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Abstract. In this paper we consider eigenvalues of Schrédinger operator with a weight on
compact Riemannian manifolds with boundary (possibly empty) and prove a general inequality
for them. By using this inequality, we study eigenvalues of Schrodinger operator with a weight
on compact domains in a unit sphere, a complex projective space and a minimal submanifold in
a Euclidean space. We also study the same problem on closed minimal submanifolds in a sphere,
compact homogeneous space and closed complex hypersurfaces in a complex projective space. We
give explict bound for the (k + 1)-th eigenvalue of the Schrédinger operator on such objects in
terms of its first k£ eigenvalues. Our results generalize many previous estimates on eigenvalues of
the Laplacian.

1. Introduction

Let M be a compact Riemannian manifold with or without boundary and let A
be the Laplace operator acting on functions on M. The study of the spectrum of A
is an important topic and many works have been done in this area during the past
years (see, e.g., [A], [Ch], [SY] and the references therein). When M = Q, where (2 is
connected bounded domain with smooth boundary in the n-dimensional Euclidean
space R™. The so called Dirichlet eigenvalue problem or the fized membrane problem
is stated as:

(1.1) Au=—Xu in Q, ulgg=0.
Let

O< A <A< A<
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denote the successive eigenvalues of (1.1). Here each eigenvalue is repeated according
to its multiplicity. In 1955 and 1956, Payne, Polya and Weinberger [PPW1], [PPW2]

proved that

A
A—Qgs for Q C R?

1
and conjectured that

A
A1 A1 gisk
with equality if and only if (2 is a disk. For n > 2, the analogous statements are
A 4
—231—1—— for Q CR",
/\1 n
and the PPW conjecture
N _h|
A1 AL | pball

with equality if and only if 2 is an n-ball. This important PPW conjecture was
solved by Ashbaugh and Benguria in their excellent papers [AB1], [AB2], [AB3|.
In [PPW2|, Payne, Polya and Weinberger also proved the bound

k
2
1.2 Mer1 — A < — Ni, k=1,2,...,
(12 L))
for O c R2. This result easily extends to  C R" as
4t
1. A — A <—§)\» k=1,2,...
( 3) k+1 k_kn £ X y &y )

Two main advances in extending (1.3) were made by Hile-Protter in [HP] and Yang
[Y], respectively. Namely, in 1980, Hile and Protter proved

Y kn
1.4 Y2 for k=12,
(1.4) M1 — AT 4

In 1991, Yang proved the following much stonger inequality:

: 4
(1.5) ZZI(A,M Ai) (Akﬂ (1 + n) >\Z> <0, fork=1,2....
By elementary calculations, one can show that Yang’s inequality (1.5) is sharper
than the inequality (1.4) of Hile-Protter and that (1.4) is sharper than the inequality
(1.3) of Payne-Polya—Weinberger (see [Al] and [A2]). In [A2], generalizing Yang’s
inequality (1.5), Ashbaugh [A2] considered eigenvalues of Schrédinger operators
with weight on bounded domains in R"™ and obtained universal bounds for them.
The inequalities on the higher eigenvalues of the Laplacian on a connected
bounded domain in R" obtained by Payne-Polya—Weinberger, Hile-Protter, Yang
have also been extended to some Riemannian manifolds (cf. [CY1], [CY2], [H1], [HS],
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[HM1], [HM2], [HS], [Leu], [Li], [YY]). In [CY1], Cheng and Yang studied eigenval-
ues of the Laplacian on either a bounded connected domain in an n-dimensional unit
sphere S"(1), or a compact homogeneous Riemannain manifold, or an n-dimensional
compact minimal submanifold in a unit sphere and obtained important bounds of
the (k + 1)-th eigenvalue in terms of the first & eigenvalues. Recently, Cheng—Yang
[CY2] obtained a general inequality for the eigenvalues of the Laplacian on compact
manifolds with boundary (possibly empty) and used it to obtain universal bounds
on eigenvalues of the Laplacian on compact domains or closed complex hypersur-
faces in a complex projective space. In this paper, we obtain a general inequality for
eigenvalues of Schrodinger operator with weight on compact Riemannian manifolds
with boundary (possibly empty). By using this inequality, we obtain explict bound
for the (k + 1)-th eigenvalue in terms of its first k eigenvalues of the Schrodinger
operator with weight on compact domains in a unit sphere, a complex projective
space and a minimal submanifold in a Euclidean space. We also prove similar re-
sults for closed minimal submanifolds in a sphere, compact homogeneous space and
closed complex hypersurfaces in a complex projective space.

Acknowledgements. The referee informed us that it has been shown by Harrell
[H2| and by El Soufi et al. [EHS| that universal bounds of the similar kinds, with
constant p, do not require the assumption that submanifolds are minimal. The
referee also suggested us to treat in a future article the case of variable weights and
arbitrary submanifolds. We are very grateful to the referee for the above information
and advice.

2. A general inequality for eigenvalues of Schréodinger
operator on compact Riemannian manifolds

In this section, we will prove a general result for eigenvalues of Schrodinger
operator with weight on compact manifolds. Namely, we have

Theorem 2.1. Let (M, (,)) be an n-dimensional compact Riemannian manifold
with boundary OM (possibly empty). Let V' a nonnegative continuous function on
M, and p a weight function which is positive and continuous on M. Denote by A
the Laplacian of M and consider the eigenvalue problem

(2.1) —Au+Vu=Npu in M, wulsp =0.

Let X\; be the i-th eigenvalue of (2.1) and w; be the orthonormal eigenfunction
corresponding to \;, that is, u; satisfies

(2.3) / puu; = 0;;, forany i,7=1,2,....
M

Then for any function h € C3(M) N C?(OM) and any integer k, we have
k

(24) > ks = AN VAP <) (Ao — Ai)

i=1 i=1

2

9

7
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1712 =/Mf2.

Remark 2.2. Theorem 2.1 generalizes the general inequality for eigenvalues of
the Laplacian in [CY2]. It is easy to see that when OM # (), the first eigenvalue of
the problem (2.1) is always positive. One can also check that when M = (), the
first eigenvalue of the problem (2.1) satisfies A\; > 0 with equality holding if and
only if V' = 0. In both cases, we use the same notations A\; < Ay < --+ — 00 to
represent the set of the eigenvalues of the problem (2.1).

where

Proof of Theorem 2.1. Set S = —A+V and consider the inner product given by
(f.9)) = [,, pfg- If a nontrivial function ¢ on M satisfying ¢|sas = 0 is orthogonal
to uy, usg, ..., ur with respect to the above inner product, then the Rayleigh—Ritz
inequality says that

Ju 8(59)
2.5 Apr1 <
( ) k+1 fM p¢2
For each 7+ = 1,...,k, following Payne, Polya and Weinberger, we consider the
functions ¢;: M — R, given by

k
(2.6) ¢i = hu; — Z AijUy,
j=1
where
(27) Q5 = / phuluj = Qjj-
Q
Since
(2.8) Gilorr = 0
and
(29) / pujgbi:O, Vi,jzl,...,k’,
M

it follows from the Rayleigh—Ritz inequality that

Jus 9i(595)
(2.10) Mppp < M2

R P

We have

k
(2.11) /p¢$:/ phui¢i:/ ph*ui = " aj,
M M M e
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Sgi = (—A+v)d;

2.12
( ) = —u;Ah + \iphu; — 2(Vh,Vu;) — Z AjQi; pu;

Multiplying (2.12) by ¢; and integrating over M, we get

(2.13) /Md)iSqﬁizAi/Mpd)f—z/Mapi<Vh,vui>—/Mui@Ah

Introducing (2.13) into (2.10), one arrives at

(2.14) (A1 — )/ pd; < /M ¢i (2(Vh,Vu;) +u;Ah) = w;.

Setting

1
bij = / Uj ((VUZ, Vh> + —UZA]'L> s
M 2

one gets from integration by parts that

bij + by = / (Vh,u;Vu; + u;Vug) + / uiu; Ah
M

(2.15) M
— [ (V) + [ waan=o
M M
and
1
bij = /(Vuz,ujvm 2/ wu;Ah
M
1
= —/ ;i div(uth)+—/ wiu; Ah
M 2 Ju
1
(2.16) M M

M

M

1
= / h(VUl, VU]> +/ hul(Vu] — )\ij]’) — —/ UZU]A}L
M M 2 M

= —\ja;; +/ h{Vu;, Vu;) +/ Vhuuj — %/ uu; Ah,
M M M
where div(Z) denotes the divergence of Z. Hence, we have
(2.17) bij — bji = (N — Aj)ay;
which, combining with (2.15), gives
(2.18) 2bij = (N — Aj)ag;.

323
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Since

/ hu;(2({Vh, Vui>+uiAh)—1/ <Vh2,vu§>+/ hu?Ah
M 2 M M

1
:——/ u?Ah2+/ huiAh = —||u; Vh||?,
2 Ju M

we have
k
M =
k
(2.19) = — / hui(2(Vh, Vi) + wAh) + 2 ayby;
M

j=1
k
= ||u;Vh[|* + Z()\
=1

By Schwarz inequality and (2.14), we infer
(Aot — Ay

)

= (Apy1 — { / N ( (2(Vh, Vi) +uiAh) =2 bij\/ﬁuj) }

Jj=1
2

< Ouns = MIVBOIE || = @070, Fuy + udh) — 23 by,

H\/_ Jj=1
= (Aot — A ||\/_¢z||2<

2(Vh, Vu;) + u;Ah)

|5
(‘ ' N 2(Vh, Vu;) + u;Ah)

=) (Ni- )‘j)2a?j) :

Hence
2 k

> (= N)a

j=1

Multiplying (2.20) by (Axy1 — A;) and taking sum on ¢ from 1 to k, we get
k k
D O = A)%ws <= (egr = M) (hi = \y)%a;
(221) o
+ Z()\k—f—l -\

i=1

2

1
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On the other hand, since a;; = aj;, it follows from (2.19) that
k k

k
Z()\k—i-l — \i)*w; = Z(Ak—&-l — X)W Vh||* + Z()\k-i-l — N2\ — /\j)a?j

=1 1= 1 =1
k

(2.22) = Z Aert = A2 VAP =Y e = M) (N = Ag)%ad.

=1

Introducing (2.22) into (2.21), one gets (2.4). This completes the proof of Theo-
rem 2.1. U

3. Eigenvalues of Schrodinger operator on compact domains
in 5"(1), CP"(4) and minimal submanifolds in R™

In this section, we will prove universal inequalities for eigenvalues of Schrédinger
operator on compact connected domains in a unit sphere, a complex projective space
and a minimal submanifold of a Euclidean space by using Theorem 2.1.

Theorem 3.1. Let (Q,{,)) be a compact connected Riemannian manifold with
smooth boundary 0S). Let V be a nonnegative continuous function on Q and p a
positive continuous function on Q. Set Vo = min, gV (z), P = max, g p(z) and
) = mingcq p(x). Denote by A the Laplacian of ) and let \; be the i-th eigenvalue
of the eigenvalue problem

(3.1) —Au+Vu=MXpu inQ, ulsgg=0.

i) If Q is a domain in a unit n-sphere, then
B3
(i)

=1

ii) If © is a domain in a complex projetive space C'P™(4) of complex dimension n
and of holomorphic sectional curvature 4, then

P (2n(n+1) W 1<
Ak+1§@(%—?°>+<1+—>gz

o (el
¥

oL
(e 2)in(v-am)
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iii) If Q) is a domian in an n-dimensional complete minimal submanifold of R™, then

k k 2
A 2P\ 1 oP( Vy 1
<20 el Y ey O
Py nQ+(1+nQ)k; +{<nQ< P+k2 ))
2

Remark 3.2 The items i), ii) and iii) in Theorem 3.1 generalize Theorem 1 in
[CY1], Theorem 1 in [CY2| and Theorem 4.1 in [A2], respectively.

Proof of Theorem 3.1. Let V be the gradient operator on €2 and let u; be the

i-th orthonormal eigenfunction corresponding to the eigenvalue \;, 1 = 1,2, ..., that
is, u; satisfies
(3.5) —Au; + Vu; = Npu; in Q, wylag =0,
(3.6) / puiy = 05, V1, ].
Q

Multiplying (3.5) by u; and integrating on €2, one has

(3.7) /Q|m-|2 /pu /Vu <N-D

We shall use (2.4) to prove the inequalities (3.2), (3.3) and (3.4), respectively.
i) Assume that €2 is a domain in a unit n-sphere S"(1). Denote by xy, zo, .. .,
Tp41 the standard coordinate functons of the Euclidean space R"*!; then

n+1

SN = {(z1, - xapa) € R”H;in =1}

a=1

It is well known that
(3.8) Ary = —nz,, a=1,...,n+1.
It follows by taking h = z, in (2.4) that

k

k
Z()\kJrl_ )| |us V| |* < Z Aer1 — Ai

i=1

2

2(Vza, Vu;) + u;Az,)

Summing over «, we get

k n+1 n+1 2
> kg1 — Z ||uiVaa|* < Z Mepr = A) Y %(QW%UVUQ + uAz,)
i=1 a=1

n+1

(39) SNy

a=1

2
—(2(Vxy, Vu;) — nu;z,
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1
From "7 22 =1 and (3.8), we have
n+1

(3.10) D |V =n
a=1

and so
n+1
(3.11) ZH%VOCQHQ_N/U >n/ P 1 :2
Since
n+1 n+1
(3.12) D (Vaa, Vi) = (Vui(za))® = V|,
a=1 a=1

one gets from (3.8) that

n+1 V
. <\ -2
(3.13) Z/ Vita, V)2 < A 5
Thus
n+1 2 n+1
—(2(Vz,, Vu;) — nu;z,) / 2(Vzy, Vu;) — mcaul)
a0 5
n+l n+1
[ {ona(e(E4) o
(3.14) @ a=1

n+1
—1 12 2 ~1,2
(Zm) >—4/Qp |Vu;|“ +n /Q,o u;
4 o n?
_Q/|Vuz|+ /puz_Q(/\— )+Q2

By introducing (3.11) and (3.14) into (3.9), we infer

k k 5
YDUNESYES JEMESY (5(-%)+5)

k
Vo n?
Z Net1 — ( i — -2 + E)

(3.15)

vl s

that is
k

(3.16) Z(Ak—f—l —

=1

@\w

Setting

Vi 2

Vo n?
P 4Q

Vi:/\i_

327
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then (3.16) gives

k AP k
(3.17) > (e — i)’ < v > (Wen — v
=1 =1

Solving this quadratic polynomial, we get

k

2P\ 1
<(1+=) 3w
”’”“(*n@)ki Y

This proves (3.2).

ii) Assume that ) is a domain in C'P"(4), the complex projective space of com-
plex dimension n and of holomorphic sectional curvature 4. Let z = (2o, 21, -+ , 2)
be a homogeneous coordinate system of CP"(4), (z; € C) and consider the functions

ZpZq
(318) hpq:ﬁ, p,q:O,l,...,n.
Setting g,z = Re(hyg) and f, = Im(h,g), p,g=0,1,...,n, we have (cf. [CY2|)

n

319) D+ S =1
p,q=0

(3.20) Z (992V 9pq + foqV fra) =0,

p,q=0
n n

(3.21) Z ((Vpa: Vayz) + (V Sz, Vrg) = — Z (9928 Gpg + fal frg) = 4n,
p,q=0 p,q=0

(3.22) Z (AgygV9pg + AfyaV frg) =0,
P,q=0

(323) > (Agugug + Afyglfyg) = 16n(n + 1),

p,q=0
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n

(3.24) > (Vg Vi) + (V fr, Vui)®) = 2|V .

p,g=0

Applying Theorem 2.1 to the functions g,; and f,; and summing over p and ¢, we
obtain

S st — ) / S (gl + 19 foal )

=1 p,q=0

k 2
(325) Z )\k+1 - ( ‘ ‘ Vgpq7 Vuz> + UzAgpq)

P = \lvp

1 2
+ —p(Q(prq, V) + wiA fr) )

From (3.21), we have

- 2 2 5 An
(3.26) > (1Sl + ¥ gl ) = n [ o> 35,

p,q=0

It follows from (3.22)—(3.24) that

prqv Vu;) + uzAqu)

|5
- Z / (Vya, Vui)® +(V fog, Vu)?)

)

(Vapg, Vi) + uiAgyg)
> (|5e

p,q=0
(3.27) + Z / Agqugpq + Aquprq,uquZ)
p,g=0
+ Z/ Agpq Aqu) ) U;
p,g=0

_ 2 ui o 8 (), Yo\ 16n(nt1)
_/Q;|VUZ| +16n(n+1)/ <0 ()\ P) + o

Substituting (3.26)—(3.27) into (3.25), we infer

k k 8 1% 16 1
T ]
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Therefore,

P (2n(n+1) V, 1<
< (2t 79 N R
A1 < - ( P) <1+ )k;/\z

Q
2
+{( <2nn+1 kZA>
2P\ 1 ¢ 1 1Y
Thus (2.4) holds.

iii) Finally, assume that €2 is a domain in an n-dimensional minimal submainfold

M of R™. Let x1,x9,..., %, be the standard coordinate functons of R™. Since M
is a minimal submanifold in R™, we have
(3.28) Az, =0, a=1---,m.

Taking h = z, in (2.4) and summing over «, we get

m 2

k m k
1

(329) D (k1 = M) D NuiVaal[? 4> (Aor = M) Y [|—=(Vaa, Vi)

i=1 a=1 i=1 a=1 \/ﬁ
Since
(3.30) > (Vo Vi) = (Vui(za)® = V|

a=1 a=1
and (cf. [D])
(3.31) D |V =n,
a=1

we have

.32 = 25 I
(332 STl <o [ = 3

and
2 1 A
(3.33) Z 7<vg;a,vm> <3 ()\Z- - F) .

Substituting (3.32)—(3.33) into (3.29), one gets

n < , 4 Vo
(3.34) 5 ;(Akﬂ —N)? < 0 Z(Akﬂ —\) ()\i — F) .
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Consequently, we have

2V; 2P\ 1 2P [V 1 2
)\k+1§—n—é)+(1+@>%z)\i+{<@<—?O+EZ)\¢)>

which proves (2.5). This completes the proof of Theorem 3.1. O

4. Eigenvalues of Schrédinger operator on closed minimal submanifolds
in S™(1), complex hypersurfaces in CP""(4) and homogeneous spaces

In this section, we shall use the similar methods as in the last section to prove
the following result:

Theorem 4.1. Let (M, (,)) be a closed connected Riemannian manifold. Let
V' be a nonnegative continuous function and p a positive continuous function on M.
Set Vo = mingep V(z), P = max,en p(z) and QQ = mingepy p(x). Denote by A the
Laplacian of M and let \; be the i-th eigenvalue of the eigenvalue problem

(4.1) —Au+ Vu=Apu on M.

i) If M is an n-dimensional minimal submanifold in S™(1), then
2P (1 Vj 2P\ 1 @
M1 < — [ —=—-—= I+— =) N
S 00 (4@ P) +( +nQ) k:zl
2P (02 Vy 1 i
n 0
: — | —=—-—=+=)> X\
(42) +{<n@(4@ P ))
) . 2\ 1/2
4P\ 1 1

ii) If M is a complex hypersurface in C P"*1(4), then

P (2n(n+1) V, P\1g
s g (Mg )+ (g i

(4.3) +{<% (M—%+%D>
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iii) If M is an n-dimensional homogeneous space, then

P (v, V, 2P\ 1 <&
wasy (- p)(105) 1 2

AP\ 1 @ 1 V1
()i (s |
where vy is the first nonzero eigenvalue of the Laplacian of M.

Remark 4.2. The items i), ii) and iii) in Theorem 4.1 generalize Theorem 3 in
[CY1], Theorem 2 in [CY2| and Theorem 2 in [CY1], respectively.

Proof of Theorem 4.1. Let u; be the i-th orthonormal eigenfunction correspond-
ing to the eigenvalue \;, © = 1,2, ..., that is, we have

Q
Multiplying (4.5) by u; and integrating on €2, one has

(4.5) /Q\Vui|2 /pu —/Vu <AN——

The proof of (4.2) and (4.3) is similar to that of (3.2) and (3.3), respectively and
we will only give the outlines.
i) Assume that M is an n-dimensional minimal submanifold in S™(1). Denote

by 1,2, ..., Tmy1 the standard coordinate functons of the Euclidean space R™*!;
then
m—+1
Sm(l) = {<x17 cee 7xm+1> S Rm+1; Z le'i -
a=1

Since M is a minimal submanifold in S™(1), we have
(4.6) Az, = —nx,, a=1,...,m+1.

It follows by taking h = z, in (2.4) and summing over « that

m+1

k
Z Akl — Z [|ui Vo]

(4.7) =1

m+1

k
Z)\k—H_ : Z
i=1 =1

1 2
—(2(Vxy, Vu;) — nu;z,
ﬁ( ( ) )
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Since "' 22 = 1 and (4.7) hold, we have

a=1
m+1

(4.8) Z Vzo|* =n
a=1

which gives

m+1 2

pu; n
(4.9) E || Vi, ||? Zn/ u? > n/ L=
a=1 M 9] P P

It follows from (4.4) and

m+1 m—+1
(4.10) D (Vi V) = (Vui(xa))® = V],
a=1 a=1
that
m+1 V,
4.11 Vi, Vu)2 <\ — —2.
(4.11) >/ EEP Y

Using the same arguments as in the proof of i) in Theorem 3.1, one knows that (4.2)
1s true.
ii) Now consider the case that M is a complex hypersurface in C'P"*!(4). Let
2 = (20,21, -, 2n41) be a homogeneous coordinate system of CP""(4), (z; € C)
and consider the functions
2p%
(4.12) hpq:%, p,g=0,1,--- ,n+1.

Setting g, = Re(h,z) and f,z = Im(h,z), p,¢q=0,1,...,n, we have (cf. [CY2])

n+1
(4.13) Z (9 + foa) = 1,
P,q=0
n+1
(4.14) Z (97V 9pa + foaV fra) = 0,
P,q=0
n+1 n+1

(4-15) Z (<V9pﬁ7 Vgp§> + <prﬁv prﬁ)) == Z (gpﬁAgpé + fpéAfpﬁ) = 4n,
p,q=0 p,q=0
n+1
(4.16) Z (Agp7V g + AfpaV frg) = 0,
p,q=0
n+1
(417) > (Agugpg + Afygl fyg) = 16n(n + 1),

p,q=0
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n+1
(4.18) > (Vg Vi) + (V fig, Vui)?) = 2|V .
P,q=0
Applying Theorem 2.1 to the functions g,; and f,; and summing over p and ¢, we
obtain
n+1

Z()‘k—H - A / Z ||uzv9pq||2 + [ prq” )
i=1 p,q=0
k n+1 2
(4.19) Z (Met1 — < H 2(Vgyg, V) + u;Agyz)
pa o \ VP

(2(V fpgs Vi) + wiA fr)

)

Since (4.14)—(4.20) hold, one can use the same discussions as in the proof of ii) in
Theorem 3.1 to conclude that (4.3) is true.

iii) Let { fo}',—; be an orthonormal basis of the first eigenspace F,,, corresponding
to the first nonzero eigenvalue v; of the eigenvalue problema

Af=—-vf on M,

that is, we have
(4.20) Afy=—11f0, a=1,...,1
It is known that (cf. [Li])

l
(4.21) ng = (? = Const.
a=1
Applying Theorem 2.1 to the functions f, and summing over «, we get
k
> =3 [ (s
=1

(4.22) = . |
S Z )\kJrl / {_ Z vfa; VUZ) Vluzfa) }
i=1 P a=1
From (4.20)-(4.21), we have
l
(4.23) Zfana =0, > |Vfu*=nC
a=1 a=1

Also, we have from Schwarz inequality that

l
(4.24) (Vo Vi) < IV Lol Vi = 11 C? [V

a=1
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Substituting (4.23)—(4.24) into (4.22), we infer

k k
1
1C*Y (A1 — )\i)z/ u? < (A1 — )\i)/ ~ (4 C? |V, | + viuiC?)
i=1 M i=1 M P
That is
k k 1
(425) Z()\]H_l — )\2)2/ U,? S Z()\]H_l — )\z)/ - (4 |VUZ|2 + Vlu?)
i=1 M i=1 M P
Since

1 | 1?1
M P M P M P Q P

we infer from (4.25) that

j=1 =1
This shows that (4.4) holds and completes the proof of Theorem 4.1. O
References
[A1] ASHBAUGH, M. S.: Isoperimetric and universal inequalities for eigenvalues. - In: Spectral

theory and geometry (Edingurgh, 1998), E. B. Davies and Yu. Safalov eds., London Math.
Soc. Lecture Note Ser. 273, Cambridge Univ. Press, Cambridge, 1999, 95-139.

[A2] AsHBAUGH, M. S.: Universal eigenvalue bounds of Payne-Polya—Weinberger, Hile-Prot-
ter and H. C. Yang. - Proc. Indian Acad. Sci. Math. Sci. 112, 2002, 3-30.

[AB1] AsHBAUGH, M.S., and R.D. BENGURIA: Proof of the Payne-Polya—Weinberger conjec-
ture. - Bull. Amer. Math. Soc. 25, 1991, 19-29.

[AB2] AsHBAUGH, M.S., and R.D. BENGURIA: A sharp bound for the ratio of the first two
eigenvalues of Dirichlet Laplacian and extensions. - Ann. of Math. (2) 135, 1992, 601-628.

[AB3] AsmBAUGH, M.S., and R.D. BENGURIA: A second proof of the Payne-Polya—
Weinberger conjecture. - Commun. Math. Phys. 147, 1992, 181-190.



336

[Ch

[CY1]

[CY2]

D]
[EHI]|
[H1]
|H2|
[FIM1]

[FIM2]

[HS]

[HP]
[Leu]
[Li]
[PPW1]
[PPW2]

[SY]

Y]

[YY]

Qiaoling Wang and Changyu Xia

CHAVEL, I.: Eigenvalues in Riemannian geometry. Including a chapter by Burton Randol.
With an appendix by Jozef Dodziuk. - Pure and Applied Mathematics 115, Academic
Press, Inc., Orlando, FL, 1984.

CHENG, Q. M., and H. C. YANG: Estimates on eigenvalues of Laplacian. - Math. Ann.
331, 2005, 445-460.

CHENG, Q. M., and H. C. YANG: Inequalities for eigenvalues of Laplacian on domains
and compact complex hypersurfaces in complex projective spaces. - J. Math. Soc. Japan
58, 2006, 545-561.

DierkES, U.: Maximum principles and non-existence results for minimal submanifolds.
- Manuscripta Math. 69, 1990, 203-218.

EL Sourr, A., E. M. HARRELL, II, and S. IL1AS: Universal inequalities for the eigenval-
ues of Laplace and Schrédinger operator on submanifolds. - arXiv:0706.0910.

HARRELL, E. M.: Some geometric bounds on eigenvalue gaps. - Comm. Partial Differen-
tial Equations 18, 1993, 179-198.

HARRELL, E. M.: Commutators, eigenvalue gaps, and mean curvature in the theory of
Schrédinger operators. - Comm. Partial Differential Equations 32, 2007, 401-413.

HARRELL, E. M., and P. L. MICHEL: Commutator bouds for eigenvalues, with applica-
tions to spectral geometry. - Comm. Partial Differential Equations 19, 1994, 2037-2055.

HARRELL, E. M., and P. L. MicHEL: Commutator bouds for eigenvalues of some differ-
ential operators. - Lecture Notes in Pure and Appl. Math. 168, eds. G. Ferreyra, G.R.
Goldstein and F. Neubrander, Marcel Dekker, New York, 1995, 235-244.

HARRELL, E. M., and J. STUBBE: On trace inequalities and the universal eigenvalue
estimates for some partial differential operators. - Trans. Amer. Math. Soc. 349, 1997,
1797-1809.

HiLe, G. N., and M. H. PROTTER: Inequalities for eigenvalues of the Laplacian. - Indiana
Univ. Math. J. 29, 1980, 523-538.

LeuNG, P.F.: On the consecutive eigenvalues of the Laplacian of a compact minimal
submanifold in a sphere. - J. Aust. Math. Soc. 50, 1991, 409-416.

L1, P.: Eigenvalue estimates on homogeneous manifolds. - Comment. Math. Helv. 55,
1980, 347-363.

PAyNE, L. E., G. POLYA, and H. F. WEIBERGER: Sur le quotient de deux fréquences
propres cosécutives. - C. R. Acad. Sci. Paris 241, 1955, 917-919.

PAYNE, L. E., G. POLYA, and H. F. WEIBERGER: On the ratio of consecutive eigenvalues.
- J. Math. and Phys. 35, 1956, 289-298.

SCHOEN, R., and S. T. YAU: Lectures on differential geometry. - Conference Proceedings
and Lecture Notes in Geometry and Topology, I, International Press, Cambridge, MA,
1994.

YANG, H. C.: An estimate of the difference between cosecutive eigenvalues. - Preprint
IC/91/60 of ICTP, Trieste, 1991.

YANG, P.C., and S. T. YAU: Eigenvalues of the Laplacian of compact Riemann surfaces
and minimal submanifolds. - Ann. Sc. Norm. Super. Pisa Cl. Sci. (4) 7, 1980, 55-63.

Received 10 May 2006



