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We present a universal relation for crack surface cohesion including surface relaxation. Specifically, we
analyze how N atomic planes respond to an opening displacement at its boundary, producing structurally
relaxed surfaces. Via density-functional theory, we verify universality for metals ~Al!, ceramics (a-Al2O3),
and semiconductors ~Si!. When the energy and opening displacement are scaled appropriately with respect to
N, the uniaxial elastic constant, the relaxed surface energy, and the equilibrium interlayer spacing, all energy-
displacement curves collapse onto a single universal curve.
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Macroscopic cohesive theories of fracture often involve
empirical postulates on the shape and form of the cohesive
law.1–3 While first principles simulations might be prefer-
able, the typical size of engineering finite element models
prohibits their direct application. In order to obtain con-
verged finite element results, the cohesive zone size must be
resolved by the mesh; for brittle materials, the cohesive zone
size is atomistic, making the calculation prohibitively
expensive.4 Nanometer scale quantum mechanical calcula-
tions have provided insight into cracking at the atomic
level,5–8 but their extrapolation to the macroscopic scale is
fraught with difficulty. Indeed, orders-of-magnitude mis-
match exist between atomistic predictions of cohesive
strengths and critical opening displacements9–11 and mea-
surements of tensile strength in brittle materials obtained
from spallation tests,12 the latter of which are often employed
in engineering simulations. The widely used universal bind-
ing energy relation ~UBER! of Rose et al.13 describes cohe-
sion between rigid surfaces based on atomic scale calcula-
tions, but application of the UBER to crack propagation
simulations is hampered by its inability to capture the shape
and absolute energies of cohesive laws for structurally re-
laxed surfaces.6,14–16 Here, we address these difficulties by
deriving a coarse-grained cohesive energy relation that ac-
counts for structural relaxation of surfaces and exhibits a
material-independent universal form.

Nguyen and Ortiz recently suggested rescaling interlayer
potentials to yield macroscopic cohesive laws.17 Here we
extend their work to account for surface relaxation and re-
construction. Specifically, we consider a perfect crystal acted
upon by tensile stresses normal to a cleavage plane. The
length scales under consideration range from mesoscopic
~the dislocation free zone of a metal18! to possibly macro-
scopic ~brittle materials!; we conservatively denote both
scales as mesoscopic. We assume that atomic layers remain
planar after deformation, so that the relative displacement of
crystallographic layer i can be described by d i ~the interlayer
spacing minus the equilibrium interlayer spacing, d! and that
the crystal is periodic with a unit cell containing N atomic
layers. We express the total energy per unit area of cleavage
plane as

E tot
5f~d1 , . . . ,dN!5(

i51

N

f0~d i!1f1~d1 , . . . ,dN! ~1!

subject to the total displacement d̄5( i51
N d i . Here f0(d)

5(1/N)f(d , . . . ,d) is the local energy per layer of a uni-
formly expanded crystal and f1 accounts for nonlocal effects
across all layers. We hypothesize that f0 dominates bulk
crystal behavior, whereas f1 primarily affects surface relax-
ation at free surfaces.

Assuming the cohesive energy density f0(d) between
two layers is convex in the interval 0<d,d0 , has an inflec-
tion point at d0 , is concave for d.d0 ~i.e., the typical struc-
ture of an interatomic potential!, and asymptotically ap-
proaches twice the unrelaxed surface energy, 2g0 ~Fig. 1!,
Nguyen and Ortiz17 derived the asymptotic limit of the mini-
mized energy f̄0( d̄), the critical opening displacement d̄0 ,
the cohesive law for the traction t̄ 0( d̄), and the peak traction
s̄0 , for the mesoscopic local ~brittle, defect-free! crystal
with structurally unrelaxed free surfaces.

FIG. 1. Generic local interlayer potential and the corresponding
traction for separation of rigid surfaces. The critical displacement,
d0 , and the critical traction, s0 , predict the onset of brittle crack
formation.
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Here, we consider a matched asymptotic expansion,19 in
which the local energy, f0 , determines the outer solution,
and the nonlocal energy, f1 , introduces a singular perturba-
tion and determines the structure of the inner solution within
narrow boundary layers adjacent to the decohered layers in
the local solution. The effect of these boundary layers is to
relax the decohered layers and endow them with material-
specific structure. The determination of this structure re-
quires consideration of the full energetics of the crystal. For-
tunately, in the asymptotic limit, it suffices to assume that the
boundary layers surrounding the decohered layers do not
overlap, whereupon the previous analysis17 remains valid
with g0 replaced by the energy of the structurally relaxed
surface, gr . The asymptotic cohesive energy density now
becomes

f̄~ d̄ !5minH C

2N
d̄2,2grJ 5H ~C/2N !d̄2, if d̄, d̄r ,

2gr , otherwise,
~2!

where

d̄r52AgrN/C ~3!

is the critical opening displacement of the structurally re-
laxed surface and C is the uniaxial elastic constant. The cor-
responding mesoscopic cohesive law for the relaxed surface
is

t̄ r~ d̄ !5H ~C/N !d̄ , if d̄, d̄r ,

0, otherwise,
~4!

and the corresponding peak traction is

s̄r5~C/N !d̄r52ACgr /N . ~5!

This analysis can be extended to complex Bravais lattices
and constrained tangential deformations, if these processes
reach equilibrium on the time frame of the crack formation.
For example, let h i be the coordinates of a Bravais sublattice

and let D i be the tangential displacement within an atomic
layer, constrained to ( i51

N D i50 so that the unit cell opens in
mode I on average. Then, the extra degrees of freedom (h i

and D i) can be relaxed and the resulting cohesive energy
density, f(d1 , . . . ,dN), can be minimized as before.

Equation ~2! bears a resemblance both to Griffith’s crite-
rion for crack propagation and to the expression for the en-
ergy release rate of a semi-infinite crack in an elastic strip;20

however Eq. ~2! is derived in a completely different manner.
Here our analysis is based on atomistic interplanar potentials
without invoking the assumptions of linear elasticity. The
preceding analysis shows that the mesoscopic cohesive en-
ergy density of a large but finite layer of atomic planes has a
universal, material-independent, asymptotic structure, Eq.
~2!, regardless of the specific form of the atomistic binding
law. Furthermore, d̄r and s̄r scale as AN and 1/AN , respec-
tively, potentially bringing the failure criteria ( d̄r ,s̄r) in line
with experimental values with increasing sample thickness.
When plotted in terms of the normalized variables,

d̄*5 d̄/~2AgrN/C ! ~6!

and

f̄*5f̄/2gr , ~7!

the theory predicts that for large N, all mesoscopic energy

density vs surface separation laws should fall on a single

universal curve, namely, a parabolic arc joining the points
~0,0! and ~1,1! followed by a horizontal asymptote at 1
@black line in Fig. 2~b!#.

To test our theory, we use quantum mechanical calcula-
tions @density functional theory ~DFT!# to examine three ma-
terials exhibiting starkly contrasting behavior. Namely, we
consider cleavage along the ~111! surfaces of fcc Al, the
~0001! surfaces of a-Al2O3 , and the ~100! surfaces of cubic
diamond Si. Al is a ductile metal whose ~111! surface re-
mains almost bulk-terminated except for a 1% outward ex-

TABLE I. Experimental and DFT material parameters. ~Experimental values are in @ #.!

d
@Å#a

C
@GPa/Å#b

g r

@J/m2#c
d0(dr)
@Å#d

s0(s̄r)
@MPa#e

~111! fcc Al 2.332 35.3 0.79 0.54 ~196! 10900 ~161!

@2.328# @52.0# @1.18#

(0001)a-Al2O3 2.189 180.8 1.49 0.55 ~123! 47100 ~486!

@2.165# @231.4# @0.93#

~100! cubic diamond Si 1.365 101.5 1.32 0.57 ~195! 28200 ~270!

@1.357# @123.5# @1.36#

aInterlayer separation: Experimental values for Al and Al2O3 at 0 K, Si at 77 K ~Ref. 32!.
bUniaxial moduli: Experimental values calculated with C5(1/d) c i jklm im jmkm l , m unit normal to cleavage
plane ~Ref. 17!. Expt. c i jkl for Al and Al2O3 at 0 K, Si at 77 K ~Ref. 32!.

cRelaxed surface energy: Wad52gr . Experimental Al extrapolated to 0 K ~Ref. 25!, Al2O3 empirically
extrapolated to 0 K from high T, so likely underestimated ~Ref. 24!, 231 Si from void at 973 K ~Ref. 33!.

dCritical displacement from traditional UBER for unrelaxed surfaces. Values in ~ ! from this work, Eq. ~3!

assuming a 10 mm single crystal.
eCritical stress from traditional UBER for unrelaxed surfaces. Values in ~ ! from this work, Eq. ~5! assuming
a 10 mm single crystal.
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pansion. When cleaved, the ~0001! surface of the brittle ce-
ramic, a-Al2O3 , undergoes severe inward relaxation of the
Al ions by ;0.7 Å relative to the bulk termination.21 The
exposed ~100! semiconductor Si surface also relaxes inward
by 2% relative to the bulk termination, but more importantly,
the surface undergoes a 231 reconstruction resulting in
rows of dimers.22

We use 3D periodic generalized gradient approximation
~PW91! DFT calculations implemented within the VASP
code.23 Careful convergence tests using ultrasoft pseudopo-
tentials established kinetic energy cutoffs of 337.8 eV, 337.8
eV, and 200 eV, augmentation charge cutoffs of 553.7 eV,
553.7 eV, and 241.9 eV and Monkhorst-Pack kpoint grids of
1131133, 33331, and 43831 for Al, a-Al2O3 , and Si,
respectively. An energy convergence criterion of 1.0
31025 eV was used for Al and Al2O3 while a more strict
atomic force criterion of 5 meV/Å was employed for Si. To
test the theory, a large number of layers would be advanta-
geous, but the calculations quickly become prohibitive. As a
compromise, 12, 6, and 12 layers of Al, Al2O3 , and Si were
used.

The DFT data points for the f̄* vs d̄* curve were gener-
ated by introducing a separation of size d̄* between two
bulk-terminated atomic layers, fixing the unit cell, and allow-
ing all the ionic positions to relax to their minimum energy
configuration. Conceptually, this is equivalent to healing a
crack below d̄r or forming relaxed surfaces beyond d̄r . To
explore differences arising from the reconstructed surfaces, a
second series of Si calculations sequentially decreased the
introduced separation, using the relaxed configuration from
the previous step as the initial configuration. The lowest DFT
energy for each d̄* was used in the subsequent analysis of Si.
The unique material renormalization parameters, gr and C,
were directly extracted from DFT calculations. The relaxed
surface energy is given by gr5„f̄(`)2f̄(0)…/2A , where
f̄(`) is the energy of the relaxed ionic positions correspond-
ing to the largest introduced separation and A is the surface
area. C was extracted from a series of single point energy
calculations using the same unit cells as the relaxed surface
case, but uniformly expanding the layers in the surface nor-
mal direction. Those points in the elastic regime were fit to
Eq. ~2!.

Table I lists calculated parameters and directly compa-
rable experimental values. The interlayer spacings from DFT
are reasonable. DFT underestimates C, but obtains the cor-
rect ordering. DFT predictions of gr , and consequently the
work of adhesion (52gr), are the correct order of magni-
tude. The deviations in gr are likely due to empirical ex-
trapolation from high T to 0 K;24,25 experimental surface en-
ergies are notoriously difficult to measure. d0 and s0 are the
critical separation and stress for the traditional UBER model
~rigid surfaces, no renormalization!; these values are orders
of magnitude too small and too large, respectively. For com-
parison, we also give renormalized, structurally relaxed d̄r

and s̄r in parentheses, assuming a 10 mm thick crystal.
These values are more in line with expected values from an
appropriate experiment; note the orders of magnitude

changes. The ideal experimental comparison for d̄r and s̄r

would involve defect-free, brittle, single crystals subject to a
uniaxial tensile load on a specific surface orientation con-
ducted near 0 K. Such measurements have not, indeed per-
haps cannot, be performed. It is well known that internal
flaws and surface cracks in samples produce large variations
in fracture strength.26 Typical experimental tensile s̄r values
for room temperature specimens of unknown grain size and
orientation are 40–50 MPa, 150–500 MPa, and 200–7000
MPa for Al,27 Al2O3 ,28,29 and Si,30,31 respectively. Since Al
is ductile, we expect poor agreement. Only when the values
are renormalized as we have outlined do they fall in the
experimentally observed range.

Figure 2 shows absolute and renormalized DFT energies
of the relaxed surfaces compared to the proposed universal

FIG. 2. ~Color! The absolute ~a! and renormalized ~b! energy-
displacement DFT data, with the latter collapsing to a universal
curve. ~111! fcc Al ~l!, ~0001! a-Al2O3 ~j!, and ~100! cubic
diamond Si ~m! are the DFT data. For filled symbols, the crack
heals; for open symbols, the crack remains. ~b! The universal curve
predicted by Eq. ~2! ~black line! and the DFT data are renormalized
by f̄*5f̄/2gr and d̄*5 d̄/(2AgrN/C). The inset of rigidly sepa-
rated Si shows the electron density slice through the surface Si for
introduced cracks leading to crack healing ( d̄*,1) and crack for-
mation ( d̄*.1) upon relaxation. Only when the initial electron
density bridges the crack does it heal.6 Yellow ~blue! signifies high
~low! electron density.
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scaling law for relaxed surfaces. Figure 2~a! illustrates the
disparity in intrinsic properties of metal vs ceramic vs semi-
conductor, while Fig. 2~b! shows that except for the region
near ~1,1!, all the renormalized DFT data for these three

distinctly different materials fall on the same universal curve.
That all the complexities of quantum mechanics, including
the long-range interactions between the atoms, should reduce
to this simple universal law is truly remarkable. At a funda-
mental level, we conclude that all sufficiently large en-

sembles of planes of atoms subject to a prescribed opening

displacement at its boundary behave the same, regardless of

material type: in the absence of dislocations, they uniformly

expand elastically until they form two structurally relaxed

surfaces. In practice, approximately 10 atomic planes are
usually sufficient to reach the asymptotic limit.

This universal law provides a general analytic form for
efficiently representing the results from first principles calcu-
lations of cohesive behavior. Indeed, it suggests that only
three parameters ~d, C, and 2gr) need be calculated, from
which the entire cohesive behavior can be reconstructed, at a

considerable savings in computational cost. Lastly, because
the law represents the response of a large but finite number
of atomic layers, it provides the means to bridge scales from
atomistic to mesoscopic in complex, large-scale finite ele-
ment simulations.

In closing, some of the limitations for this approach and
deviations from the universal curve should be carefully
noted. The downward curvature in data near ~1,1! is due to
finite sample size as well as metastability. The model is
based on energy minimization and therefore metastable
states are not accounted for. For example, during cyclic load-
ing, the opening and healing traction-separation curves may
be different, an effect that is not captured by the theory.
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