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Abstract. We show that any compact semigroup of n× n positive matrices

is similar (via a positive diagonal similarity) to a semigroup bounded by
√
n.

We give examples to show this bound is best possible. We also consider the
effect of additional conditions on the semigroup and obtain improved bounds

in some cases.

1. Introduction

It is an old and well-known result (originally shown by Auerbach [1]) that if G
is a compact group of n× n (real or complex) matrices, then G is (simultaneously)
similar to a group of unitary matrices. In particular, as unitaries act as invertible
isometries with respect to the usual operator norm on Mn(R) (resp. Mn(C)), we see
that given such a group G, it is similar to a group whose elements are uniformly
bounded in (operator) norm by 1.

In [6], the first, second and fourth authors obtained a corresponding result for
compact semigroups of n×n matrices by showing that if S is a compact semigroup
of (real or complex) n× n matrices, then there exists an invertible n× n matrix R
such that with

T = R−1SR := {R−1SR : S ∈ S},
we find that

‖T ‖ = max{‖T‖ : T ∈ T } ≤
√
n.

Furthermore, this bound is optimal in the sense that there exist compact semigroups
S in Mn(R) (or Mn(C)) for which

inf{‖R−1SR‖ : R invertible} =
√
n.

It is also shown in [6], that under additional assumptions on the semigroup S the
bound can be improved.

In this paper we consider analogous problems for semigroups of positive matrices
(matrices whose entries are non-negative).

The similarities which preserve positivity (i.e. the invertible matrices X for
which X−1AX is positive whenever A is positive) are those of the form X = DP
where D is a diagonal matrix with positive diagonal entries and P is a permutation
matrix. Since permutation matrices are norm-preserving, the universal bound prob-
lems analogous to those answered in [6] (there, for the case of general semigroups
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– i.e. semigroups not necessarily consisting of positive matrices), one should con-
sider similarity under a restricted set of invertible matrices: the positive diagonal
matrices.

There is a well-known result in the group case here as well. If G is a compact
group of positive n× n matrices, then G is (simultaneously) similar (via a positive
diagonal similarity) to a group of permutation matrices. (This is an easy conse-
quence of the Perron-Frobenius Theorem, and a self-contained proof can be found
as Lemma 5.1.11 of [9].) As permutation matrices are invertible isometries as well,
we see that any such group is similar (via a positive diagonal similarity) to a group
whose elements are uniformly bounded in (operator) norm by 1.

What about the corresponding questions for semigroups of positive matrices?

(1) Given a compact semigroup S of positive n × n matrices, for what values
of KS > 0 do there exist a positive invertible diagonal matrix D such that

sup
{
‖D−1SD‖ : S ∈ S

}
≤ KS?

(2) Do there exist universal constants Kn (independent of the semigroup), for
each n = 1, 2, . . ., such that for each compact semigroup S of positive n×n
matrices, we have a positive invertible diagonal matrix D such that

sup
{
‖D−1SD‖ : S ∈ S

}
≤ Kn?

Also, if such universal constants do exist, what is the best value of Kn?

Perhaps surprisingly, in many cases, the answer for the general semigroups –
using general similarities – and for the positive semigroups – using positive diagonal
similarities – are the same, despite the difference in structure of the semigroups and
the difference in the methods used to obtain the results.

Before proceeding, we provide a list of basic definitions and notations used.

Definition 1.1.

• A matrix A = [ai,j ]
n
i,j=1 is said to be positive if each entry is non-negative

(ai,j ≥ 0 for all i, j = 1, 2, 3 . . . n). A set of matrices is positive if each
matrix in the set is positive. The set of all positive n × n matrices will be
denoted by Mn(R+).
• A semigroup of n × n matrices is a set S in Mn(R) which is closed under

matrix multiplication.
• The standard basis of Rn is the set of vectors {ei}ni=1, where ei is the vector

in Rn with a one in the i-th entry and zeros elsewhere.
• A standard subspace is a subspace of Rn spanned by some subset of the

standard basis.
• A semigroup S in Mn(R) is indecomposable if it has no invariant standard

subspaces other than {0} and Rn. If a semigroup is not indecomposable,
then it is called decomposable.
• A semigroup S in Mn(R) is monomial (resp. submonomial if for each
S ∈ S exactly (resp. at most) one entry of any row or column of S is
non-zero.
• The (`2) norm of a vector x in Rn is denoted ‖x‖ and is the square root of

the sum of squares of its entries. The (operator) norm of a matrix A in
Mn(R) is

‖A‖ = max{‖Ax‖ : ‖x‖ ≤ 1}
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which is the norm of a largest vector in the image (under A) of the unit
ball in Rn.
• The spectral radius ρ(A) of a matrix A in Mn(R) is the modulus of the

largest eigenvalue and is also given by

ρ(A) = lim
k→∞

‖Ak‖1/k.

In Section 2, we give an affirmative answer to question (2) above, showing that
every compact semigroup of positive matrices is similar (via a positive diagonal
similarity) to a semigroup which is bounded in norm by

√
n.

In Section 3, we consider compact semigroup of positive matrices with additional
conditions (such as commutivity, self-adjointness, rank conditions, etc.) and in some
cases we obtain strict improvements to the bound

√
n .

2. Universal Bound Theorem

One of our main results is the following.

Theorem 2.1. If S is a compact semigroup in Mn(R+), then there is an n × n
positive diagonal matrix D such that D−1SD is bounded by

√
n.

We will need a few basic facts about positive vectors:

(1) the usual (`2) norm on Rn is monotonic, in the sense that: for vectors x
and y in Rn, if 0 ≤ x ≤ y (entrywise) then ‖x‖ ≤ ‖y‖;

(2) for x and y vectors in Rn, with 0 ≤ x ≤ y and S a positive n × n matrix,
Sx ≤ Sy;

(3) if, for each x in Rn we let |x| denote the vector in Rn+ whose entries are
the absolute values of the corresponding entries of x, then for any positive
matrix S,

‖Sx‖ ≤ ‖S|x|‖
(so positive matrices achieve their norms at positive vectors) and

S|x+ y| ≤ S|x|+ S|y| for all x, y ∈ Rn and S ∈ S.

Another key component of our proof is the Fritz John Theorem [4] on symmetric
convex bodies. A symmetric convex body K is a bounded convex set in Rn with
non-empty interior and with the property that if x ∈ K then −x ∈ K. The Fritz
John Theorem relates such sets to ellipsoids.

Theorem 2.2 (Fritz John [4] ). Let K ⊂ Rn be a symmetric convex body. Then
there is a unique ellipsoid E ⊆ K of maximum volume and for this ellipsoid, K ⊆√
nE.

Proof of Theorem 2.1. With no loss of generality we assume that the identity ma-
trix I is in S. Then we define a new norm ‖ · ‖S on Rn as follows: for x ∈ Rn

let

‖x‖S = sup
S∈S
‖S|x|‖.

Using the basic facts mentioned above (especially (3)), it is easy to verify that this
is a norm on Rn.

All norms on Rn are equivalent, so the unit ball of this new norm,

B = {x ∈ Rn : ‖x‖S ≤ 1},
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is a compact, convex set with non-empty interior. Clearly y ∈ B implies −y ∈ B so
B is a symmetric convex body. Since S is a semigroup, S(B) ⊆ B for all S ∈ S.

It is immediate from the definition that B is also invariant under an application
of any diagonal matrix with diagonal entries 1 or −1. Hence the ellipsoid E in B
(from the Fritz John Theorem) is also invariant under an application of any diagonal
matrix with diagonal entries 1 or −1 (i.e. reflections in the standard axes), and
hence is a standard ellipsoid (all its axes are in the direction of standard vectors).
Of course, also by the Fritz John Theorem:

E ⊂ B ⊂
√
nE .

Any ellipsoid in Rn which is centered at the origin (like the Fritz John ellipsoid)
is an image of the unit ball (in the usual `2) norm under an invertible matrix X.
With no loss of generality we may assume that X is positive definite, since (by
polar decomposition), X = DU where D is positive definite and U is unitary, but
the unitary part leaves the unit ball invariant). Since E is a standard ellipsoid, the
positive definite invertible D can be taken to be a diagonal matrix (whose diagonal
entries are the stretching factors required in each standard direction to deform the
unit ball into E).

So if B1 = {x ∈ Rn : ‖x‖ ≤ 1}, then we have that D(B1) = E .
Now, apply the similarity corresponding to this diagonal D to our semigroup.

For any S in S,

D−1SDB1 = D−1SE ⊆ D−1SB
⊆ D−1B ⊆ D−1

√
nE =

√
nB1.

Hence ‖D−1SD‖ ≤
√
n for all S ∈ S and the Theorem is proven. �

Example 2.1. If we let [0, 1]n = {y ∈ Rn : 0 ≤ yi ≤ 1, for i = 1, 2, . . . , n} then it
can be shown that the positive semigroup

S[0,1]n =
{
S ∈Mn(R+) : S[0, 1]n ⊆ [0, 1]n

}
is a compact semigroup of norm

√
n whose norm cannot be lowered by a positive

diagonal similarity.
In fact, if we let 1n denote the vector in Rn with all entries equal to 1, then

Fn = {ei1∗n : i = 1, 2, . . . , n}
is a finite subsemigroup of S[0,1]n which clearly has norm bound

√
n. If we applied

a positive diagonal similarity D = diag(α1, α2, . . . , αn) to this semigroup we would
obtain the semigroup

{αi
−1eiα

∗ : i = 1, 2, . . . , n}
where α∗ = (α1, α2, . . . , αn). Considering norms of elements of this new semigroup
we see that

‖D−1FnD‖2 = max
i
‖αi
−1eiα

∗‖2 = max
i

1

αi
2

n∑
j=1

α2
j

If D reduced the norm below
√
n we would have that

n∑
j=1

α2
j < nα2

i

for all i = 1, 2, . . . , n. Summing both sides over such i shows this is impossible.
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3. Bounds under additional conditions on the semigroup

As in the general (non-positive) case, we have a dichotomy based on the minimal
rank of the semigroup. Semigroups containing rank-one matrices are not (in gen-
eral) similar to semigroups whose norm is less than

√
n, while groups of invertibles

are always similar to groups whose norm is equal to 1. There is evidence to support
the conjecture that for semigroups of constant rank r, the higher r, the lower the
norm bound that can be achieved. The following example hints at the relation
between r and the minimal norm bound that can be achieved.

Example 3.1. Let r be an natural number less than or equal to n and let Tr denote
the semigroup in Mn(R+) consisting all matrices T with the following properties.

With respect to the decomposition Rn = Rn−r+1 ⊕ R ⊕ R ⊕ · · · ⊕ ⊕R (r direct
summands) :

(1) T is sub-monomial (that is, the matrix of T with respect to the above de-
composition has at most one non-zero entry in any row or column),

(2) T11 (the (n − r + 1) × (n − r + 1) block) is from Fn−r+1 = {ei1∗ : i =
1, 2, . . . , n} ∪ {0},

(3) T1,j for j = 2, 3, . . . , r, is from {ej : j = 1, 2, . . . , n− r + 1} ∪ {0},
(4) Ti,1 for i = 2, 3, . . . , r, is either 1, {0},
(5) Ti,j for i, j = 2, 3, . . . , r is either 0 or 1,

(where the {0} indicates a zero matrix of the appropriate size.)
Then it is easily seen that this is a finite (hence compact) positive semigroup,

and since it includes the block diagonal semigroup

Fn−r+1 ⊕ {Ir−1},

it follows from the argument in Example 2.1 that its norm can not be reduced below√
n− r + 1 by a positive diagonal similarity.

Conjecture 3.1. If S is a compact positive semigroup in Mn(R+) with rank(S) = r
for all S in S, then there exists a positive diagonal invertible matrix D such that
D−1SD is bounded by

√
n− r + 1.

One other case of interest is when our semigroup is singly generated and inde-
composable. Then, with a little work after using the Perron-Frobenius Theorem
(see [8], [3], or see [9] for a more modern treatment), it can be shown that we
can achieve a bound of norm 1 after a diagonal similarity. It turns out that the
hypothesis of being singly generated can be significantly weakened and we can still
achieve the same bound.

We need a two preliminary lemmas before stating our general theorem in this
case. These lemmas are well known among mathematicians who work with positive
matrices, but we include their proofs for completeness.

Lemma 3.2. If S in Mn(R+) is an indecomposable semigroup and ρ(S) = 1 for
all S ∈ S, then S is bounded.

Proof. If S is not bounded then there exist {Sn}∞n=1 in S and some (i, j) such that
(Sn)i,j → ∞. But S is indecomposable so there exists T in S such that Tj,i > 0.
Then consider

(SnT )i,i ≥ (Sn)i,j Tj,i.
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For some n we must have that

(SnT )i,i = α > 1

and hence, taking powers, (SnT )
m

has a diagonal entry larger than αm. But then

ρ(SnT ) = lim
m→∞

‖(SnT )m‖1/m ≥ lim
m→∞

(
(SnT )

m
i,i

)1/m
≥ α > 1,

a contradiction. �

Lemma 3.3. If A in Mn(R+) is such that there exists x ∈ Rn with all entries of x
strictly positive and Ax = x then ρ(A) = 1.

Proof. Take a maximal chain of standard invariant subspaces {Ni} for A and then
apply Perron-Frobenius Theorem to A restricted to Ni 	Ni−1. �

Theorem 3.4. Let S be an indecomposable semigroup in Mn(R+) with ρ(S) = 1
for all S in S. If a minimal idempotent E in S satisfies the condition that for all
S in S

SE = ES

then there exists a positive diagonal similarity D, such that

‖D−1SD‖ ≤ 1 for all S ∈ S.

Proof. Let E be a minimal idempotent satisfying the conditions of the Theorem.
Then minimality implies that there are standard subspaces {Mi}ri=1 such that Rn =
M1 ⊕M2 ⊕ · · · ⊕Mr and that, with respect to this decomposition, E is the direct
sum of indecomposable rank-one matrices. So

E =


x1y
∗
1

x2y
∗
2

. . .

xry
∗
r


where each xi and yi is a vector with strictly positive entries and y∗i xi = 1 for all
i = 1, 2, . . . , r (see [2]). Let D be the positive diagonal matrix such that (restricted
to Mi) D

2xi = yi. Then

P = DED−1 =


z1z
∗
1

z2z
∗
2

. . .

zrz
∗
r


where each zi is a unit vector with strictly positive entries. By applying this diag-
onal similarity to our semigroup, we may now assume that E = P is self-adjoint
and we need to show that all elements of S are contractions.
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Denote the block matrix of S in S with respect to the decomposition Rn =
M1 ⊕M2 ⊕ · · · ⊕Mr by [Si,j ]. Now SP = PS, so:

S1,1 S1,2 S1,r

S2,1 S2,2 S2,r

. . .

Sr,1 Sr,2 Sr,r



z1z
∗
1

z2z
∗
2

. . .

zrz
∗
r



=


z1z
∗
1

z2z
∗
2

. . .

zrz
∗
r



S1,1 S1,2 S1,r

S2,1 S2,2 S2,r

. . .

Sr,1 Sr,2 Sr,r

 .
Multiplying, we obtain that

Si,jzjz
∗
j = ziz

∗
i Si,j .

For these rank-one matrices to be equal, it must be the case that there exist con-
stants αi,j > 0, for i, j = 1, 2, . . . r such that Si,jzj = αi,jzj .

Let ẑi denote the vector in Rn whose i-th entry with respect to the decomposition
Rn = M1⊕M2⊕· · ·⊕Mr is zi and whose other entries are zero. Next, consider the
subspace P (Rn), which is the span of {ẑi}ri=1. Since, for each S in S, SP = PS,
this subspace is reducing for S. With respect to the decomposition Rn = P (Rn)⊕
P⊥ (Rn), each S in S has the form

S =

[
AS 0
0 BS

]
where AS = [αi,j ] is a matrix with non-negative entries and BS is some (possibly
not positive) matrix.

The minimality of the idempotent E implies that each AS is invertible, and
that {PSP |PRn : S ∈ S} is a compact semigroup of invertible positive matrices
and hence a group. By Lemma 5.1.11 of [9] this group must consist of monomial
matrices. However, this group is also self-adjoint, which implies that the group
consists of permutation matrices

This means that exactly one [αi,j ] in any row or column is nonzero. However,
since Si,jzj = αi,jzj and zj is strictly positive, if αi,j = 0,then Si,j = 0. Thus,
with respect to the decomposition Rn = M1 ⊕M2 ⊕ · · · ⊕Mr, S = [Si,j ] is block
monomial (at most one block in any row or column of the block matrix with respect
to this decomposition is non-zero).

Each entry of each AS is either 0 by 1. This implies that

(S∗i,jSi,j)zj = zj

By Lemma 3.3, a positive matrix admitting a positive eigenvector whose corre-
sponding eigenvalue is 1 must have spectral radius 1, and so

‖Si,j‖2 = ‖S∗i,jSi,j‖ = ρ(S∗i,jSi,j) = 1

This implies that S has norm 1.
�

Corollary 3.5. Let S in Mn(R+) be a semigroup generated by an indecomposable
postitive matrix A with ρ(A) = 1. Then there exists a positive diagonal similarity



8 L. LIVSHITS, G. MACDONALD, L. MARCOUX, AND H. RADJAVI

D such that

‖D−1SD‖ ≤ 1 for all S ∈ S.

Proof. The Perron-Frobenius Theorem (see Corollary 5.2.13 of [9]) guarantees the
existence of a minimal idempotent E satisfying the conditions of Theorem 3.4. �

The hypothesis that our semigroup is indecomposable (in Theorem 3.4 and Corol-
lary 3.5) can be removed, if we are willing to replace the bound of 1 by 1 + ε for
ε > 0. In general, we have the following:

Theorem 3.6. Let S be a compact semigroup in Mn(R+), and let

{M0 = {0} ⊂M1 ⊂M2 ⊂ · · · ⊂Mk = Rn}
be a chain of standard invariant subspaces S. Let PNi denote the projection onto
Ni = Mi	Mi−1 and let Si = PNi

S|Ni
. If there exists γ ∈ R+ and positive diagonal

invertible matrices Di acting on Ni such that

‖D−1i SiiDi‖ ≤ γ for all Sii in Si,
then for all ε > 0 there exists a positive diagonal invertible matrix D such that

‖D−1SD‖ ≤ γ + ε for all S in S.

Proof. Given ε > 0, by compactness there is a δ > 0 such that the matrix D, which
is block diagonal with respect to the decomposition Rn = N1⊕N2⊕ · · ·Nk defined
as follows

D = D1 ⊕ δD2 ⊕ δ2D3 ⊕ · · · ⊕ δk−1Dk,

has the required property. �

Corollary 3.7. Let S in Mn(R+) be a semigroup generated by a positive matrix
A with ρ(A) = 1 and let ε > 0. Then there exists a positive diagonal similarity D
such that

‖D−1SD‖ ≤ 1 + ε for all S ∈ S.

In closing, we note that, while we have looked only at the finite-dimensional
case, Theorem 3.4 admits an infinite-dimensional analogue whose proof is almost
identical to the one given above.

Theorem 3.8. Let S be an indecomposable semigroup acting on L2(X,µ), where
X is Hausdorff-Lindelöf and µ is a σ-finite regular Borel measure on X. If S
consists of positive compact operators with ρ(S) = 1 for all S in S and a minimal
idempotent E in S satisfies the condition that for all S in S

SE = ES

then there exists a positive invertible multiplication operator Mϕ (so ϕ ∈ L∞(X,µ)),
such that

‖M−1ϕ SMϕ‖ ≤ 1 for all S ∈ S.

The proof follows as the proof of Theorem 3.4. The continuity of spectral radius
on compact operators [7] is needed, and finite-dimensional results on the structure
of positive idempotents and the Perron-Frobenius Theorem are replaced by infinite-
dimensional versions ([10], [5]).
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