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1 Introduction

The prototypical static black hole geometry is described by the celebrated Schwarzschild

line-element,

g = −f(r)dt2 +
dr2

f(r)
+ r2hij(x

k)dxidxj , (1.1)
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where f = 1 − µ
r and h = hijdx

idxj is the metric of a 2-dimensional round unit sphere.

It has been known for various decades that this vacuum solution of general relativity

readily extends to Einstein’s gravity with a cosmological constant in d = n + 2 spacetime

dimensions, provided one takes f = 1− µ
rd−3 −λr2 and h is the metric of an n-dimensional

round unit sphere [1]. Even more generally, one can also replace h by any n-dimensional

Einstein space with Ricci scalar R̃ = n(n − 1)K and define f = K − µ
rd−3 − λr2 [2] (see

also [3]), giving rise to a much richer family of static “Einstein” black holes when d > 5

(at the price of giving up asymptotic flatness or (A)dS-ness). The property of h being

Einstein is not only sufficient but also necessary, so that the extensions obtained in [2, 3]

in fact exhaust the space of black hole solution of the form (1.1) in general relativity.1 The

particular choice of h may affect the stability of the solution [8].

In addition to Einstein’s gravity, gravity theories described by higher-order Lagrangians

also have a long history [9, 10], and appear naturally in studies of quantum gravity [11]

and in the low energy limit of string theory [12]. Numerous solutions of the form (1.1)

have been obtained for various theories in diverse dimensions, mostly assuming h to be a

round sphere (as required if spherical symmetry is assumed) or a space of zero or negative

constant curvature (references relevant to the present paper will be given in due course

in the following sections). Nevertheless, as in Einstein’s theory, it would be desirable to

characterize the full space of such solutions for more general theories, and one may wonder

whether the same ansatz (1.1) can be extended to more general transverse geometries

h for arbitrary (diffeomorphism invariant, metric) theories of gravity, perhaps by simply

modifying f(r) appropriately. However, it was pointed out in [13] that simply adding a

Gauss-Bonnet term to the Einstein-Hilbert Lagrangian places a strong tensorial constraint

on the geometry of h, thus ruling out many known “exotic” Einstein black holes. This

observation was later extended to cubic [14] and arbitrary (generic) Lovelock theories [15]

(see also [16]). It is thus clear that, generically, h cannot be an arbitrary Einstein space in

a gravity theory different from Einstein’s. It remains an open question whether a theory-

independent characterization of permitted horizon geometries of static black holes can be

given (which would be a natural starting point for obtaining full horizon characterizations

for specific theories). In this paper we present new results in this direction.

As is well known (and reviewed briefly in section 3 below), in Einstein’s gravity the

condition gttgrr = −1 in (1.1) follows from the field equations, however this is not neces-

sarily the case in other theories (see, e.g., [17] for an early result). Therefore, apart from

the (partial) freedom in the choice of h, a further extension of (1.1) consists in considering

a more general ansatz with two undetermined functions of r, i.e.,

g = ea(r)
(

−f(r)dt2 +
dr2

f(r)

)

+ r2hij(x
k)dxidxj . (1.2)

1It should be pointed out that there exist also static vacuum black holes which are not of the form (1.1)

and whose horizons are not Einstein, already in five dimensions [4] (see [5] in higher dimensions). Also

five-dimensional static black rings [6] with a S1×S2 horizon cannot be written in the form (1.1) (as follows

from [7] and the comments on the Weyl type given below) — these, however, contain a conical singularity.

Additionally, static black strings are also excluded by this ansatz, as they typically possess one (or more)

privileged spatial direction(s) and a Kaluza-Klein-like asymptotics.
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It is the main purpose of the present paper to obtain a sufficient condition on the metric

h which enables the ansatz (1.2) to be consistently employed in any theory of gravity of

the form

S =

∫

ddx
√
−gL(R,∇R, . . .), (1.3)

where L is a scalar invariant constructed polynomially from the Riemann tensor R and

its covariant derivatives of arbitrary order. By this we mean that, whatever theory (1.3)

one chooses, with the ansatz (1.2) the corresponding field equations will generically reduce

to two ODEs (the precise form of which will depend on the choice of a particular theory)

for two unknown metric functions a(r) and f(r), leaving one with some remaining arbi-

trariness on h. These spacetimes will in general describe static black holes (examples for

various theories are provided in sections 3–8) and we will name them universal black holes.2

However, the details (including the precise form of a(r) and f(r)) and physical properties

of the solutions will naturally depend on the specific theory one is interested in. Since for

n = 2, 3 an n-dimensional Einstein space is necessarily of constant curvature, our analysis

we will be of interest for dimension d ≥ 6 (i.e., n ≥ 4). However, our results will apply also

in lower dimensions unless stated otherwise.

In section 2 we describe properties of the general static ansatz (1.2) and prove the

main result (already mentioned above) in Proposition 2.1. This is then used to argue how

the field equations of any theory (1.2) simplify when evaluated on the considered ansatz.

Near-horizon geometries of possible extremal solutions are also briefly discussed. In the

subsequent sections 3–8 we add further comments for some gravity theories of particular

interest (namely, Einstein, Gauss-Bonnet, Lovelock and F (Lovelock), quadratic gravity,

F (R) and certain conformal gravities). A few explicit solutions are also constructed which

exemplify the general results of section 2 and in some cases extend certain solutions al-

ready previously known in the case of a constant curvature h. A short summary and

some concluding comments are provided in the last section 9. In appendix A we define

Riemannian universal spaces and relate those to isotropy-irreducible homogeneous spaces

and to the results of [18]. In appendix B we briefly review the Robinson-Trautman form

of spacetimes (1.2), which is useful to highlight geometric properties thereof and may be

convenient for certain computations. As an example, we also work out the explicit form of

the field equations of quadratic gravity in arbitrary dimension.

2 Black holes with universal horizons

2.1 Geometry of the ansatz

Let us assume the spacetime metric is of the form (1.2). The spacetime is static in regions

where f(r) > 0 and belongs to the Robinson-Trautman class [19] (extended to arbitrary

d in [20]), cf. appendix B. Ansatz (1.2) (or (B.2)) describes a warped product with a

2-dimensional Lorentzian factor and is therefore of Weyl type D (or O) and purely elec-

tric [21, 22]. However, eq. (B.7) shows that the Ricci (and thus the Riemann) tensor is

2Comments similar to those in footnote 1 also apply to the metric (1.2) and also beyond general relativity.
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not aligned, unless a =const — in which case one can take a = 0, upon rescaling f and t.3

This thus provides an alternative geometric interpretation of the “gttgrr = −1” condition

discussed in [26] (also meaning that, in such a case, r is linear in v, i.e., it is an affine

parameter along ℓ [20, 26]).

In the rest of the paper, it will be assumed that, in (1.2), the transverse Riemannian

metric h = hij(x
k)dxidxj is an n-dimensional universal space (thus being, in particular,

Einstein and with constant scalar invariants) — see appendix A and references therein

for a definition and more details.4 This property of h will be understood from now on.

Quantities with a tilde will refer to the transverse space geometry. We normalise the

transverse metric so that

R̃ij = (n− 1)Khij , (2.1)

which obvioulsy implies R̃ = n(n− 1)K.

2.2 Reduced field equations and universality

The field equations derived from (1.3) (neglecting boundary terms) are of the form E =

0, where E is a symmetric, conserved rank-2 tensor locally constructed out of g and

its derivatives [10] (cf. also [28]). However, for the ansatz (1.2) they can be drastically

simplified thanks to the following

Proposition 2.1. Consider any symmetric 2-tensor, E, constructed from tensor prod-

ucts, sums and contractions from the metric g, the Riemann tensor R, and its covariant

derivatives. Then for any metric of the form (1.2) with h universal we have:

E = F (r)dt2 +G(r)dr2 +H(r)hij(x
k)dxidxj . (2.2)

Proof. First, let us utilise that the metric is invariant under time-reversal: t 7→ −t. This

implies that any curvature tensor5 is purely electric (as defined in [22]). In particular, E

is purely electric (and, of course, t-independent). For a symmetric 2-tensor this implies

Eti = Etr = 0. Second, if hij(x
k)dxidxj is universal then this is an isotropy irreducibe

(locally) homogeneous space (cf. appendix A). This means that the isotropy group acts

irreducibly on the tangent space of the transverse metric. These symmetries of h can be

lifted trivially to the total metric (1.2), and hence, the tensor E needs to be invariant

under the these symmetries as well. Using the isotropy group (which acts irreducibly on

TpM), we thus get Eij ∝ hij (cf. also [29]) and Eri = 0. Finally, since hij(x
k)dxidxj

is a locally homogeneous space, the components Ett, Err can only depend on r, and

Eij = H(r)hij(x
k)dxidxj .

3More in detail, the Weyl type is generically D(bd) since here h is Einstein [21, 22] (cf. also proposi-

tion 8.16 of [23]), in which case there exist precisely two mWANDs ∂t ± f∂r (see footnote 15 of [24]) and

thus the Riemann type is G if a,r 6= 0 and D (aligned) if a,r = 0. The spacetime is conformally flat iff h is

of constant curvature and the functions f and a satisfy a differential equation which can be obtained from

(40, [25]).
4To make the reading of the paper more fluent, let us already mention here that universal spaces turn

out to be ultimately equivalent to the well-known isotropy-irreducible homogeneous spaces, which have

been thoroughly studied (see, e.g., [27] and references therein).
5I.e., any tensor constructed polynomially from the Riemann tensor and its covariant derivatives.
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The tensorial field equation E = 0 thus reduces to three “scalar” equations F (r) = 0,

G(r) = 0 and H(r) = 0. However, since E is identically conserved, it is easy to see

that H(r) = 0 holds automatically once F (r) = 0 = G(r) are satisfied (see also (B.12)

for a frame reformulation of this statement). We are thus left with just two ODEs for

the two metric functions a(r) and f(r). Their precise form will depend on the particular

gravity theory under consideration and is of no interest for the general considerations of

this paper (several explicit examples can be found in the references given in sections 3–8;

cf. appendix B for quadratic gravity.).

We further observe that (2.2) means that, in a frame adapted to the two mWANDs

∂t ± f∂r, E possesses only components of b.w. ±2 and 0 (i.e., E++ = E−− = f−1(−Et
t +

Er
r), E+− = −eaf(Et

t + Er
r) and Eij).

The following Lemma will also be useful:

Lemma 2.2. If E is constructed from only type D tensors then the mixed tensor compo-

nents obey:6

Et
t = Er

r. (2.3)

Proof. This follows simply from the fact that any type D tensor has a boost isotropy; hence

so must the tensor E.

Condition (2.3) means that F (r) = −f2G(r) in (2.2), so that in this case one is left

with (at most) one non-trivial field equation (ODE) for the two metric functions a(r) and

f(r), thus leaving (at least) one of those undetermined. Something similar (but not quite

the same) occurs in Lovelock theories that admit degenerate vacua (see sections 4 and 5

below and references therein).

2.3 Extremal limits and near-horizon geometries

Let us briefly comment on the near-horizon geometries associated with extremal limits of

the universal black holes described above (we refer to the review [30] and references therein

for definitions and general properties of near-horizon geometries).

Metric (1.2) possesses horizons at zeros of f(r). In the coordinates (B.2), these corre-

spond to zeros of H(v) (where the Killing vector field ∂u becomes null). We now assume

that, at least in certain theories (1.3), there exist solutions with a degenerate horizon, i.e.,

for which (without loosing generality, one can always redefine v 7→ v + v0 so that such

horizon lies at v = 0)

H(v) = v2F(v), (2.4)

where F(v) is a smooth function (we also assume r(v) to be such). Then, by rescal-

ing v 7→ ǫv, u 7→ ǫ−1u and taking the limit ǫ → 0 [30] one arrives at the near-horizon

line-element

g = −2dudv − 2F0du
2 + r20hij(x

k)dxidxj , (2.5)

where F0 ≡ F(0) and r0 ≡ r(0). This is a Nariai-like direct product of dS2 (if F0 < 0) or

AdS2 (if F0 > 0) with the IHS (universal) space h characterizing the original black hole

6In the coordinates (B.2), condition (2.3) is equivalent to Evv = 0.
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solution (B.2). It possesses a recurrent null vector field ∂v and thus belongs to the Kundt

class (cf, e.g., the review [23] and references therein).

From the above result, it follows that the near-horizon geometry of the considered

extremal black holes is essentially theory-independent (up to fixing the two constants F0

and r0). A similar “universality” of near horizon geometries was discussed for spherically

symmetric spacetimes in [31].

3 Einstein gravity

The purpose of the following sections is to illustrate the results of section 2 by giving

explicit examples of black holes solutions in various gravity theories of the form (1.3). As a

warm-up, let us start with the simplest case of d-dimensional general relativity, for which

L =
√−g 1

κ(R − 2Λ) and Eµν = Rµν − 1
2Rgµν + Λgµν . From the (reduced) field equations

for (1.2) one gets the generalized Schwarzschild-(Anti) de Sitter solutions [1–3]:

a(r) = 0, f(r) = K − M

rd−3
− λr2, (3.1)

where

λ =
2Λ

(d− 1)(d− 2)
. (3.2)

In particular, the first of (3.1) follows from (B.7). For later purposes, let us note that (3.1)

gives R = d(d− 1)λ.

4 Gauss-Bonnet gravity

This theory is of particular interest in the low-energy limit of string theory [32]. It is

defined by the Lagrangian density

L =
√
−g

[

1

κ
(R− 2Λ) + γIGB

]

, IGB = RµνρσR
µνρσ − 4RµνR

µν +R2, (4.1)

where γ is a constant parameter, giving

Eµν =
1

κ

(

Rµν−
1

2
Rgµν+Λgµν

)

+2γ

(

RRµν−2RµρνσR
ρσ+RµρστR

ρστ
ν −2RµρR

ρ
ν − 1

4
IGBgµν

)

.

(4.2)

4.1 Generic theory

The explicit form of (4.2) for the ansatz (1.2) was given in [13] and there is no need to

reproduce it here. As noticed in [13], the field equation Et
t − Er

r = 0 (i.e., Evv = 0, cf.

appendix B) shows that generically one can set

a(r) = 0, (4.3)

while integrating the remaining field equation gives [33–36]

f(r) = K +
r2

2κγ̂



1±

√

1 + 4κγ̂

(

2Λ

n(n+ 1)
+

µ

rn+1

)

− 4κ2γ̂2Ĩ2W
r4



 , (4.4)
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where µ is an integration constant and7

γ̂ = (n− 1)(n− 2)γ, n(n− 1)(n− 2)(n− 3)Ĩ2W = C̃ijklC̃
ijkl. (4.5)

Eq. (4.4) clearly illustrates how the Weyl tensor of the geometry h affects the solution

and its asymptotic behaviour. The branch with the minus sign admits a GR limit to (3.1)

by taking γ̂ → 0. The non-negative constant Ĩ2W vanishes iff h is conformally flat (so neces-

sarily when n = 3), in which case one recovers the well-known black holes with a constant

curvature base space [37–39]. See [33–36] for properties of the spacetimes with Ĩ2W 6= 0.

In the special case of pure Gauss-Bonnet gravity (i.e., for κ−1 = 0), the above solution

is replaced by8

a(r) = 0, f(r) = K ±

√

√

√

√

1

γ̂

(

2Λ̂

n(n+ 1)
r4 +

µ

rn−3

)

− Ĩ2W . (4.6)

This was obtained in [40] for the special case when h is a product of two equal spheres

(cf. [38, 41, 42] when Ĩ2W = 0). As follows from an observation in [43], it is interesting to

note that metric (4.6) also solves more a general theory L =
√−g(−2Λ̂ + γIGB + ηI

d/4
GB)

(where η is a new coupling constant). The results of [43] further imply that it is also a

solution of a general class of theories defined by L =
√−gF (IGB), provided F ′ 6= 0 and

8Λ̂/γ = (d− 4)F/F ′ (both these condition must hold on-shell), where F ′ = ∂F/∂IGB.

4.2 Special fine-tuned theories (I2

W
= 0)

When h is conformally flat and the coupling constants are suitably fine-tuned, in addition

to (4.3), (4.4) there exist also the “geometrically free” solutions of [44] (cf. also [33, 34, 36,

45–47])

e−a(r)f(r) = K +
r2

2κγ̂
, 8κγ̂Λ = −n(n+ 1), Ĩ2W = 0, (4.7)

for which the metric function ea(r)f(r) remains undetermined (this cannot occur when

Ĩ2W 6= 0 [33–36]).

For pure Gauss-Bonnet gravity one has instead

e−a(r)f(r) = K > 0, Ĩ2W = 0, (4.8)

with ea(r)f(r) undetermined, as follows easily from [13].

5 Lovelock gravity

In more than six dimensions, a natural extension of Gauss-Bonnet (and Einstein) gravity

is given by Lovelock gravity [48], which retains the second order character of the field

equations. The Lagrangian density

L =
√
−g

[(d−1)/2]
∑

k=0

ckL(k), L(k) =
1

2k
δρ1σ1...ρkσk
µ1ν1...µkνk

Rµ1ν1
ρ1σ1

. . . Rµkνk
ρkσk

, (5.1)

7Since h is Einstein, using (2.1) one finds ĨGB = C̃ijklC̃
ijkl + n(n− 1)(n− 2)(n− 3)K2.

8We have redefined the cosmological constant Λ = κΛ̂ such that it survives for κ−1 = 0.
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gives [48]

Eµ
ρ =

[(d−1)/2]
∑

k=0

ckG
µ(k)
ρ , Gµ(k)

ρ = − 1

2k+1
δµµ1ν1...µkνk
ρρ1σ1...ρkσk

Rρ1σ1
µ1ν1 . . . R

ρkσk
µkνk

, (5.2)

where δ
µ1...µp
ρ1...ρp = p!δµ1

[ρ1
. . . δ

µp

ρp]
and ck are coupling constants. If c0, c1 and c2 are the only

non-zero constants, one recovers the Gauss-Bonnet theory (4.1).

Similarly as in section 4.1, from Et
t − Er

r = 0 one generically obtains

a(r) = 0, (5.3)

while the remaining field equation determines f(r) as the root of an algebraic equation

(generalizing (4.4)) that depends on an integration constant, the coupling constants ck and

the Euler invariants of the geometry h [15] (while the constraints on a generic transverse

space were first obtained in [15], the fact that it can be consistently taken to be IHS was

noticed in [16]). When the base space is a round sphere, one recovers the early results of [38]

(see [41] for the case of zero and negative constant curvature). However, in the latter case

there exist particular choices of the ck that admit solutions with one undetermined metric

function [44, 45, 47].

The field equation determining f(r) simplifies considerably in the case of pure Lovelock

gravity, i.e., when a single coefficient ck̄ for k = k̄ > 0 (plus a possible cosmological term

c0) is non-zero in (5.1) [15]. Let us just present an example for which this equation can be

integrated explicitly. Namely, in the case of the pure cubic theory (k̄ = 3, which requires

d ≥ 7), using Cardano’s formula one can solve the general equation given in [15] to obtain9

f(r)−K =
1

(2ĉ3)1/3

[

c0r
6− µ

rn−5
+ĉ3J̃W+

√

(

c0r6−
µ

rn−5
+ĉ3J̃W

)2
+4ĉ23Ĩ

6
W

]1/3

+
1

(2ĉ3)1/3

[

c0r
6− µ

rn−5
+ĉ3J̃W−

√

(

c0r6−
µ

rn−5
+ĉ3J̃W

)2
+4ĉ23Ĩ

6
W

]1/3

, (5.4)

where µ is an integration constant and we have defined I2W as in (4.5) and

ĉ3 = (n+ 1)n(n− 1)(n− 2)(n− 3)(n− 4)c3, (5.5)

(n− 1)(n− 2)(n− 3)(n− 4)(n− 5)J̃W = 4C̃ijklC̃
klmnC̃ ij

mn + 8C̃ijklC̃
mjknC̃i l

mn . (5.6)

Solution (5.4) was obtained in [50] for the special case when h is a product of two

equal spheres (a solution for cubic Lovelock theory including lower order curvature terms

was obtained earlier in [14]). When I6W = 0 (⇒ JW = 0) the base space is of constant

curvature and one recovers the solution obtained in [42] (see also [15, 43]). From [43] it

9In order to arrive at (5.4) we used the identities L̃(1) = R̃ and L̃(2) = ĨGB , and the fact that for any

n-dimensional Einstein space R̃ = n(n−1)K and ĨGB is as in footnote 7. Furthermore, it was useful to write

L̃(3) =4C̃ijklC̃
klmn

C̃
ij

mn +8C̃ijklC̃
mjkn

C̃
i l
mn +(n−4)(n−5)K

[

3C̃ijklC̃
ijkl+n(n−1)(n−2)(n−3)K2

]

,

which can be obtained easily using (19, [49]).
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follows that (5.4) is also a solution of the theory L =
√−g(c0 + c3L(3) + ηL(3)d/6), as well

as of the class of theories defined by L =
√−gF (L(3)), provided (on-shell) F ′ 6= 0 and

6c0/c3 = −(d− 6)F/F ′.

6 Quadratic gravity

Apart from the special case of Gauss-Bonnet gravity, actions quadratic in the curvature

have been studied for a long time [9, 10, 51–53]. The most general such theory is defined by

L =
√
−g

[

1

κ
(R− 2Λ) + αR2 + βRµνR

µν + γIGB

]

, (6.1)

with IGB as in (4.1) and α, β, γ are constant parameters. This gives rise in general to field

equations the fourth order, namely [53] (we follow the notation of [54])

Eµν =
1

κ

(

Rµν −
1

2
Rgµν + Λgµν

)

+ 2αR

(

Rµν −
1

4
Rgµν

)

+ (2α+ β) (gµν�−∇µ∇ν)R

+ β

[

�

(

Rµν −
1

2
Rgµν

)

+

(

2Rµρνσ − 1

2
gµνRρσ

)

Rρσ

]

+ 2γ

(

RRµν − 2RµρνσR
ρσ +RµρσδR

ρσδ
ν − 2RµρR

ρ
ν − 1

4
gµνIGB

)

. (6.2)

Some of these theories are plagued by ghosts [55]. As an exception to this, the special

subcase α = 0 = β has second order field equations and corresponds to Gauss-Bonnet

gravity, already discussed in section 4. For arbitrary values of α, β, γ and Λ, the explicit

form of (6.2) for the ansatz (1.2) is given in appendix B.3 using the Robinson-Trautman

coordinates (B.2). Let us discuss now a few subcases of special interest.

6.1 Einstein spacetimes: d = 4 or γ = 0

In certain cases, Einstein spacetimes can also solve quadratic gravity. This is always true

in four dimensions [56, 57] so that the d = 4 Schwarzschild-(A)dS black holes (3.1) are

solutions of quadratic gravity (with λ = Λ/3) [10, 56]. For arbitrary d, the form of (6.2)

when g is Einstein has been given in (6, [58]). For our ansatz (1.2) with (3.1), one easily sees

that, if (d− 4)γ 6= 4, only spacetimes of constant curvature are possible (since RµνρσR
µνρσ

must be a constant). Therefore, for d 6= 4 black hole solutions of this form can only occur

for quadratic gravities with γ = 0. In that case, (6, [58]) with (3.1) reduces to a single

condition fixing the effective cosmological constant λ

2κ−1Λ = (d− 1)λ
[

κ−1(d− 2) + (d− 1)(d− 4)λ(dα+ β)
]

. (6.3)

For (d−4)(dα+β) 6= 0, this is a quadratic equation for λ, therefore there exist two distinct

Einstein black holes (3.1), except in the degenerate case (d−2)2κ−1+8(d−4)(dα+β)Λ = 0,

for which they coincide. For (d−4)(dα+β) = 0 there exists a single black hole. In all cases,

the transverse metric h can be any Einstein space (not necessarily IHS). These Einstein

black holes in arbitrary dimension were already discussed for Λ = 0 in [59] and in the case

when h is of constant curvature in [60].
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6.2 Pure R2 theory

Apart from Gauss-Bonnet gravity, the simplest quadratic gravity theory is obtained by

setting κ−1 = β = γ = 0 in (6.1), i.e., by considering L = α
√−gR2 (this is clearly also a

subset of F (R) gravity [61], cf. also section 7). The field equations reduce to [52, 53]

R

(

Rµν −
1

4
Rgµν

)

+ (gµν�−∇µ∇ν)R = 0. (6.4)

Clearly, special solutions of this theory are given by spacetimes with R = 0 (in partic-

ular, Ricci-flat spacetimes, as noticed in [56, 62]). It is also obvious that proper Einstein

spacetimes solve (6.4) iff d = 4 [56, 57] (cf. also section 6.1 and [58]).10

As for static black holes, for simplicity we restrict ourselves to the special case a(r) = 0,

i.e., to the ansatz (1.1) (this is now an extra assumption, as opposed to the Einstein and

generic Gauss-Bonnet and Lovelock cases). The field equations (6.4) can then be easily

integrated and give

f(r) = K − µ1

rd−3
− µ2

rd−2
, (6.5)

where µ1 and µ2 are integration constants. This solution has R = 0, and is asymptotically

flat when h is a round Sn. For µ2 = 0 it reduces to (3.1) with Λ = 0, which is Ricci-flat.

This generalizes previous results obtained in the case of spherical symmetry for d = 4

in [63] and for any d and any h of constant curvature in [64].11 In [64] it was noticed that,

for d = 4s, the µ2 term mimics the backreaction of a non-linear, conformally invariant

Maxwell term (FµνF
µν)s in Einstein gravity [65]. We further observe that, when d = 2p,

it also alternatively mimics the backreaction of a linear electromagnetic p-form field [66]

(see also [24]).

As noticed above, for d = 4 there is additionally the Einstein solution (3.1) with an

arbitrary λ. Furthermore, some spherically symmetric solutions with a(r) 6= 0 have been

given, e.g., in [67, 68].

6.3 Λ-R2 theory

Adding a cosmological constant gives the theory L =
√−g

(

− 1
κ2Λ + αR2

)

, for which the

field equations are given by (6.4) with an additional term 1
2καΛgµν on the l.h.s. . The ansatz

a(r) = 0 leads only to the Einstein solution (3.1) with

2Λ = d(d− 1)2(d− 4)ακλ2. (6.6)

This exists only for d > 4 (more generally, no Einstein spacetimes solve this theory when

d = 4).

10This has to do with the fact that the Lagrangian density
√−gR2 is scale invariant iff d = 4, while for

general d the same property is shared by
√−gRd/2 [57].

11The higher-dimensional spherically symmetric solution (26) of [63] appears to be incorrect, cf. [64] and

our (6.5).

– 10 –



J
H
E
P
0
2
(
2
0
2
0
)
0
4
7

6.4 Einstein-R2 theory

It is also natural to consider adding the R2 term to Einstein’s theory, i.e., L =
√−g

[

1
κ (R− 2Λ) + αR2

]

. Clearly here

1

κ

(

Rµν −
1

2
Rgµν + Λgµν

)

+ 2α

[

R

(

Rµν −
1

4
Rgµν

)

+ (gµν�−∇µ∇ν)R

]

= 0. (6.7)

It is useful to distinguish between an Einstein and a non-Einstein branch.

(i) This theory admits Einstein black holes (3.1) as solutions, which can be obtained

from the solutions discussed in section 6.1 by setting β = 0 therein (cf. also [59, 60]).

(ii) In search for non-Einstein solutions, as in sections 6.2, 6.3 let us make the simplifying

assumption a(r) = 0. The field equations then imply that in (1.1) one has

f(r) = K − µ1

rd−3
− µ2

rd−2
− λr2, λ = − 1

2d(d− 1)κα
, (6.8)

and that the fine-tuning of the parameters12

8καΛ = −1, (6.9)

must additionally hold (otherwise µ2 = 0 and one is back in the Einstein case). It is

worth observing that these non-Einstein solutions occur precisely at the critical point

identified in [60] (in the case µ2 = 0). The analogy with p-form solutions mentioned

after (6.5) holds also here (solution (6.5) can be thought as the limit κ−1,Λ → 0

of (6.8)). When h is constant curvature, these solutions were obtained in [69], and

they are asymptotically (A)dS when h is a round Sn.

In both the above cases R = d(d− 1)λ is a constant.

7 F (R) gravity

Going beyond second order in powers of the curvature, a relatively simple and widely

explored theory is given by F (R) gravity, which was originally considered from a cosmo-

logical viewpoint [61] but has subsequently been considered also in the context of black

hole physics (see, e.g., [59] and further references given below). The Lagrangian density

L =
√
−gF (R), (7.1)

in the metric approach gives rise to the equations of motion (in general of 4th order) [61]

(Rµν + gµν�−∇µ∇ν)F
′ − 1

2
Fgµν = 0, (7.2)

where F ′ = ∂F/∂R.

12More generally, for d > 4 this fine-tuning is a necessary and sufficient condition for a spacetime with

R =const to be a solution of (6.7) (which fixes R = 4Λ). For d = 4 this condition is only sufficient,

since in this particular dimension also all Einstein spacetimes solve (6.7) identically [56, 57] (without any

fine-tuning).
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From now on we will only consider polynomial theories

F (R) =
∑

k=0

ckR
k, (7.3)

where the ck are constants and the sum extends to an arbitrary natural number (or is

infinite if we simply assume F to be analytic at R = 0). For simplicity, we shall further

restrict ourselves to spacetimes with R =const. The field equations (7.2) then generically

imply that the spacetime is Einstein, with the constant value of R determined by (cf. [70]

when d = 4)
∑

k=0

(d− 2k) ckR
k = 0. (7.4)

(R remains arbitrary in the scale invariant case where cd/2 is the only non-zero coefficient

in (7.3) [57], cf. also [71].) With our ansatz (1.2), this gives the Einstein black hole (3.1), as

discussed in [59] for c0 = 0 (see [72] for some comments) — the Weyl tensor of h does not

enter the field equations (cf. (B.6)–(B.8) and (B.9)–(B.11)) so that h can be any Einstein

space (not necessarily IHS).

However, for theories such that (for a particular choice of R =const) F (R) = 0 = F ′(R)

(cf. [73] for related comments), i.e.,

∑

k=0

ckR
k = 0 =

∑

k=0

kckR
k−1, (7.5)

non-Einstein spacetimes with R =const are also solutions (eq. (7.5) can be used to fix R

and the bare cosmological constan c0). For example, with the ansatz (1.1) one obtains f

as in (6.8), with λ determined by R = d(d − 1)λ — solutions of this type when h is of

constant curvature have been obtained for certain F (R) theories in [64, 69] (see also [73]

in four dimensions). This solution reduces to (6.5) in the case R = 0, for which the fine-

tuning is simply c0 = 0 = c1 (i.e., (6.5) represents static black holes for all theories (7.3) of

quadratic or higher order, as discussed in section 6.2 in a special case).

A non-Einstein solution with a(r) 6=const is given, for example, by (1.2) with

ea(r)f(r) = 1, f(r) = K − µ

rd−3
− λr2, R = (d− 1)(d− 2)λ, (7.6)

and with (7.5), which extends a four-dimensional traversable wormhole of [74].

8 Special conformal gravities

In four dimensions, conformal gravity (a subcase of quadratic gravity defined by

L =
√−gCµνρσC

µνρσ) has attracted interest for some time. Apart from the freedom of

conformal rescalings, it also possesses the interesting property that all conformally Ein-

stein metrics solve it (in particular, all Einstein metrics) [17]. In six dimensions, the

unique polynomial theory with the same property is defined by [75]

L =
√
−g

(

4I1 + I2 −
1

3
I3

)

(d = 6), (8.1)
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with

I1 = CµρσνC
µαβνCα

ρσ
β , I2 = CµνρσC

ρσαβCαβ
µν ,

I3 = Cµρσλ

(

δµν �+ 4Rµ
ν −

6

5
Rδµν

)

Cνρσλ +∇µJ
µ, (8.2)

and the divergence term ∇µJ
µ in I3 can be found in [75]. Static black hole solutions

of (8.1) with a transverse space of constant curvature were found in [75] and, in particu-

lar, a three-parameter subset of solutions corresponds to black holes conformal to the 6D

Schwarzschild-(A)dS metric (see the comments below) — this special family can be thus

obtained by simply performing a conformal transformation [75], with no need to integrate

the complicated field equations which follow from (8.1).

In arbitrary dimensions, let us assume that an extension of (8.1) is given, i.e., a con-

formal theory of gravity which admits Einstein spacetimes as solutions (the precise form of

this theory is not important for the following observations). By applying a conformal trans-

formation analogous to the one discussed in [75] to the Einstein black hole metric (3.1),

one can extend the special solutions of [75] to higher dimensions and to arbitrary Einstein

transverse spaces. One thus obtains a conformally Einstein solution given by (1.1) with13

f(r) = a0r
2 + a1r + a2 − µ

d−4
∑

k=0

(

d− 1

k

)

ck

rd−3−k
, (8.3)

where

a0=Kc2−µcd−1−λ, a1=2Kc−µ(d−1)cd−2, a2=K−µcd−3 (d−1)(d−2)

2
, (8.4)

and c is an additional parameter introduced by the conformal transformation. In general,

all powers of r from r2 to r3−d are present in (8.3), and R is not a constant for these

solutions. For d = 4 and K = 1 one recovers the solution of [76] (see also [17, 77], and [78]

for an arbitrary K), while for d = 6 and h of constant curvature those of [75]. However,

in 6D solutions more general than (8.3) exist which are not conformally Einstein [75], and

this is likely to be true also in higher dimensions. In order to study those, however, one

needs to consider a specific conformal gravity and integrate explicitly its field equations,

which goes beyond the scope of this paper.

9 Discussion

We have shown that a generalization of a Schwarzschild-like ansatz can be consistently

employed to find d-dimensional static vacuum black hole solutions in any metric theory

of gravity (1.3). In a nutshell, this consists in replacing the standard spherical base space

metric by an arbitrary isotropy-irreducible homogeneous space. This gives rise to large

families of static solutions and dramatically enlarges the space of permitted horizon ge-

ometries, well beyond the usual case of horizons of constant curvature. Let us emphasize

13In order to simplify the notation, we call again here r the radial coordinate, although it is not the same

r which was used in (3.1) (i.e., before the conformal transformation).
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that we arrived at our conclusions even without the need of specifying the explicit form

of the underlying equations of motion. Our results thus apply to general higher-derivative

theories, for which constraints on the horizon geometry may generically contain an arbi-

trary number of covariant derivatives of the Riemann tensor (in contrast to the previously

studied case of Lovelock gravity, for which the horizon constraints are purely algebraic —

see sections 4 and 5 for references).

The present paper thus makes a first step towards a theory-independent characteriza-

tion of permitted horizon geometries of static black holes. This can be clearly used as a

starting point for obtaining full horizon characterizations for specific theories (which may

differ from our conclusions in the sense that certain horizon geometries may be permitted

in some theories but not in others, thus not being universal). In this respect, it would be

interesting to understand whether the conditions we have obtained are also necessary.

We have also exemplified our results in various theories of gravity which appear to be

of considerable interest, but the same methods can be applied in other theories as well.

Let us mention, for example, that there is a growing interest also in (higher derivative)

modifications of Lovelock’s gravity such as quasi-topological gravities [49, 79–82] (see also,

e.g., [83] and references therein), to which our results also apply.

Various results of the present paper can be extended to black hole solutions with

matter, such as electromagnetic or scalar fields — this will be discussed elsewhere. It

would also clearly be desirable to understand physical properties of such universal black

holes, such as their thermodynamics and stability. These will in general depend on the

considered theory. It should be pointed out that, although the metric of the base space

does not enter the field equations for the static BH ansatz (as we have shown), it may still

affect the stability of the solution (see for example [8] in Einstein gravity).
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A Riemannian geometry: universal ⇔ IHS

Isotropy-irreducible homogeneous spaces are defined as (quoting, for example, [18]):

Definition A.1 (IHS space). An isotropy-irreducible homogeneous space (IHS) (M,h) is

a homogeneous space whose isotropy group at a point acts irreducibly on the tangent space

of M at that point.

Universal spaces were defined in [84]:

Definition A.2 (Universal space). A space (M,h) is called universal if any symmetric

conserved rank-2 tensor T (hij , ∂khij , ∂k∂lhij , . . .) constructed from sums of terms involving

contractions of the metric and powers of arbitrary covariant derivatives of the curvature

tensor (i.e., “polynomially”) is proportional to h.

Remark A.3. Both the above definitions are signature-independent, but in the present

paper (M,h) is assumed to be a Riemannian space (this has some consequences in the

following). The factor of proportionality between T and h in definition A.2 is necessarily

a constant since T is conserved.

We observe that:

Proposition A.4. A Riemannian space (M,h) is IHS if, and only if, it is universal.

Proof. The fact that IHS ⇒ universal follows from the proof of the theorem in section 15

(p. 137) of [29]. Conversely, a universal space must be “semi-solo” (in the terminology

of [18]) thanks to the results of section 39 of [85] (cf. also [86] for further comments

and [87–89] for related results about “natural tensors”). Then, theorem 4.4 of [18] im-

plies that it is also IHS.14

Some examples of IHS are given in [27] (see also, e.g., [16] for some comments in the

context of Lovelock black holes). The simplest ones are direct products of (identical) spaces

of constant curvature, others are given by irreducible symmetric spaces. In dimension

n = 4, an IHS must symmetric and therefore locally one of the following: S4, S2×S2, H4,

H2 ×H2, CP 2, H2
C
, or flat space (cf., e.g., [27] and references therein).

B Robinson-Trautman coordinates

B.1 Metric and curvature

For any choice of a Riemannian metric h (even a non-Einstein one), the line-element (1.2),

belongs to the d-dimensional Robinson-Trautman class [20] (here d = n+ 2). This can be

easily seen by introducing Eddington-Finkelstein coordinates via

dt = du+ (eaf)−1dv, dr = e−adv, (B.1)

14The fact that universal⇒ locally homogenous can also be proven in a different way. Namely, from the

proof of Theorem 3.2 of [90] it follows that a universal space is CSI, which in turn (since the signature is

Riemannian) implies [91] local homogeneity.
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such that

g = −2dudv − 2H(v)du2 + r2(v)hij(x
k)dxidxj , 2H = eaf. (B.2)

Both coordinate systems (1.2) and (B.2) can be useful for different purposes. In the coor-

dinates (B.2), let us define the coframe15

ω0 = dv +Hdu, ω1 = du, ωi = rω̃ĩ, (B.3)

where the ω̃ĩ define a coframe of h. In the dual frame, one finds the following non-zero

Riemann tensor components (see [25] for the corresponding coordinate components)

R0101 = H′′, R0i1j = r−1(r′H)′δij , Rijkl = r−2R̃ĩj̃k̃l̃ − 4r−2r′2Hδi[kδl]j , (B.4)

R0i0j = −r−1r′′δij , R1i1j = H2R0i0j , (B.5)

where primes denote differentiation w.r.t. v. The Ricci tensor then reads

R01=H′′+nr−1(r′H)′, Rij = r−2R̃ĩj̃−2r−1δij
[

(r′H)′+(n−1)r′2r−1H
]

, (B.6)

R00=−nr−1r′′=−nr−1(e−a),v, R11=H2R00, (B.7)

and the Ricci scalar

R = r−2R̃− 2H′′ − 4nr−1(r′H)′ − 2n(n− 1)r′2r−2H. (B.8)

When h is Einstein one further has R̃ĩj̃ =
R̃
n δĩj̃ , with R̃=const. Note also that R00 = Rvv,

and R00 = −(eaf)−1(Rt
t −Rr

r) in the coordinates (1.2).

For certain applications it is also useful to display the first and second non-vanishing

covariant derivatives of R, namely

R;0 = R′, R;1 = −HR′, (B.9)

and

R;00 = R′′, R;01 = −(HR′)′, R;11 = H2R′′, R;ij = 2r−1r′HR′δij , (B.10)

so that

�R = 2r−n(rnHR′)′. (B.11)

For brevity, we will not display the first and second covariant derivatives of Rµν . Let

us only observe that they do not contain the Weyl tensor of h.

15With a small abuse of notation, for simplicity we use the n-dimensional indices i, j, k, . . . to label both

the xi coordinates of points of the transverse space and the coframe vectors relative to its metric h.
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B.2 General field equations

It follows from section 2.2 that, using the frame defined in section B.1 and assuming h to be

IHS, the field equations only possess the two independent components E00 and E01−HE00.

The remaining field equations are not independent and can be expressed as E11 = H2E00

and

r−1r′Ekk = (HE00 − E01)
′ + nr−1r′(HE00 − E01) +H′E00, (B.12)

where the conservation Eµν
;ν = 0 has been used. (Note that Eij = 1

nEkkδij , cf. (2.2)). It

may also be useful to observe that trace of the field equations thus reads

Eµ
µ = −(n+ 2)E01 + nHE00 +

r

r′
[

(HE00 − E01)
′ +H′E00

]

. (B.13)

B.3 Field equations for quadratic gravity

As an example, let us obtain the explicit form of the field equations of quadratic grav-

ity (6.2) for the metric (B.2) (with h being IHS). In the frame (B.3), the two independent

components E00 and − 1
n(E01 −HE00) (cf. above) give

−n

κ
r−1r′′−2R̃

[

(n−2)(α+γ)r−3r′′+2(β+3α)r−4r′2
]

+2(2α+β)
[

H′′′′+2nr−1r′H′′′
]

+2nH′′
{

2(2β+7α)r−1r′′+[2(n−5)α+(n−4)β)]r−2r′2
}

+2nH′
{

3(β+4α)r−1r′′′+[4(3n−7)α+3(n−3)β]r−2r′r′′−(n−2)(3β+8α)r−3r′3
}

+2nH
{

(β+4α)r−1r′′′′+[n(β+4α)−4(β+3α)]r−2r′r′′′+[2n(β+4α)−β−8α]r−2r′′2

+
[

2(n2−11n+14)α+(8−5n)β+2(n−1)(n−2)γ
]

r−3r′2r′′+4(n−1)(β+3α)r−4r′4
}

=0,

(B.14)

1

nκ

[

n(n−1)r−2r′2H+nr−1r′H′+Λ− 1

2
r−2R̃

]

− 1

2n
r−4

[

γĨGB+
1

n
R̃2(β+nα)

]

−2r′′′
{

(β+4α)r−1HH′+2[(n+1)β+4nα]r−2r′H2
}

−4r′′
{

(β+4α)r−1

[

−1

2
HH′′+H′2

]

+

[

4(2n−1)α+

(

2n+
1

2

)

β

]

× r−2r′HH′+(n−2) [(n+1)β+4nα]r−3r′2H2

}

+2r′′2 [β+n(β+4α)]r−2H2−2r′

×
{

[

(β+4α)HH′′′+(β+2α)H′H′′
]

r−1−(n−2)(α+γ)
1

n
R̃r−3H′

}

(B.15)

+r′2
{

−2[2n(β+4α)+β]r−2HH′′+[−n(β+4α)+4(β+3α)]r−2H′2

+2[(n−2)(n−3)γ+nα(n−5)−2β]
1

n
R̃r−4H

}

−2r′3r−3HH′
[

2(n−1)(n−2)γ+(β+6α)n2−2(β+9α)n+2(−β+2α)
]

−2(n−1)r′4r−4H2
[

(n−2)(n−3)γ+αn2−n(β+9α)−3β
]

+
1

n
(β+2α)

(

H′′2−2H′H′′′
)

=0,

where R̃ = n(n− 1)K.
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One can observe, in particular, that the Weyl tensor of the transverse metric h enters

only via the term ĨGB (which can be written as in footnote 7) in (B.15). For theories with

γ = 0, therefore, for any IHS h the field equations take the same form as in the case when

h is of constant curvature. In general, considerable simplification of the field equations

occurs if one assumes r′′ = 0, which fixes one of the metric functions (cf. the comments in

section 2.1).

For certain applications it may be useful to compute explicitly also the trace (B.13),

which gives

Eµ
µ=

1

κ

[

(n+2)Λ−n

2
R
]

+
1

2
[4(n+1)α+(n+2)β]�R− 1

2
(n−2)r−4

[

γĨGB+(nα+β)
1

n
R̃2

]

−2n(n−2)

{

[(n+1)β+4nα]r−2r′′2H2+
1

2n
(2α+β)H′′2

+
1

2
[(β+8α+4γ)n−4γ+2β]r−2r′2H′2

+[n(n−1)α+(n−1)β+(n−2)(n−3)γ]r−4r′2H
[

(n−1)r′2H− 1

n
R̃

]

(B.16)

+H′′

[

(β+4α)r−1r′H′+(α+γ)r−2

[

2(n−1)r′2H− 1

n
R̃

]]

+[2nα+2(n−2)γ+β]r−3r′H′

[

2(n−1)r′2H− 1

n
R̃

]

+r′′
[

(β+4α)r−1HH′′+[(β+8α+4γ)n−4γ+2β]r−2r′HH′

+ [2nα+2(n−2)γ+β]r−3H
[

2(n−1)r′2H− 1

n
R̃

]]

}

where R and �R are given in (B.8) and (B.11). Note, in particular, that (B.16) is of second

order precisely for the class of theories defined by 4(n+1)α+(n+2)β = 0, as observed in

more generality in [92, 93] (cf. also [49, 94]). Another choice of special interest is given by

the theory (n+ 2)α+ β = 0 = γ [54] (see also (6.3)).
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[21] V. Pravda, A. Pravdová and M. Ortaggio, Type D Einstein spacetimes in higher dimensions,

Class. Quant. Grav. 24 (2007) 4407 [arXiv:0704.0435] [INSPIRE].

[22] S. Hervik, M. Ortaggio and L. Wylleman, Minimal tensors and purely electric or magnetic

spacetimes of arbitrary dimension, Class. Quant. Grav. 30 (2013) 165014 [arXiv:1203.3563]

[INSPIRE].
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[34] C. Bogdanos, C. Charmousis, B. Goutéraux and R. Zegers, Einstein-Gauss-Bonnet metrics:

Black holes, black strings and a staticity theorem, JHEP 10 (2009) 037 [arXiv:0906.4953]

[INSPIRE].

[35] H. Maeda, Gauss-Bonnet black holes with non-constant curvature horizons, Phys. Rev. D 81

(2010) 124007 [arXiv:1004.0917] [INSPIRE].

[36] G. Dotti, J. Oliva and R. Troncoso, Static solutions with nontrivial boundaries for the

Einstein-Gauss-Bonnet theory in vacuum, Phys. Rev. D 82 (2010) 024002

[arXiv:1004.5287] [INSPIRE].

[37] D.G. Boulware and S. Deser, String Generated Gravity Models, Phys. Rev. Lett. 55 (1985)

2656 [INSPIRE].

[38] J.T. Wheeler, Symmetric Solutions to the Gauss-Bonnet Extended Einstein Equations, Nucl.

Phys. B 268 (1986) 737 [INSPIRE].

[39] R.-G. Cai, Gauss-Bonnet black holes in AdS spaces, Phys. Rev. D 65 (2002) 084014

[hep-th/0109133] [INSPIRE].

[40] J.M. Pons and N. Dadhich, On static black holes solutions in Einstein and

Einstein-Gauss-Bonnet gravity with topology Sn × Sn, Eur. Phys. J. C 75 (2015) 280

[arXiv:1408.6754] [INSPIRE].

[41] R.-G. Cai, A Note on thermodynamics of black holes in Lovelock gravity, Phys. Lett. B 582

(2004) 237 [hep-th/0311240] [INSPIRE].

[42] R.-G. Cai and N. Ohta, Black Holes in Pure Lovelock Gravities, Phys. Rev. D 74 (2006)

064001 [hep-th/0604088] [INSPIRE].

– 20 –

https://doi.org/10.1007/JHEP02(2015)045
https://arxiv.org/abs/1411.1943
https://inspirehep.net/search?p=find+J+%22JHEP,1502,045%22
https://doi.org/10.1088/0264-9381/32/1/015001
https://arxiv.org/abs/1406.3232
https://inspirehep.net/search?p=find+J+%22Class.Quant.Grav.,32,015001%22
https://doi.org/10.1088/0264-9381/24/22/N02
https://arxiv.org/abs/0707.3222
https://inspirehep.net/search?p=find+J+%22Class.Quant.Grav.,24,5717%22
http://inspirehep.net/record/1235587
https://doi.org/10.1103/PhysRevD.50.846
https://arxiv.org/abs/gr-qc/9403028
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,D50,846%22
https://doi.org/10.1007/BF02394607
https://doi.org/10.1007/BF02394607
https://doi.org/10.12942/lrr-2013-8
https://arxiv.org/abs/1306.2517
https://inspirehep.net/search?p=find+EPRINT+arXiv:1306.2517
https://doi.org/10.1103/PhysRevD.46.2522
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,D46,2522%22
https://doi.org/10.1016/0370-2693(85)91616-8
https://inspirehep.net/search?p=find+J+%22Phys.Lett.,B156,315%22
https://doi.org/10.1142/S0217751X09045248
https://arxiv.org/abs/0809.4378
https://inspirehep.net/search?p=find+J+%22Int.J.Mod.Phys.,A24,1690%22
https://doi.org/10.1088/1126-6708/2009/10/037
https://arxiv.org/abs/0906.4953
https://inspirehep.net/search?p=find+J+%22JHEP,0910,037%22
https://doi.org/10.1103/PhysRevD.81.124007
https://doi.org/10.1103/PhysRevD.81.124007
https://arxiv.org/abs/1004.0917
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,D81,124007%22
https://doi.org/10.1103/PhysRevD.82.024002
https://arxiv.org/abs/1004.5287
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,D82,024002%22
https://doi.org/10.1103/PhysRevLett.55.2656
https://doi.org/10.1103/PhysRevLett.55.2656
https://inspirehep.net/search?p=find+J+%22Phys.Rev.Lett.,55,2656%22
https://doi.org/10.1016/0550-3213(86)90268-3
https://doi.org/10.1016/0550-3213(86)90268-3
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B268,737%22
https://doi.org/10.1103/PhysRevD.65.084014
https://arxiv.org/abs/hep-th/0109133
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,D65,084014%22
https://doi.org/10.1140/epjc/s10052-015-3481-y
https://arxiv.org/abs/1408.6754
https://inspirehep.net/search?p=find+J+%22Eur.Phys.J.,C75,280%22
https://doi.org/10.1016/j.physletb.2004.01.015
https://doi.org/10.1016/j.physletb.2004.01.015
https://arxiv.org/abs/hep-th/0311240
https://inspirehep.net/search?p=find+J+%22Phys.Lett.,B582,237%22
https://doi.org/10.1103/PhysRevD.74.064001
https://doi.org/10.1103/PhysRevD.74.064001
https://arxiv.org/abs/hep-th/0604088
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,D74,064001%22


J
H
E
P
0
2
(
2
0
2
0
)
0
4
7
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