of the electron reservoir. The coupling
between QDs and the respective reservoir is described by the tunneling Hamiltonian,
Hα

T = ∑k(tαkc†
αkdα + t∗αkd†

αcαk), where tαk is the tunneling amplitude. Interaction within
sequential tunneling approximation imposes restrictions on simultaneous tunneling of
more than one electron at a time [13,27,30,31]. Consequently, there are, in total, four
authorized transitions: the left reservoir (L) induces transitions between 1↔ 2 and 3↔ 4,
while the right bath (R) drives transitions between 1↔ 3 and 2↔ 4. We define transition
energies ωij = εi − εj, for i > j, where εk is the eigenvalue of HD for the eigenstate |k〉.
In the present case, they read as ω21 = εL, ω42 = εR + U, ω43 = εL + U, and ω31 = εR.
The rates at which the above transitions occur are computed using the Lindblad master
equation [34,35].

TR
μR

εL εR
U

γL

γL

γR

γR

TL
μL

Figure 1. Coulomb-coupled QDs connected with fermionic reservoirs through sequential tunneling.
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We implement the strong-coupling formalism following References [19,36–41] to arrive
at the master equation describing the time evolution of the density matrix ρ of the coupled
QDs system (See Appendix A)

dρ

dt
= − i

h̄
[HD, ρ] + LL[ρ] + LR[ρ], (2)

under Born, Markov, and the secular approximation [19,21,34]. It is important to note here
that the strong coupling formalism refers to the coupling between the dots, while the system–
bath coupling is still assumed to be weak so that the Born–Markov approximation can safely
be implemented [19,36–41]. This implies that the Lindbladians are obtained on the basis of
the eigenstates of the full system Hamiltonian HD. Thus, the dissipation mechanism of each
QD depends not only on the coupling to its own bath but also on the coupling between QDs,
which is necessary for accurately describing the heat flow and rectification effects over a wide
range of system parameters as considered below.

3. Evaluation of Steady State Heat Current

In the present model, particles cannot be exchanged between QDs as they interact only
through the long-range Coulomb force. As a result, there is no particle flow in between
reservoirs through the QD system [13,27,30–32]. So, energy is exchanged only in the form
of heat [See Figures 2 and 3]. The expression of the heat current can then be obtained using
the standard procedure [42] starting from the von Neumann entropy of the system, defined
as S [ρ(t)] = −kBTr[ρ(t) ln ρ(t)]. Upon taking the time derivative of the von Neumann
entropy, one obtains

d
dt
S [ρ(t)] = − ∑

α=L,R
kBTr{Lα[ρ(t)] ln ρ(t)}, (3)

where we have used the master Equation (2) and Tr[ρ̇] = 0. The Sphon inequality [43] in the
form of the second law of thermodynamics [44] for any Lindblad superoperator L can be
written as Tr{L[ρ(t)](ln ρ(t)− ln ρss)} 6 0. Here, ρss is the steady-state population of the
system, satisfying L[ρss] = 0. Denoting the stationary state of Lα, as ρα

ss, above, the inequality
can be applied to both terms of the sum in Equation (3), yielding

∑
α=L,R

Tr{Lα[ρ(t)](ln ρ(t)− ln ρα
ss)} 6 0. (4)

From Equations (3) and (4), we can write

d
dt
S [ρ(t)] + ∑

α=L,R
kBTr[Lα[ρ(t)] ln ρα

ss] ≥ 0. (5)

The above equation can be compared with the dynamical version of the second law given
by [42,44]

d
dt
S [ρ(t)]− ∑

α=L,R

Jα
Q(t)

Tα
≥ 0. (6)

This allows us to identify the heat current (energy flow rate) Jα
Q(t) associated with the α-th

reservoir as
Jα
Q(t) = −

1
βα

Tr{Lα[ρ(t)] ln ρα
ss}. (7)

For the steady state operation, the master Equation (2) drives the system towards a
Gibbs-like stationary state, characterized by [41,42]

ρα
ss = Z−1 exp[−βα HD], (8)
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where Z = Tr{exp[−βα HD]}. For the detailed derivation of the steady state’s heat current,
we refer readers to the review articles by Kosloff and Gelbwaser et al. [42,44]. Inserting
Equation (8) into Equation (7), we obtain the general expression for the heat current, which,
under a steady state condition, simplifies to

Jα
Q = Tr{Lα[ρss]HD} = ∑

ωij

ωijΓα
ij. (9)

Here, the net decaying rate Γα
ij from |i〉 to |j〉 (i > j) is denoted as

Γα
ij =− Γα

ji

≡γα[1− fα(ωij)]ρii − γα fα(ωij)ρjj = [Γα
ij]↓ − [Γα

ij]↑.
(10)

The first term represents the emission and the second term corresponds to absorption; γα is
the bare tunneling rate between the dots and respective reservoirs [Figure 1]; fα(ωij) is the
Fermi distribution function (FDF)

fα(ωij) ≡ fα(ωij, Tα, µα) =

[
1 + exp

(
ωij − µα

kBTα

)]−1
, (11)

corresponding to the transition energy ωij = εi − εj between eigenstates |i〉 and |j〉 con-
trolled by the α-th reservoir. The tunneling of electrons into or out of QDs is primarily
governed by FDF. In our model, there are four allowed transitions and both lead guides to
two transitions each: the L lead drives transitions between |1〉 ↔|2〉 and |4〉 ↔|3〉, while
the R lead controls |1〉 ↔|3〉 and |4〉 ↔|2〉 transitions. For the sake of convenience of our
analysis, the corresponding FDFs are expressed in terms of two dimensionless parame-
ters, the effective tunneling barrier (χα = (εα − µα)/U) and dimensionless thermal energy
(ξα = kBTα/U), as follows

fL(ω21) =

[
1 + exp

(
εL − µL

kBTL

)]−1

=

[
1 + exp

(
χL
ξL

)]−1

= f 1
L ,

fL(ω43) =

[
1 + exp

(
εL + U − µL

kBTL

)]−1

=

[
1 + exp

(
χL + 1

ξL

)]−1

= f 2
L ,

fR(ω31) =

[
1 + exp

(
εR − µR

kBTR

)]−1

=

[
1 + exp

(
χR
ξR

)]−1

= f 1
R,

fR(ω42) =

[
1 + exp

(
εR + U − µR

kBTR

)]−1

=

[
1 + exp

(
χR + 1

ξR

)]−1

= f 2
R.

(12)

Now, our task is to first evaluate the full expression of Γα
ij at the steady state, and then

find out the expression of the heat current. Under the steady state condition, the master
Equation (2) is characterized by ρ̇ss = 0, which reduces to

ρ̇11 = 0 = ΓR
31 − ΓL

12; ρ̇22 = 0 = ΓL
12 − ΓR

24,

ρ̇33 = 0 = ΓL
43 − ΓR

31; ρ̇44 = 0 = ΓR
24 − ΓL

43.
(13)

Thus, at the steady state, all net transition rates become equal to Γ, i.e., ΓR
31 = ΓL

12 = ΓR
24 =

ΓL
43 ≡ Γ. The four sets of equations in Equation (13) are not independent since ∑i ρii = 1,

which uniquely solves all of the state occupation probabilities as well as the heat current in
terms of a single quantity Γ: ΓR

31 = ΓL
12 = ΓR

24 = ΓL
43 ≡ Γ. From Equation (9), we can then

evaluate the general expression of the heat current at the steady state as follows

JR
Q = εRΓR

13 − (εR + U)ΓR
42 =− εRΓ + (εR + U)Γ = UΓ,

JL
Q = εLΓL

12 − (εL + U)ΓL
43 = εLΓ− (εL + U)Γ = −UΓ.

(14)
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Thus, we finally arrive at the explicit analytical expression of the steady state heat current
as

JL
Q = −JR

Q = −UΓ. (15)

To find out Γ, we rewrite Equation (13) in terms of f 1
L(R) and f 2

L(R)

ρ̇11 = γR[1− f 1
R]ρ33 − [γR f 1

R + γL f 1
L ]ρ11 + γL[1− f 1

L ]ρ22 = 0,

ρ̇22 = γL f 1
Lρ11 − [γL(1− f 1

L) + γR f 2
R]ρ22 + γR[1− f 2

R]ρ44 = 0,

ρ̇33 = γR f 1
Rρ11 − [γL f 2

L + γR(1− f 1
R)]ρ33 + γL[1− f 2

L ]ρ44 = 0,

ρ̇44 = γL f 2
Lρ33 − [γR(1− f 2

R) + γL(1− f 2
L)]ρ44 + γR f 2

Rρ22 = 0.

(16)

defined through Equation (12) and find out the steady state populations subject to the
condition

ρ11 + ρ22 + ρ33 + ρ44 = 1. (17)

Using Equation (16) and Equation (17), we can construct

M


ρ11
ρ22
ρ33
ρ44

 =


0
0
0
1

, (18)

where,

M =


−[γR f 1

R + γL f 1
L ] γL[1− f 1

L ] γR[1− f 1
R] 0

γL f 1
L [γL(1− f 1

L) + γR f 2
R] 0 γR[1− f 2

R]
γR f 1

R 0 [γL f 2
L + γR(1− f 1

R)] γL[1− f 2
L ]

1 1 1 1

. (19)

Solving the above equation, the expressions for the steady state populations ρii are

ρ11 = − 1
|M| [γLγR

2{(1− f 1
L)(1− f 1

R)(1− f 2
R) + (1− f 2

L)(1− f 1
R) f 2

R}

+γRγL
2{(1− f 1

L)(1− f 2
R) f 2

L + (1− f 2
L)(1− f 1

R)(1− f 1
L)}],

ρ22 = − 1
|M| [γLγR

2{ f 1
L(1− f 1

R)(1− f 2
R) + f 2

L(1− f 2
R) f 1

R}

+γRγL
2{ f 1

L(1− f 2
R) f 2

L + (1− f 2
L)(1− f 1

R) f 1
L}],

ρ33 = − 1
|M| [γLγR

2{(1− f 2
L) f 1

R f 2
R + (1− f 1

L)(1− f 2
R) f 1

R}

+γRγL
2{ f 2

R(1− f 2
L) f 1

L + (1− f 2
L) f 1

R(1− f 1
L)}],

ρ44 = − 1
|M| [γLγR

2{ f 1
L f 2

R(1− f 1
R) + f 2

L f 1
R f 2

R}

+γRγL
2{ f 1

L f 2
R f 2

L + (1− f 1
L) f 2

L f 1
R}],

where |M| stands for the determinant of the matrixM. Using the above expressions, we
can evaluate the final expression of Γ as follows

Γ =
γL + γR

γLγR

[
f 1
R f 2

R f 2
L − f 1

R f 2
R f 1

L + f 1
L f 2

L f 1
R − f 1

L f 2
L f 2

R + f 1
L f 2

R − f 2
L f 1

R
f 1
L f 1

R + f 2
L f 2

R − f 1
L f 2

R − f 2
L f 1

R − 1

]
. (20)
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Using Equation (20), the final expression of the steady state heat current in terms of dimen-
sionless parameters χα and ξα can be written as

JL
Q = −JR

Q = −U(γL + γR)

γLγR

exp
(

1
ξL

)
− exp

(
1

ξR

)
X

, (21)

where,

X =

[
exp

(
1
ξL

)[
2 + exp

(
−χR

ξR

)
+ exp

(
χL
ξL

)
+ exp

(
χL
ξL
− χR

ξR

)]
+ exp

(
1

ξR

)[
2 + exp

(
−χL

ξL

)
+ exp

(
χR
ξR

)
+ exp

(
χR
ξR
− χL

ξL

)]
+ exp

(
1
ξL

+
1

ξR

)[
exp

(
χR
ξR

+ exp
χL
ξL

)
+ exp

(
χL
ξL

+
χR
ξR

)]
+

[
exp

(
−χR

ξR

)
+ exp

(
−χL

ξL

)
+ exp

(
−χL

ξL
− χR

ξR

)]]
.

(22)

This is the exact analytical expression of heat current derived under the Born–Markov master
equation. Since U, γL, γR and X are all positive, it is immediately clear from Equations (21)
and (22) that if ξR > ξL (TR > TL), heat will flow from right to left (JR > 0) in accordance with
Equation (15).

4. Microscopic Description of Heat Flow

Classically, heat flows according to the laws of thermodynamics, i.e., from high to low
temperatures. Quantum mechanically, the flow of the heat current must be governed by a
microscopic description, without violating the ultimate laws of thermodynamics [44–48].

|1⟩|1⟩

|1⟩|4⟩

|1⟩|3⟩

|1⟩|2⟩
TL

μL
TR

μR

−εLΓ

−(εL + U)Γ

−(εR + U)Γ

−εRΓ

JL
Q = − UΓ, Γ < 0

|1⟩|1⟩

|1⟩|4⟩

|1⟩|3⟩

|1⟩|2⟩
εLΓ

(εL + U)Γ

(εR + U)Γ

εRΓ

JR
Q = UΓ, Γ > 0

TL

μL
TR

μR

|1⟩|1⟩

|1⟩|4⟩

|1⟩|3⟩

|1⟩|2⟩
TL

μL

TR

μR

−εLΓ

−(εL + U)Γ

−(εR + U)Γ

−εRΓ

JL
Q = − UΓ, Γ < 0

|1⟩|1⟩

|1⟩|4⟩

|1⟩|3⟩

|1⟩|2⟩
TR

μR

εLΓ

(εL + U)Γ

(εR + U)Γ

εRΓ

JR
Q = UΓ, Γ > 0

TL

μL

(I) (I)

(II) (II)

(a) (b)

Figure 2. Thermodynamically consistent and inconsistent heat flow directions; probable paths for
the transition cycle under (a) TL < TR ; (b) TR < TL. In both conditions, Path-I is initiated by the
hot bath and Path-II is initiated by the cold bath. Although Path-I seems to be the natural heat
flow direction, the transition cycle actually encompasses Path-II in both limits, following the laws
of thermodynamics.

Since the QDs are strongly coupled with each other, they form a four-level system
as depicted in Figure 2, where the inter-dot transition is restricted due to the long-range
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Coulomb force. So, the energy transfer is only caused by the heat baths via the coupled
states of the overall system [13,27,30–32]. For TR > TL, the natural heat flow direction
will be from R to L with JR

Q > 0. In this case, the first excitation from the ground state
must be guided by the cold bath, instead of a hot bath, which may appear paradoxical
at first sight but makes the net transition rate Γ > 0 as required by Equation (15). If the
cycle follows the opposite path 1 → 3 → 4 → 2 → 1 [Figure 2(aI)], then JL

Q > 0, as the
UΓ amount of energy should be delivered by the left bath to the right bath, which is in
complete disagreement with the laws of thermodynamics. So, in order to be consistent with
the laws of thermodynamics, the transition cycle must run in 1→ 2→ 4→ 3→ 1, initiated
by the cold bath. This is seemingly paradoxical in the sense that, classically, we expect that,
during the heat flow, energy is supplied by the hot bath and dumped into the cold bath.
For the specific example, it is more favorable for the cold bath to make the 1→ 2 transition
in Figure 2(aII), which costs εL amount of energy than the 3→ 4 transition in Figure 2(aI),
which requires (εL + U) amount of energy. It is interesting to note that, for TL > TR, (i.e.,
JL
Q > 0, the heat flows from the left to the right following Figure 2(bII); the first transition is

still mediated by the cold bath between 1→ 3, as it requires less energy (εR) than the 2→ 4
transition (εR + U) in Figure 2(bI).

It is important to emphasize that although we have taken εL < εR to draw the
schematic energy level diagram of Figure 2, the magnitude of the heat current, in particular,
depends only on the two dimensionless parameters {χα, ξα} via Equation (21). In the next
section, we will explore the universal characteristics of the heat current solely based on
these two dimensionless system parameters. For instance, Figure 3 shows that the basic
principle behind the thermodynamically consistent transition cycle remains the same even
in the case of εL = εR.

|1⟩|3⟩

JR
Q = UΓ, Γ > 0

|1⟩|1⟩

|1⟩|4⟩

|1⟩|2⟩
TL

μL
μR

TR

εΓ

(ε + U)Γ (ε + U)Γ

εΓ

−(ε + U)Γ

−εΓ
−εΓ

−(ε + U)Γ

JL
Q = − UΓ, Γ < 0

Figure 3. Thermodynamically consistent transition cycle for TR > TL in case of εL = εR = ε; the first
excitation from |1〉must be guided by a cold bath (Path-II: solid lines), instead of a hot bath (Path-I:
dotted lines).

5. Universal Characteristic Due to Magic Means

While the temperature gradient dictates the overall heat flow direction, chemical poten-
tial plays a very important role in determining the heat current’s magnitudes. To illustrate,
we note that FDFs f 1

L(R) and f 2
L(R) in Equation (12), expressed in terms of dimensionless ther-

mal energy ξL(R) = kBTL(R)/U and the effective tunneling barrier χL(R) = (εL(R) − µα)/U,
are constrained by 0 ≤ f 2

L(R) < f 1
L(R) ≤ 1 and become 0.5 at χL(R) = 0 and −1, which corre-

spond to µL(R) = ω21(31) = εL(R) and µL(R) = ω43(42) = εL(R) + U, respectively. According
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to Equation (10), if 0 ≤ { f 1
L(R), f 2

L(R)} ≤ 0.5, it favors de-excitation and, equivalently, exci-

tation is favored when 0.5 ≤ { f 1
L(R), f 2

L(R)} ≤ 1, for the corresponding transition. This is
unique to fermionic reservoirs and allows us to implement a systematic analytical scheme
solely based on the FDFs, and is in sharp contrast to its bosonic counterpart. The span of
f 1
L(R) and f 2

L(R) as function χL(R), can thus be classified into five domains D[1−5] [Figure 4:

Main] and the total FDF, defined as fL(R) = f 1
L(R) + f 2

L(R), is found to be spread between
0 ≤ fL(R) ≤ 2 [Figure 4: Inset].

f1
L(R)

f2
L(R)

ξL(R)
0.1
0.5
1.0

0.1
0.5
1.0

B

f1,2
L(R)

χL(R)

0.5

−0.5

χL(R)

fL(R)

−0.5

0.1
0.5
1.0

ξL(R)

Figure 4. D3 always spreads between transition points of f 1
L(R) and f 2

L(R); span of D1[5] and D2[4] are
not fixed and strongly depend on the value of ξL(R). The color gradients signify the magnitude of
|JQ|.

In domain D1[5], both f 1
L(R) and f 2

L(R) ∼ 1[0], thus Equation (10) reduces to ΓL
21/43 '

{ΓL
21/43}↑[↓] and ΓR

31/42 ' {Γ
R
31/42}↑[↓], i.e., only absorption (emission) is allowed in all

four transitions; hence, the transition cycle can’t be completed [Figure 2], which results
in vanishing |JQ| → 0. Now, D2[4] is characterized by 0.5[0] . { f 1

L(R), f 2
L(R)} . 1[0.5];

hence, excitation and de-excitation are favored for all four transitions yielding non-zero
heat currents. On the contrary, domain D3, parameterized by −1 ≤ χL(R) ≤ 0, is sharply
defined between the transition points f 2

L(R) and f 1
L(R). As opposed to D3, both f 1

L(R) and

f 2
L(R) are closer to 1[0] in D2[4], so that the heat flux decreases in D2[4] relative to D3.

In D3, both f 1
L(R) and f 2

L(R) take values, such that excitation from |1〉 → |2〉(|2〉 → |4〉)
and de-excitation from |4〉 → |3〉(|3〉 → |1〉) can occur simultaneously at optimal rates.
The condition becomes ideal at the midpoint of D3 (point B in Figure 4), which corresponds
to χL(R) = −0.5. To find out, analytically, the optimal value of χL(R) for which |JQ| becomes
maximum, first we have to differentiate JQ ≡ JR

Q (Cf. Equation (21)) w.r.t. χL(R) and set
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that equal to zero. Now, by differentiating Equation (21) w.r.t χR, for fixed {χL, ξL, ξR}, we
obtain,(

∂JR
Q

∂χR

)
χL ,ξL ,ξR

=
U(γL + γR)

γLγR

[
∂

∂χR

{
f 1
R f 2

R f 2
L − f 1

R f 2
R f 1

L + f 1
L f 2

L f 1
R − f 1

L f 2
L f 2

R + f 1
L f 2

R − f 2
L f 1

R
f 1
L f 1

R + f 2
L f 2

R − f 1
L f 2

R − f 2
L f 1

R − 1

}]
= 0.

(23)

As, U > 0 and γL, γR 6= 0, Equation (23) implies that the only a non-trivial solution for
maximizing |JQ| is equivalent to maximizing Γ, which is given by the criteria

f 1
R + f 2

R = 1. (24)

It is clear from Equation (23) that the heat current vanishes under two limiting conditions:
(i) f 1

R = f 2
R = 0; (ii) f 1

R = f 2
R = 1. Again, from Equation (12), we can write

1 ≥ f 1
α ≥ f 2

α ≥ 0, α = L, R. (25)

So, Equation (25) signifies that, if f 1
α = 0 then f 2

α is certainly 0. Similarly, if f 2
α = 1 then f 1

α

is certainly 1. In both cases, the heat current vanishes. Thus, the only condition for the
nonzero heat current reduces to f 1

R 6= 0 and f 2
R 6= 1. Under these conditions, after solving

Equation (24), we obtain the value of χR = −0.5, for which |JQ| attains the maximum:

f 1
R = 1− f 2

R

or,
1
f 1
R
=

1
1− f 2

R

or, 1 + exp
(

χR
ξR

)
= 1 + exp

(
−χR + 1

ξR

)
or, exp

(
χR
ξR

)
= exp

(
−χR + 1

ξR

)
or,

χR
ξR

= −χR + 1
ξR

or, χR = −χR − 1

or, χR = −0.5.

(26)

So, the heat current will be maximum when χR = −0.5 [Figure 5a]; similarly, when χL
varies, χL = −0.5 is the criteria for having the highest heat current. Hence, we can conclude
that |JQ| is maximum when both χL(R) = −0.5, irrespective of ξL(R), which is supported by
numerical simulations [Figure 5b,c] and also follows from analytically derived conditions
fL(R) = 1 [Cf. Equation (24)] for the maximum heat current [Figure 4: Inset]. Now, putting
these conditions in Equation (21), we can evaluate the exact analytical expression of the
maximum heat current as

|JQ|max

=
U(γL + γR)

γLγR

∣∣∣∣ sinh ( 1
2ξL
− 1

2ξR
)

2[1 + cosh( 1
2ξR

) + cosh( 1
2ξL

)] + cosh ( 1
2ξL
− 1

2ξR
) + cosh ( 1

2ξR
− 1

2ξL
)


≡ U|Γ|max.

(27)

Several remarks are now in order:

• The maximum heat current is obtained at χL(R) = −0.5 and the magnitude only
depends on the temperature of two leads, their tunneling rates, and the Coulomb
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interaction between the dots. Since −0.5 is the mean of 0 and −1, which are transition
points of f 1

L(R) and f 2
L(R), respectively (point B in Figure 4: main), and this mean is

also independent of other controlling parameters, we term this number “−0.5” as the
“universal magic mean”. The significance of the point B lies in the fact that at the magic
mean χL(R) = −0.5, the chemical potential of the left (right) lead becomes exactly
equal to the means of the transition energies ω21(31) and ω43(42) driven by that bath:

χL(R) = −0.5

⇒ εL(R) − µL(R) = −0.5U

⇒ µL(R) =
2εL(R) + U

2

⇒ µL =
ω43 + ω21

2
; µR =

ω42 + ω31

2
.

(28)

and, therefore, provides maximum control over the L(R) bath to guide both the
absorption and decay simultaneously at the maximum Γ, with the resulting maximum
|JQ|.

• With the increase of ξL(R), |JQ| also spreads out, keeping the maxima point fixed at
χL(R) = −0.5. This precisely indicates that the maximum heat current will invariably
be obtained at χL(R) = −0.5, irrespective of all ξL,R [Figure 5b,c]. The 3D plots along
χL are squeezed for smaller values of ξL(R) [Figure 5b] (assuming ξL < ξR, as in
Figure 2), and if we increase ξL(ξR), it expands along both positive and negative χL(R),
leaving out the point of maxima intact at χL(R) = −0.5 [Figure 5c]. This fundamental
feature of the “magic mean” makes it truly universal.

Figure 5. (a) Variation of heat current JR
Q (red line) with χR for fixed χL, ξR and ξL. The heat current

becomes maximum at χR = −0.5, which is supported by the plots of the first and second derivatives
of the heat current; J′RQ (green line) is zero and J′′RQ (blue line) is negative at the magic mean point
χR = −0.5. The absolute value of the heat current |JQ| is plotted as a function of (b) {χL, χR} for
ξR = 0.5 and ξL = 0.2; (c) {χL, χR} for ξR = 1 and ξL = 0.5.

6. Efficient Heat Current Modulator

With the increase of ξL(R), D1[5] becomes narrower while D2[4] spreads out, without af-
fecting D3 [Figure 4]. As a consequence, |JQ| spreads out with ξL(R), keeping the point
of maxima fixed at χL(R) = −0.5. Now, if ξL(R) � 1, then the span of D2[4] is very small
compared to D1[5], while domain D3 always remains in between −1 ≤ χL(R) ≤ 0. So, there
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are effectively two domains: (I) Domain ON, where |JQ| 6= 0 and (II) Domain OFF, where
|JQ| = 0 and the switching effect becomes more prominent if ξL(R) � 1. Thus, we can
operate our model as an efficient thermal switch to the on–off heat current just by shifting
the domain from ON to OFF through the change of χL(R) or, in turn, the controllable
experimental parameter εL(R) [Figure 6a]. This is the basic underlying principle behind
the switching effect for each Coulomb-coupled fermionic thermal diode. It becomes more
prominent for a smaller cold bath temperature ξ = kBT/U and can be achieved more easily
by varying U, instead of lowering T to a smaller value.

Finally, the model operates as an efficient thermal diode with the rectification factor (R)
approaching 1, even in the presence of a low-temperature gradient. This produces a clear
advantage over all previously proposed models with theR factor defined as [4,16,18,22,36],

R(∆ξ) =
|JR

Q(∆ξ)− JL
Q(−∆ξ)|

|JR
Q(∆ξ) + JL

Q(−∆ξ)|
, (29)

where ∆ξ = ξR − ξL is identified as the temperature gradient, for ξR > ξL. With ∆ξ > 0,
i.e., ξR(L) ≡ ξhot(cold), the heat current flows from R to L, fulfilling JR

Q > 0, and if we
exchange temperatures of the bath, then the temperature gradient becomes −∆ξ or ξR(L) ≡
ξcold(hot) and, consequently, heat flows from L to R, satisfying JL

Q > 0. Now, if the heat
current vanishes upon reversing the temperature gradient, i.e., |JQ| is finite in one direction
but null in the other, then complete rectification is achieved with R → 1, irrespective of
the value of ∆ξ, whereas R → 0 corresponds to no rectification, i.e., no change in |JQ|
upon inverting the temperature gradient. So, the current asymmetries in two directions
are the primary criteria behind positive rectification: (i) It is clear from Figure 4 that for
a given ∆ξ, |JQ| depends on |∆χ|. If χhot = χcold, or ∆χ = χhot − χcold = 0, the heat
currents will be symmetric in both ways; therefore, R = 0. (ii) From Figure 6a, we find
that the variation of |JQ| w.r.t χα, is completely symmetric about the magic mean −0.5,
i.e., |JQ(χα)|=|JQ(−1− χα)|. As a result, following Equation (29) and Figure 6a, we find
if χhot = −1− χcold or χ̄ = 1

2 (χhot + χcold) = −0.5, then JR
Q(∆ξ) = JL

Q(−∆ξ), yielding
R = 0. Thus, R can be zero; either (i) the difference between the effective tunneling
barriers ∆χ = 0, or (ii) the mean effective tunneling barrier is equal to the magic mean
(χ̄ = −0.5); otherwise, rectification occurs.

Once |∆χ| 6= 0 and χ̄ 6= −0.5, effective tunneling barriers χL(R) make dissimilar effects
on |JQ| upon reversing the temperature gradient and, consequently,R becomes nonzero.
For a fixed value of |∆ξ|, R increases as ∆χ shifts from zero and approaches one as χ̄
significantly deviates from the magic mean [Figure 6b]. The reason behind this, for smaller
|∆χ|, the effect of tunneling barriers on |JQ| are comparable upon reversing the temperature
gradient, yielding partial rectification (0 < R < 1). However, with the increase in |∆χ|,
the effect of χL(R) is no longer compatible and it creates larger heat current asymmetry
between the two directions, leading to complete rectification behavior withR → 1. As the
heat current is symmetric about χ̄ = −0.5, we only consider positive variations of χ̄ in
Figure 6b. Moreover, variations of R with |∆χ| depend on the value of |∆ξ|; larger ∆ξ
implies better rectification. As ξcold is less than ξhot and the transition cycle is always
initiated by the cold bath, the heat current executes stronger dependence on ξcold than
ξhot for a given change in |∆ξ|. Thus, the variation of R with |∆χ| yields an appreciable
change when a given |∆ξ| is altered due to the change in ξcold than ξhot [Figure 6c: Main].
So, the complete rectification is more favorable when ξcold � 1 [Figure 6a]. We may have
complete rectification even without considering the absolute temperature of the cold bath
close to zero, as we can vary ξcold = kBT/U by changing U and keeping T finite. Finally,
Figure 6c (Inset) shows that heat currents become ∼ 10−6 times smaller upon reversing the
temperature gradient, which corresponds to theR ≈ 1 curve in Figure 6b.
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εcold

U

|JQ | /γU

−0.5

ξcold
0.05
0.15
0.40
1.00

μcold /U

−2
0
2

Figure 6. (a) Main: the thermal switching effect is obtained with the variation of the scaled heat
current |JQ|/γU w.r.t χcold and becomes more prominent with ξcold � 1 as the domain’s ON and OFF
become more precise. Inset: expressing the switching effect in terms of the controllable parameter
εL(R). (b) No rectification (R = 0) is obtained irrespective of the value of ∆ξ, if χ̄ = −0.5 or ∆χ = 0
(red line). Partial (purple and green lines) and complete (blue line) rectifications are obtained for
nonzero |∆χ| and χ̄ deviating from the magic mean −0.5. (c) Main: ξcold (orange and green lines)
have a stronger dependence on rectification than the ξhot (blue dashed and dashed-dot lines) for
an equal change in |∆ξ|, where the solid blue line corresponds to the blue curve of (b). Inset: the
magnitude of the heat current decreases by an amount 10−6 upon reversing the temperature gradient
for the blue curve in (b).

7. Conclusions

To conclude, the present model can be implemented as an efficient thermal switch
as well as a thermal rectifier to modulate the heat current close to ideal rectification, even
at arbitrarily low-temperature differences between the heat reservoirs. Independent of
the details of the system, the heat flow and heat rectification are characterized by a small
set of universal parameters. The position of the maximum heat current at the magic mean
“−0.5” in terms of dimensionless physical parameters, is the major finding of the domain
analysis scheme presented here. The magic mean is robust and universal in the sense that it
is invariant w.r.t the variation of any other system or bath parameter, and it truly reflects
the impact of chemical potential to decide the magnitudes of the heat current. The present
protocol is unique to fermionic systems and can be applied to more complicated three
or multi-terminal fermionic devices. The straightforward generalization of the present
scheme to the multi-terminal set-up would involve computing the magic mean associated
with the multiple fermionic reservoirs. The advantage of using quantum dot systems is
that they have discrete energy levels with strong on-site Coulomb interactions, and can be
simultaneously tunnel-coupled to their respective reservoirs. Their discrete energy levels
provide energy-selective transport and can be tuned via the application of the external gate
voltages. In view of the recent experimental advances in Coulomb-coupled quantum-dot
systems [49–52], our findings will have important implications in designing novel thermal
devices and opening up potential applications in controlling the thermal current at the
nanoscale level.
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Appendix A. Derivation of the Lindblad Master Equation

First, we derive the master equation for our composite quantum dot system, which
is coupled with fermionic reservoirs. Let us start with the total interaction Hamiltonian
given by

HT = ∑
α=L,R

Hα
T = ∑

α=L,R
∑
k
(tαkc†

αkdα + t∗αkd†
αcαk). (A1)

It should be noted that one cannot write the fermionic interaction Hamiltonian using a
tensor product representation, since the operators involved in the tensor product commute
by construction while fermionic operators anti-commute. To formally derive the master
equation using tensor product representation, one needs a more formal approach in terms
of the Jordon–Wigner transformation. For details, we refer to References [53,54]. In the
present case, starting with Equation (A1), we can derive the von Neumann equation for the
total density operator of the composite system ρT(t), as

d
dt

ρT(t) = −
i
h̄
[HT(t), ρT(t)]. (A2)

Integrating the above equation following Reference [54], one obtains

∂

∂t
ρD(t) =

1
(ih̄)2

∫ t

0
dt′TrL,R[HT(t), [HT(t′), ρT(t′)]], (A3)

where we denote TrL,R{ρT(t)} = ρD(t) as the reduced density operator for the system and
also assume that TrL,R[HT(t), ρT(0)] = 0. Here, TrL,R refers to the trace over each bath’s
degree of freedom. The reduced dynamics of the system in the weak sequential tunneling
limit can then be written as [21,34,35,55]

ρ̇D(t) =
1

(ih̄)2

∫ ∞

0
dt′TrL,R[HT(t), [HT(t− t′), ρD(t)⊗ ρL ⊗ ρR]], (A4)

where we substitute ρT(t) = ρD(t)⊗ ρL⊗ ρR. Since the bath operator obeys Trα{cα(t)ρα} =
0 = Trα{c†

α(t)ρα} for α = L, R, we obtain [27,34]

TrL,R{[Hα
T(t), [H

β
T(t− t′), ρD(t)⊗ ρL ⊗ ρR]]} = 0 α 6= β; α, β = L, R. (A5)

As a result, Equation (A4) simplifies to

ρ̇D(t) =
1

(ih̄)2 ∑
α=L,R

{∫ ∞

0
dt′ TrL,R[Hα

T(t), [H
α
T(t− t′), ρD(t)⊗ ρL ⊗ ρR]]

}
. (A6)

Following the standard procedure of [33,54], one can then derive the master equation

ρ̇D(t) = LL[ρD(t)] + LR[ρD(t)], (A7)
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where the Lindblad operators Lα[ρ] are given by

Lα[ρD(t)] ≡ Lα[ρ] = ∑
ωα>0

Gα(ωα)

[
d†

α(ωα)ρdα(ωα)−
1
2
{ρ, dα(ωα)d†

α(ωα)}
]

+ Gα(−ωα)

[
dα(ωα) ρ d†

α(ωα)−
1
2
{ρ, d†

α(ωα)dα(ωα)}
]

. (A8)

The operator dα(ωα) assumes the form of |i〉〈j| (i 6= j; i, j = 1, 2, 3, 4) and causes the transi-
tion driven by the left (right) reservoir with positive energy ωα, such that ωL = ω21, ω43
and ωR = ω31, ω42. In Equation (A8), the temperature-dependent bath autocorrelation
functions are given by [33,53,54],

Gα(ωα) =
γα
2 fα(ωα); Gα(−ωα) =

γα

2
(1− fα(ωα)). (A9)

So, using the above relations in Equation (A8), we obtain the final expression of the
Lindbladian operator as

Lα[ρ] = ∑
ωα>0

γα

2
fα(ωα)

[
d†

α(ωα)ρdα(ωα)−
1
2
{ρ, dα(ωα)d†

α(ωα)}
]

+
γα

2
(1− fα(ωα))

[
dα(ωα) ρ d†

α(ωα)−
1
2
{ρ, d†

α(ωα)dα(ωα)}
]

. (A10)
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