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1 Introduction

At low energies, theories of quantum gravity are straightforward to formulate quantitatively

as effective field theories. However, the universal coupling of gravity implies that, unlike

gauge theories, at high energies gravity has no decoupling limit where it can be separated

from the matter content of the theory. This might lead one to expect that precise statements

about the spectrum or dynamics of gravity at high energies would necessarily be contingent

on some knowledge of the low-energy spectrum. Conversely, insisting on various criteria

for the behavior of the ultraviolet description ought to impose non-trivial constraints on

the behavior of the theory at low-energies.

Holographic approaches allow one to make this intuition precise and to extract quanti-

tative predictions by turning a poorly-defined question, that of how to formulate the space

of UV-complete theories of gravity, into sharp questions about observables at the bound-

ary of space-time. In flat space, the corresponding observable is the S-matrix, and the

implications of analyticity and other axioms of the S-matrix provide a path to constraining

the dynamics of the theory [1]. Turning on a small negative cosmological constant, the
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theory apparently remains nearly unchanged locally; yet the global Anti de Sitter space-

time structure is radically different, and the boundary observables now comprise the full

dynamics of a Conformal Field Theory [2–4]. In fact, the structure of CFTs is sufficiently

rigid that it is possible to derive universal constraints on the dynamics and spectrum of

all theories of gravity in AdS at low and high energies [5–13]. Such constraints clearly can

also be applied to the full space of CFTs, which is a central area of study in its own right.

The most powerful such methods are found in the case of the correspondence between

three-dimensional gravity in Anti de Sitter space and two-dimensional Conformal Field

Theories, i.e. AdS3/CFT2. All graviton degrees of freedom are purely boundary excitations

whose dynamics are completely fixed by the infinite conformal symmetry in two dimensions.

Moreover, modular invariance of the theory at finite temperature relates the spectrum at

high energies and the spectrum at low energies. This makes it possible to draw sharp

conclusions about the high-energy dynamics as a function of the assumptions about the

low-energy spectrum. One can even derive properties that are common to all gravitational

theories, i.e. that make only very basic assumptions such as unitarity.

A remarkable result along these lines was derived in [10] and systematically improved

upon numerically in [14–17], where a rigorous and universal upper bound was found on the

mass mL of the lightest bulk degree of freedom in AdS3. Roughly, this bound is mL . 1
4GN

,

where GN is Newton’s constant. When the mass of a state is greater than the threshold

mBH ≥ 1
8GN

for black holes in AdS3 [18], classical gravity predicts that it should collapse

and form a horizon, and we can suggestively call it a “black hole” state. A priori, there is

no guarantee that any specific solution to Einstein’s equations is actually a physical state

in all theories of quantum gravity; in fact, most are not, since the spectrum of states in

a CFT is usually discrete whereas the spectrum of solutions to general relativity (GR)

is continuous. The results of [10, 14] can therefore very roughly be summarized as the

statement that the spectrum of states in theories of gravity must, at a bare minimum,

contain black holes near threshold. Moreover, the result applies to all CFTs, even those

whose bulk duals in AdS3 may not be well-described by GR at high energies, or where the

curvature of AdS3 is order O(1) in units of the Planck scale.

Our main goal in this paper will be to extend this technique to the case where the

bulk theory has a gauge field in addition to gravity. This is dual to the assumption that

there is conserved vector current J in the boundary CFT. Now, one can ask not only about

the spectrum of energies of states, but also about their charges. A very simple but elusive

question is whether there must be charged states in the theory at low energies, or if instead

they can be made arbitrarily heavy and therefore effectively decoupled from any description

at fixed finite energy. Charged black holes would seem to exist as classical solutions in GR

with a gauge field, but it is not obvious that a theory with only neutral states is actually

inconsistent, since in such a theory charged black holes can never be produced. Various

arguments have been made that light charged states must be present below some bound in

mass [19–21], but so far a rigorous proof is lacking. A key result of this paper will be to

prove such an upper bound.

This result has a clear connection to the Weak Gravity Conjecture (WGC) of [19],

which exists in multiple forms but in any case is an upper bound on m
Qmpl

for the mass m
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and charge Q of some state in the theory.1 At large central charge c, for non-chiral (which

have, e.g., c = c̄) CFTs our upper bound on the weight ∆ of the lightest charged state in

the theory asymptotes to

∆−∆vacuum <
c

6
+

3

2π
+O

(
1

c

)
, (1.1)

where ∆vacuum = − c
12 is the weight of the vacuum. In terms of AdS quantities, this

translates to m . 1
4GN

for the lightest charged state.2 The bound is numerically determined

from the modular bootstrap and can likely be improved with better numerics. We will also

find a bound on mGN
Q when Q is normalized so that the level k of the current J is 1.3 At

large c, it implies that there exists a state in the theory with charge to mass ratio satisfying,

Q

mGN
>

1

4
√
π
, (c� 1) . (1.2)

This bound could also likely be improved with further effort. One might expect or hope

for a better bound closer to a ratio of 1 than 1
4
√
π

, which is fairly small, but our main point

is that it is parametrically O(1) and is a rigorous proof that there must exist some state

in the theory with mGN

4
√
π
< Q.

It is notable that the upper bound (1.1) is at ∼ c
6 and not ∼ c

12 , as one might expect

from the classical threshold for black holes in AdS3. An analogous mismatch arises in the

bounds found in [10, 14], and it is unclear if this is a short-coming of the methods (for

instance, only the subgroup τ → − 1
τ of modular transformations is actually used) or if

there are physical theories that saturate the weaker bound. Partly motivated by this, we

also consider stronger bounds on the gap to the lightest charged state that can be obtained

in the case of N = (1, 1) supersymmetric theories with a U(1) current. Here, we can

consider a holomorphic quantity called the elliptic genus, and indeed we find the improved

bound on the weight of the lightest charged state,

∆−∆vacuum ≤
c

12
+ 1 (supersymmetric) . (1.3)

1One might expect that the WGC should be qualitatively modified in AdS3 due to peculiarities of three

dimensions. In particular, in AdS3, the relation between mass and charge of extremal BHs is qualitatively

different, M ∼ Q2. Furthermore, boundary currents in 2d are dual to Chern-Simons gauge fields in AdS3,

which have no bulk degrees of freedom. On the other hand, if the WGC is sufficiently robust under compact-

ification of extra dimensions, one might expect these peculiarities to be irrelevant. See [22] for discussions

of which versions of the WGC are robust to compactification of dimensions, and [23] for discussions of how

WGC might be modified in AdS/CFT contexts. In any case, our bounds are a rigorous consequence of

modular invariance and thus provide an independent approach to studying the WGC in AdS3.
2Recall that in GR, the CFT central charge satisfies c = 3`AdS

2GN
[24], and for a bulk scalar the weight

satisfies (∆−∆vacuum)(∆−∆vacuum − 2) = m2`2AdS.
3Equivalently, one can keep k explicit and replace Q with Q/

√
k. From the CFT point of view, where

we do not assume any a priori knowledge of the charges that arise in the theory, the central charge k shows

up only in the two-point function of the current, J(x)J(0) ∼ k
x2

and is completely removed by canonically

normalizing the currents J → J ′ = J/
√
k and charges Q → Q′ = Q/

√
k. So the actual value of k appears

to be invisible to the CFT data we are using, and we can set k = 1 without loss of generality. We thank

Dan Harlow for encouraging us to emphasize this.
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One might also wonder how much more the gap to charged states can be lowered in

principle by any methods, not necessarily those used here. In particular, one might hope to

prove on general grounds that charged states should enter parametrically below Mpl. While

this may indeed prove true after restricting to certain classes of theories,4 we examine a

few counter-examples that demonstrate it cannot be true in complete generality.

The outline of the paper is as follows. In section 2, we discuss the transformation

of the partition function in the presence of a chemical potential, and the corresponding

characters. In section 3, we derive our bounds on the charged spectrum. In section 4, we

present specific models to demonstrate that our bounds are close to saturating the optimal

bounds that are possible at large c without making additional assumptions. In section 5,

we discuss potential future directions.

2 Modular transformations with currents

In any CFT with a conserved current J , one can consider the partition function graded by

the charge of the current:

Z(τ, z) ≡ tr
(
qL0−c/24q̄L̄0−c̄/24yJ0

)
, (2.1)

where q = e2πiτ and y = e2πiz. The starting point of our analysis is that under modular

transformations,

τ → τ ′ =
aτ + b

cτ + d
, z → z′ =

z

cτ + d
, (2.2)

the partition function transforms in a universal way:5

Z(τ ′, z′) = e
πik

(
cz2

cτ+d
− cz̄2

cτ̄+d

)
Z(τ, z). (2.3)

We will discuss the argument for this transformation below, and work through an illustra-

tive example.

2.1 Derivation of transformation

Most of our analysis in this paper is based on the transformation property of the flavored

partition function under a modular transformation, (2.3). As we explain in detail in ap-

pendix B, this transformation property is independent of the particular theory, and only

depends on the universal structure of U(1) current algebra.6 It is also possible to derive

4See e.g. [21, 25] for recent interesting arguments along these lines. In particular, all examples we present

have a coupling for the gauge field that is O(1) at the Planck scale, whereas [21] argues for a stronger bound

only when this gauge coupling is small.
5Neither c nor k in (2.3) are related to the central charge of the theory. The variable c is from the

transformation in (2.2) and k is the level of the current algebra.
6The explicit form of the partition function is of course theory dependent. It is only the transformation

property which is universal. The transformation applies as well to the non-compact abelian group R; in

fact, since our analysis makes no assumption about the representations that arise in the theory, it does not

distinguish between the cases U(1) and R. For conciseness, however, we will simply refer to the abelian

group as “U(1)”.
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this transformation directly using algebraic properties of the modes
∮
γ dzJ(z) of the cur-

rent J(z) on different cycles γ of the torus, as shown in [26, 27].7 Whichever method one

prefers, once one knows that the transformation property is theory-independent it becomes

sufficient to derive it in a particularly simple theory.

Let us review this explicitly in the case of the free boson. For a free boson on a circle

of radius R, the primary states under the U(1) current algebra are labeled by two integers,

|m,n〉, for momentum and winding. These states satisfy,

j0|m,n〉 =
m

2R
+ nR︸ ︷︷ ︸
pL

|m,n〉 , j̄0|m,n〉 =
m

2R
− nR︸ ︷︷ ︸
pR

|m,n〉

L0|m,n〉 =
p2
L

2
|m,n〉 , L̄0|m,n〉 =

p2
R

2
|m,n〉 .

(2.4)

The flavored partition function is then given by,

Zbos(τ, z) =
1

|η(τ)|2
∑
m,n∈Z

q
p2L
2 q̄

p2R
2 ypL ȳpR . (2.5)

This partition function is invariant under the transformation τ → τ + 1. Under the S

transformation, τ → −1/τ , the transformation of the partition function can be easily

computed by applying the Poisson resummation formula,

∑
`

e−πa`
2+b` =

1√
a

∑
k

e
π
a (k+ b

2πi)
2

, (2.6)

to both the m and n sums. Combining this with the modular transformation property of

the η function, η(−1/τ) =
√
iτη(τ). We have

Zbos(τ
′, z′) = e

πi
(
z2

τ
− z̄

2

τ̄

)
Zbos(τ, z) , (2.7)

establishing (2.3). Here we have normalized our currents to have level k = 1. There is

nothing special about our choice of free bosons, and indeed this transformation has also

been worked out explicitly in other examples, for instance see [28, 29] for free fermions,

or [30] for any chiral N = 2 theory.

3 Bounds on the charged-spectrum gap

In this section we derive bounds constraining what charged states must appear in a theory

with a U(1) global symmetry. We present constraints on what charges must appear, and

upper bounds on the weight of the lightest charged state, and the ratio of weight to charge.

7We thank Herman Verlinde for bringing this argument to our attention. Their argument is in several

ways more satisfying and elegant, and more suggestive of how an argument might be generalized beyond

the partition function.
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3.1 Hellerman-type bound on charged spectrum mass gap

It is immediately clear from the transformation property, (2.2), that there must be charged

states in the theory. As a warm-up, it is worth writing down some simple bounds on what

charges must show up. Setting z̄ = 0 for simplicity, we can write the constraint of modular

invariance as

0 = Z(−1/τ, z/τ)− e
iπz2

τ Z(τ, z)

=
∑
i

(
e2πi(Qiz−hi)/τ+2πih̄i/τ̄ − e

iπz2

τ e2πi(Qiz+hiτ−h̄iτ̄)

)
︸ ︷︷ ︸

Fi(τ,τ̄ ,z)

. (3.1)

Here the sum is taken over individual states, each contributing qhi q̄h̄iyQi , to the flavored

partition function. Stronger constraints could be derived using the full Virasoro ×U(1)

characters, discussed in appendix C. However we will get surprisingly strong results using

the simpler single state expressions.

We can take z derivatives of the modular relation, (3.1), to bring down factors of

the charge Qi of each state, and then set z to zero to obtain constraints on the charged

spectrum. As a simple example, take two derivatives with respect to z of the modular

transformation equation (3.1), and evaluate at z = 0, τ = i. This gives

1

8π2

∑
i

∂2
zFi

∣∣∣
z=0,τ=i

=
∑
i

e−2π∆i

(
Q2
i −

1

4π

)
= 0 , (3.2)

where ∆i = hi + h̄i. This expression is negative for all Q2
i < 1/4π. In order for the sum

to give zero, the theory must therefore have some states with Q2
i > 1/4π, in addition to

the neutral states. One can do even better by taking more z derivatives: combining the

constraints from six and two derivatives, one finds,∑
i

(
1

60π3
∂6
zFi

∣∣∣
z=0,τ=i

− 3

2π
∂2
zFi

∣∣∣
z=0,τ=i

)
=
∑
i

e−2π∆i

(
32π3Q6

i

15
− 8π2Q4

i + 1

)
= 0 .

(3.3)

This is positive for all Q2
i , except for the interval, 0.344 . Qi . 1.09. Thus the theory

must have some states with charge in this range.

To prove a bound on the gap to the lightest charged state, our strategy (similarly

to most bootstrap approaches) will be to construct a linear operator α out of z and τ

derivatives evaluated at the self-dual point z = 0, τ = i, with the following properties:

α(Fvacuum) = 1,

α(F∆,Q) > 0, if Q = 0,

α(F∆,Q) > 0, if ∆ > ∆gap. (3.4)

Acting on the modular invariance equation (3.1), such an operator gives a positive con-

tribution from the vacuum which must be canceled by a negative contribution from some

states. Since the only states that have α(F∆,Q) < 0 are charged states with ∆ < ∆gap, it

– 6 –
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immediately implies that such states must be present in the theory. This means ∆gap is an

upper bound on the weight of the lightest charged state.8 An optimal analysis would seek

to minimize ∆gap over the space of linear functionals subject to the above constraints on

α. However, even with a small number of derivatives it is possible to obtain a functional α

satisfying them. Already quite non-trivial bounds are provided by the following example:

α(Fi) ≡
[
a1,0∂β + a1,2∂β∂

2
z + a3,0∂

3
β + a3,2∂

3
β∂

2
z

]
Fi (β, z)

∣∣∣
z=0,β=2π

,

a1,0 =
1

128

(
−32π3κ3 − 64π2κ2 − 22πκ− 128π − 3

)
,

a1,2 =
1

64

(
16π2κ3 + 24πκ2 + 13κ+ 64

)
,

a3,0 =
1

24
π2(3 + πκ),

a3,2 = − 1

24
π2κ, (3.5)

where we have taken τ = iβ
2π , τ̄ = − iβ

2π , and κ ≡ c+c̄
24 . Evaluated on the contribution Fi

from a single state, α produces the following polynomial:

α(F∆,Q) = e−2π∆
[
p0(∆) +Q2p1(∆)

]
p0(∆) = 1 + (∆ + κ)

(3 + 4π(κ−∆))2

64

p1(∆) = π3∆2κ− 3

2
π2∆κ− 1

16
π
(
16π2κ3 + 24πκ2 + 5κ+ 64

)
. (3.6)

At Q = 0, this gives p0(∆) which is a manifestly positive polynomial for ∆ ≥ −κ. Fur-

thermore, at sufficiently large ∆,

p1(∆) ≈ κπ3∆2 +O(∆) (3.7)

is also manifestly positive, so α(F∆,Q) is manifestly positive for all charged states as well

when ∆ is very large. The only possible negative contributions come from charged states

in the range of ∆ where p1(∆) < 0. Thus, an upper bound on the gap is given by the

larger of the two solutions to p1(∆) = 0:

∆gap(κ) =

√
2
√
κ (8π2κ3 + 12πκ2 + 7κ+ 32) + 3κ

4πκ

≈ κ+
3

2π
+O

(
1

κ

)
. (3.8)

This is plotted as a function of κ in figure 1. Also shown in figure 1 are contours of the

polynomial e2π∆α(F∆,Q) at κ = 2, where one can see that the polynomial is negative only

for non-zero Q and for sufficiently small ∆. For a left-right symmetric theory, κ = c
12 and

8Incidentally, the unitarity bound h+ c
24
> Q2

2
means that any upper bound on the weight of a state is

also an upper bound on its charge.
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Figure 1. Left : an upper bound on the total gap ∆gap + κ between the vacuum and the lightest

charged state, as a function of κ ≡ c+c̄
24 . The slope asymptotes to 2κ at large κ, show in red, dashed.

Right : the shaded region is where the polynomial e2π∆α(F∆,Q) in (3.6) is negative for κ = 2; the

right edge asymptotes to a vertical line (shown in blue, dashed) at ∆/κ = ∆gap(κ)/κ for large Q.

In unitary theories, there must be at least one state in the shaded region.

the vacuum is at ∆ = − c
12 , so the bound on the gap between the lightest charge state and

the vacuum is

∆gap(κ)−∆vacuum ≈
c

6
+

3

2π
+O

(
1

c

)
. (3.9)

More restrictive bounds can certainly be obtained by considering more derivatives of Fi
than we have used here, and it would be interesting to explore the optimal bounds that

can be obtained this way.

3.2 Bounds on charge-to-mass ratio

So far we have investigated the bounds on the gap in charge, and the gap in the weight of

the lightest charged state. It is interesting to also ask what we can say about a maximal

gap in the ratio of weight to charge. For fixed central charge, the operator α defined in

the previous section already provides a bound on this ratio, as for large enough ∆ or small

enough Q, α(F∆,Q) > 0. We will be most interested, however, in obtaining a bound for

large c.9

9We often think about theories with a given level and a quantized, order one U(1) charge. In these

cases, our bound on the weight of the lightest charged state immediately translates into a bound on the

ratio, and gives a bound that scales with the central charge. By applying the linear operator techniques of

the previous subsection, we will be able to derive a similar bound, that holds more generally without any

additional assumptions on quantization.
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To this end, define a new linear functional α̃ as

α̃(Fi) = α(Fi) +
π

4
κ3∂2

zFi(β, z)
∣∣∣
z=0,β=2π

. (3.10)

Acting on a single state, this again produces e−2π∆ times a relatively simple polynomial:

α̃(F∆,Q) = e−2π∆
[
p̃0(∆) +Q2p̃1(∆)

]
,

p̃0(∆) = p0(∆) +
π2

2
κ3,

p̃1(∆) = p1(∆)− 2π3κ3 .

(3.11)

As before, we want to investigate for what states these polynomials can be negative, fo-

cusing on how the mass-to-charge bounds scale in the large central charge limit. We

can therefore look mainly at κ large, and divide up our analysis into the three regimes

∆� κ,∆� κ, and ∆/κ ∼ O(1).

For large ∆, ∆� κ, we have,

e2π∆α̃(F∆,Q) ≈ π2

4
∆3 + π3κQ2∆2 , (3.12)

which is positive for all states.

For small ∆, that is ∆−∆vacuum � κ, we have,

e2π∆α̃(F∆,Q) ≈ 2π3κ3

(
1

4π
−Q2

)
. (3.13)

This is negative only for states with Q2 > 1/4π, and thus such states have a very small

mass-to-charge ratio (∆−∆vacuum)/Q� κ.

The most interesting states are those with ∆ −∆vacuum ∼ κ. In this case,

e2π∆α̃(F∆,Q) ≈ π2

4

(
(κ−∆)2(∆ + κ) + 2κ3

)
+Q2π3κ

(
∆2 − 3κ2

)
. (3.14)

The Q independent term is again positive, while the second term can be negative for

sufficiently small ∆. For the total expression to be negative we must have,

Q2 ≥
(
(κ−∆)2(∆ + κ) + 2κ3

)
4π (κ (3κ2 −∆2))

, ∆ ∈
(
−κ, κ

√
3
)
. (3.15)

Though not uniform in ∆, the right hand side of (3.15) has a minimum in the allowed

range of ∆. The quantity of interest is thus bounded by,

∆−∆vacuum

|Q|
≤ ∆−∆vacuum√

((κ−∆)2(∆+κ)+2κ3)
4π(κ(3κ2−∆2))

≤ 4
√
πκ . (3.16)

Indeed we see that the largest gap in weight per unit charge scales linearly with the central

charge.

– 9 –
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3.3 Bound from asymptotic growth

We next present an alternate method for deriving a bound on the gap in the charged sector,

subject to a non-cancellation hypothesis. Although this argument will require a mild extra

assumption, the advantage is both that it is very simple, and it is similar in style to an

argument we will use to derive stronger bounds for N = (1, 1) theories. This method is

more analogous to the original argument due to Cardy for the asymptotic density of states

in a 2d CFT. More accurately, it is analogous to the inverse of Cardy’s argument; rather

than using the presence of the vacuum to ascertain the asymptotic growth of states at large

∆, we will show that a non-vanishing asymptotic charge density implies the presence of a

light charged state. We will argue for this by considering the following object,

W4(τ, τ̄) = Z(τ, τ̄)∂4
zZ(τ, τ̄)

∣∣∣
z=0
− 3(∂2

zZ(τ))2
∣∣∣
z=0

. (3.17)

Note that this function vanishes if there are no charged states. Using the modular transfor-

mation properties of the flavored partition function (2.1), it follows that W4 transforms as

W4

(
τ ′, τ̄ ′

)
= (cτ + d)4W4(τ, τ̄) . (3.18)

Considering W4 for imaginary τ = iβ/2π, we have,

W4(β) =
1

2

∑
i,j

(
Q4
i − 6Q2

iQ
2
j +Q4

j

)
e−β(∆i+∆j)

=
∑
∆̃

C∆̃e
−β∆̃ .

(3.19)

In the last line we have written the sum over weights, ∆̃ = ∆i + ∆j .

Assume for contradiction that the first charged state has weight ∆gap. Then the sum in

W4 starts at ∆̃ = ∆gap−c/12. We will show that this is inconsistent for large enough ∆gap.

In order to see this, it is instructive to consider an abstract function which is invariant

under the real modular S transformation,

W0

(
4π2

β

)
= W0(β) =

∑
∆̃≥∆0,gap−c/12

D∆̃e
−β∆̃ . (3.20)

To make contact with W4 above, we will assume W0 has |D∆̃| growing with large ∆̃.10 If

we further take ∆0,gap > c/12, then,

lim
β→∞

W0(β) = lim
β→0

W0(β) = 0 . (3.21)

10This assumption is tantamount to an asymptotic non-cancellation assumption between the combination

of partition functions appearing in (3.17). In fact, the situation is even better: even if this particular

combination had a cancellation, we could construct higher order modular objects, and rerun the argument

using these higher order modular forms. In this case, a different particular combination would have to

cancel to invalidate the argument. Obviously, we could repeat this as many times as needed until reaching

a combination that did not cancel. Thus to invalidate this argument would require an infinite number of

cancellations.
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Thinking of W0(β) as the Laplace transform of D∆̃, the final value theorem [31] tells us

that the large ∆̃ behavior of D∆̃ is given by the small β behavior of W0(β), and thus

lim∆̃→∞D∆̃ = 0, contradicting our assumed growth. This tells us we must have ∆0,gap −
∆vacuum ≤ c/6.

To apply this to the function, W4, that we are interested in, we divide by the mod-

ular discriminant, ∆(β) = η24(iβ/2π) to the appropriate power to create an invariant

function:11

Ŵ4(β) =
W4(β)

(∆(β))1/3

Ŵ4

(
4π2

β

)
= Ŵ4(β) .

(3.22)

The above argument tells us that Ŵ4 has to grow as β →∞. Since the modular discrimi-

nant behaves as (∆(β))1/3 ∼ e−β/3, we must have a maximal gap to charged states of

∆gap −∆vacuum = c/6 + 1/3 . (3.23)

3.4 Supersymmetry

As we have mentioned, we don’t believe the bound (3.23) is optimal. One motivation

for this conjecture comes from considering theories with additional symmetry. We can

consider the case of a 2d CFT with both N = (1, 1) supersymmetry and a U(1) current.

With N = (1, 1) supersymmetry we can define a holomorphic quantity called the elliptic

genus. This theory has fermions, so when we put it on a torus, there are four different

spin structures we can consider depending on boundary conditions. We thus define the

following elliptic genera,

Z+
R (τ, z) = Tr R,R

(
(−1)FRqL0− c

24 yJ0 q̄L̄0− c̄
24

)
,

Z−R (τ, z) = Tr R,R

(
(−1)FL+FRqL0− c

24 yJ0 q̄L̄0− c̄
24

)
,

Z+
NS(τ, z) = Tr NS,R

(
(−1)FRqL0− c

24 yJ0 q̄L̄0− c̄
24

)
,

Z−NS(τ, z) = Tr NS,R

(
(−1)FL+FRqL0− c

24 yJ0 q̄L̄0− c̄
24

)
. (3.24)

In all of the functions above, the right-moving sector gets contributions only from super-

symmetric ground states at L̄0 = c̄
24 .12 The advantage of considering the elliptic genus is

that it is a holomorphic modular form, so we can use the power of holomorphy to bound

the gap to the lightest charge state.

The functions in (3.24) transform as (2.3) under (some congruence subgroup of)

SL(2,Z). In particular, the functions Z+
R (τ, z), Z−R (τ, z), Z+

NS(τ, z), and Z−NS(τ, z) trans-

11In running this argument, it is crucial that ∆, not to be confused with the weight ∆, only has zeroes

at the cusp β → 0 ∼ ∞, as otherwise we would introduce extra poles in Ŵ4, invalidating the applicability

of the final value theorem.
12Note, here the left-moving fermion number for the NS vacuum is conventionally defined as (−1)c/6.
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forms as (2.3) under Γ0(2), SL(2,Z),Γ0(2), and Γθ respectively. These are defined as

Γ0(2) ≡

{(
a b

c d

)
∈ SL(2,Z), c ≡ 0 (mod 2)

}
,

Γ0(2) ≡

{(
a b

c d

)
∈ SL(2,Z), b ≡ 0 (mod 2)

}
,

Γθ ≡

{(
a b

c d

)
∈ SL(2,Z), a+ b ≡ 1 (mod 2), c+ d ≡ 1 (mod 2)

}
. (3.25)

These functions transform into each other via

Z+
R (τ, z) = Z−NS(−1/τ, z/τ),

Z−NS(τ, z) = e−
2πic
24 Z+

NS(τ + 1, z). (3.26)

Now let us consider the following function:

WR
4 (τ) ≡ Z+

R (τ, z)∂4
zZ

+
R (τ, z)

∣∣∣
z=0
− 3(∂2

zZ
+
R (τ, z))2

∣∣∣
z=0

. (3.27)

This is a weight 4 modular form under Γ0(2). Moreover, the only contributions to WR
4 (τ)

come from charged states. Our basic strategy is to show that WR
4 (τ) must have a term of

at least O(q) when expanded about τ = i∞; this then means that there must be at least

one charged state of dimension one above the RR vacuum. Thus, relative to the NS-NS

vacuum, we must have a charged state by c
12 + 1.

The ring of modular forms under Γ0(2) is generated by the functions E′2(τ) and E4(τ),

defined in appendix A. In particular, any meromorphic function that transforms with weight

w under Γ0(2) that has no poles at τ = i∞ and diverges at most as τ−w about τ = 0 can

be written as a linear combination of products of E′2 and E4 [32].

To see that WR
4 is a weight four modular form under Γ0(2), note that about τ = i∞,

WR
4 is finite, as the lightest Ramond sector states have weight zero. The only question is

the behavior about τ = 0.

Suppose we have a theory with the first charged state at least c
12 above the (NS-NS)

vacuum. From (3.26) and (3.27), one can show

WR
4 (τ) =

1

τ4
WNS

4

(
−1

τ

)
, (3.28)

where we define

WNS
4 (τ) ≡ Z−NS(τ, z)∂4

zZ
−
NS(τ, z)

∣∣∣
z=0
− 3(∂2

zZ
−
NS(τ, z))2

∣∣∣
z=0

. (3.29)

Note that WNS
4 (τ) also only gets contributions from charged states. In particular, as we’ve

assumed the first charged state shows up c
12 above the vacuum, then WNS

4 (τ) has no poles

about τ = i∞. Thus using (3.28), we see that WR
4 (τ) diverges at most as τ−4 as τ = 0.

This means it can be written as

WR
4 (τ) = c1E

′
2(τ)2 + c2E4(τ) , (3.30)

for some constants, c1 and c2.
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The highest order in the q-expansion (3.30) can start at is O(q). Thus, in WR
4 , a

charged state must appear by dimension at least one above the RR vacuum. Since the RR

vacuum is c
12 above the NS-NS vacuum, we thus get a bound to the first charged state of

∆−∆vacuum ≤
c

12
+ 1 (supersymmetric) . (3.31)

The improvement by a factor of 2 compared to our non-supersymmetric bounds brings

this into line with the threshold for BTZ black holes, since dimensions of ∆ −∆vac ∼ c
12

correspond to masses m ∼ 1
8GN

in the gravity picture. It seems natural to conjecture that

a bound upper bound on charged states of order ∼ c
12 may hold in general, even in the

non-supersymmetric case.

4 Large gap examples

In this section we provide some examples of theories which realize our bound up to O(1)

factors. One class of examples is given by free bosons compactified on extremal lattices.

Such lattices can be explicitly constructed for small central charge and are known not

to exist for c ≥ 163264 [33]. Appealing to more standard string theory examples, we also

consider a gravitational theory in flat space, and discuss the D1-D5 system in highly curved

AdS space.

4.1 Extremal lattices

An extremal lattice, Λc, is a rank c even self dual lattice with the smallest norm non-zero

vector, ~v ∗ having length squared,

~v ∗ · ~v ∗ =
c

12
+ 2 . (4.1)

We will be focused on the case c = 24k for k ∈ Z. Such lattices are known to exist for

k = 1,2, and 3 [34–36], however for larger k they have not been constructed. As mentioned

above, they do not exist for sufficiently large k, k > 6802.

A consistent chiral CFT can be constructed by considering c chiral bosons compactified

on such a lattice [37, 38]. This CFT has a spectrum consisting of the vertex operators,

V~v(z) = ei~v·
~φ(z) , ~v ∈ Λc h~v =

~v 2

2
, (4.2)

as well as the differentials, −i∂~φ, ∂~φ2,. . . .

The differentials, −i∂~φ, form a set of c currents, under which the only charged operators

are the vertex operators, V~v . Consider any one of these currents,

J(z) = −i∂φ1(z) . (4.3)

The gap to the first charged operator is given by the gap in the norm of vectors in Λc, and

thus,13

hΛc, gap − hvacuum =
c

24
+ 1 . (4.4)

13It can actually be shown that chiral CFTs satisfy a stricter bound on the weight of the lightest charged

state, hgap − hvacuum ≤ c
24

+ 1, and so these examples are tight for chiral CFTs [39].
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4.2 Gravity theories with a large gap

It is expected for a variety of reasons that quantum gravity theories with U(1) gauge fields

will exhibit charged matter with charge of O(1) at a mass scale M . MPlanck. As 2d

CFTs are (sometimes) dual to weakly curved 3d gravity, one can ask: how does our bound

compare to this expectation?

In light of the Brown-Henneaux formula

c =
3LAdS

2G
, (4.5)

our bound is sufficient to guarantee this expectation. Charged states at masses M ∼ c
6 in

AdS units (the highest value consistent with the bound), are at a mass ∼ MPlanck. Still,

one might wonder — is a stronger absolute bound possible in weakly curved gravitational

theories?

We think the answer is no. One can easily provide examples of gravity theories which

are thought to be fully consistent, yet have abelian gauge fields with the first charges

appearing at ∼MPlanck. We provide two examples below. It is important to stress that in

each, our ability to make controlled statements depends on extended supersymmetry and

exact BPS mass formulae, as we work in regimes where some size or coupling is of O(1).

Example 1. Consider M-theory compactified on a circle of radius R in 11d Planck units.

At very large radius, the theory reduces to 11d supergravity. At very small radius, one can

reinterpret the radius in terms of the type IIA string coupling, via

R = g
2/3
string . (4.6)

For any finite R, the long distance theory is a weakly curved gravity theory in ten dimen-

sions.

There is a Kaluza-Klein gauge field arising from the µ11 components of the 11d metric.

This gauge field becomes the Ramond-Ramond photon of type IIA string theory as R→ 0.

But it is present for all values of R, and a BPS bound relates the mass of the lightest

charged KK modes of a given charge to the radius of the circle.

Half-BPS states carrying this charge do exist. They are the Kaluza-Klein gravitons on

the circle, or D0-brane bound states in the IIA string. When R = `11, the only mass scale

in the BPS formula is MPlanck,11, and the lightest charge has mass ∼MPlanck,11.

At long distances, one then has gravity coupled to an abelian gauge field in 10d flat

space, with a lightest charge at MPlanck,10 ∼ MPlanck,11. This easily generalizes to lower

dimensions, by compactifying on a Planck radius torus, rather than a single circle. This

shows that one cannot derive a stronger bound on the mass of the lightest charged state

which is stronger than the Planckian bound, at least not one which applies to all weakly

curved gravity theories.14

14In fact, in 10d we can shrink the circle, thereby taking gstring small, and the only charged states in

the theory are D0 branes, which remain above the Planck scale. This provides an example at small string

coupling; however, the gauge coupling remains O(1).
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Example 2. Our bound is more directly related to AdS3 gravity theories, via the rela-

tionship between large c 2d CFTs with sparse spectrum and weakly curved gravity. So

one could ask — in that more limited context, could it be that there is a (parametrically)

stronger bound available?

We will try to give some sense of whether a counter-example may or may not exist

by discussing one canonical example of AdS3/CFT2. Unfortunately, this example comes

close to our bound only at small AdS length and thus at small c, whereas what we want to

compare to is the parametric dependence on the bound at large c. The problem of finding

weakly curved AdS3 examples with a large gap to charged states is similar to the problem

of constructing very sparse large c CFTs and is likely challenging. However, at present it

is unclear whether this is a fundamental limit, or just a limitation of available controlled

compactifications methods.

So, let us discuss the original example of AdS3/CFT2 duality, coming from the D1-D5

system on T 4. Before inserting the branes and taking the near-horizon limit, the moduli

space of compactifications of type IIB string theory on T 4 is a coset space

SO(5, 5;Z)\ SO(5, 5)/ SO(5)× SO(5) . (4.7)

Inserting the Q1 D1 and Q5 (wrapped) D5 branes leaves a worldvolume unbroken (4,4)

supersymmetric theory on the black string in six dimensions. The 25 real moduli can be

divided into background tensor multiplet and hypermultiplet scalars of this supersymmetry;

5 come from tensor multiplets and 20 from hypermultiplets.

Via the attractor mechanism, the tensor multiplet scalars take fixed values in the near-

horizon geometry, independent of our choices. The hypermultiplet scalars can be tuned

at will.

The resulting near-horizon solution is(
AdS3 × S3

)
Q1Q5

× T4 . (4.8)

The radius of the AdS space and the sphere are equal (as is standard in Freund-Rubin

compactification), given by

R2
AdS = α′g6

√
Q1Q5 . (4.9)

The two moduli of significance for us are the 6d string coupling g6, and the T 4 volume

v. In string units, the volume is given by

v =
Q1

Q5
, (4.10)

while g6 is in a hypermultiplet and we are free to choose its value. Validity of the 6d

supergravity description requires weak AdS curvature, i.e.

g6

√
Q1Q5 � 1 . (4.11)

Consider, then, the scaling limit

Q1 →∞, Q5 →∞,
Q1

Q5
∼ 1 (4.12)
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while simultaneously selecting

g . O(1) . (4.13)

In this limit, the 6d supergravity theory is weakly curved, while v ∼ O(1). So the 6d string

and Planck scales are comparable.

Now, consider the KK U(1) gauge fields on the torus. The story is similar to that of

Example 1; the lightest charges will be KK modes with six-dimensional masses ∼MPlanck,6.

To read off the AdS3 mass, we need to further reduce on the S3. Unfortunately, as the AdS

and sphere radius are tied, the three dimensional mass is well below the Planck mass.

We can produce theories where the lightest charged states are at the Planck mass in

this example, but only by considering highly curved theories outside of the supergravity

limit, (4.11), by taking RAdS = RS3 = O(1) in Planck units. It is clear that the problem

is that the Freund-Rubin construction by definition ties the AdS radius to the radius of

an external sphere in the geometry. So at large AdS radius, the dilution of the lower-

dimensional (AdS) Planck scale due to the external sphere, will always lower the gap to

charges under a KK gauge field. More elaborate constructions can partially surmount this

issue, but we are not aware of any where we would calculably saturate our bound at large

AdS radius.

5 Discussion and future directions

We have demonstrated that the partition function with a chemical potential can be used

to put concrete bounds on the spectrum of charged states in a general, not necessarily

holographic, 2d CFT. Interpreted in terms of gravitational duals, these imply that charged

states must be present in the theory at the Planck scale or lower, and that furthermore

there must exist states with charge-to-mass ratio (in units of the Planck scale) above a

concrete lower bound. For the most part, we have attempted to make our analysis more

analytically transparent at the cost of leaving the constraints weaker than should ultimately

be possible, and it would be interesting to return to these bounds with the much more

numerically sophisticated machinery of recent bootstrap approaches.15

We also expect that these methods could be generalized to bound other quantities

besides those considered here. For one, we have focused only a single conserved current,

but when its symmetry is part of a larger non-abelian group, then one should be able to

make richer statements about the spectrum of charges. In particular, rather than simply

bounding the charge Q of states, one could start to constrain the representations of states

in the theory. It would be very interesting for instance to show that for certain symmetry

groups, certain representations must appear in the spectrum, or to find relations between

the representations that appear in the low-energy spectrum with those at high energies.

Another potentially powerful extension would be to correlation functions in higher

dimensions. This paper has focused on the partition function, but in two-dimensional

CFTs this is equivalent to a four-point correlation function of twist operators [45]. Adding

in a chemical potential is equivalent to inserting Wilson lines in this correlation function.

15See e.g. [14, 40–44], to name just a few of the many such analyses in this rapidly growing area.
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Optimistically, one may hope that even in this more general case, the transformation

property of the correlator under crossing in the presence of such Wilson lines can be derived

purely through knowledge of the current two-point function, or in even dimensions in terms

of its anomalies.16 If this is correct, then it would provide a practical way of including non-

local line operators in the conformal bootstrap, potentially accessing important information

about the theory that would be invisible otherwise [47].

Finally, bounds on the number of BPS operators at a given weight and charge in a

2d superconformal field theory with at least N = 2 supersymmetry are of additional in-

terest, as they would have a topological interpretation as bounds on the Hodge numbers

of the corresponding target-space Kähler manifold.17 Such constraints are therefore inter-

esting geometrically, and modular bootstrap approaches may provide information that is

complementary to other approaches.
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A Modular forms

For convenience, we reproduce the definitions and relevant properties of several functions

used in this paper. The Eisenstein series E4(τ) and E6(τ) are defined as

E4(τ) = 1 + 240

∞∑
n=1

n3qn

1− qn

E6(τ) = 1− 504

∞∑
n=1

n5qn

1− qn
. (A.1)

They transform as

E4

(
aτ + b

cτ + d

)
= (cτ + d)4E4(τ)

E6

(
aτ + b

cτ + d

)
= (cτ + d)6E6(τ). (A.2)

16See for instance [46], section 3.1.4 for a very rough sketch of such an argument in d = 2.
17See [48, 49] for various approaches to this question.
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Together, they generate the ring of modular forms invariant under SL(2,Z). We also define

the Dedekind eta function as

η(τ) = q
1
24

∞∏
n=1

(1− qn) (A.3)

and the modular discriminant as

∆(τ) = η(τ)24 =
E4(τ)3 − E6(τ)2

1728
. (A.4)

We are also occasionally interested in the second Eisenstein series E2(τ), defined as

E2(τ) = 1− 24
∞∑
n=1

nqn

1− qn
. (A.5)

This is not quite a modular form, as it transforms as

E2

(
aτ + b

cτ + d

)
= (cτ + d)2E2(τ) +

6c

iπ
(cτ + d). (A.6)

We also define the Klein-invariant J function, which is a modular function of weight 0 with

a pole at τ = i∞.

J(τ) =
E4(τ)3

∆(τ)
− 744 =

1

q
+ 196884q + . . . . (A.7)

Holomorphic modular invariant functions with poles only at τ = i∞ are polynomials

in J(τ).

Finally, we consider the subgroup of SL(2,Z) called Γ0(2) defined as matrices
(
a b
c d

)
∈

SL(2,Z) with c even. Modular forms under Γ0(2) are generated by the functions E′2(τ),

defined as

E′2(τ) = 1 + 24
∞∑
n=1

nqn

1 + qn
(A.8)

and E4(τ), defined in (A.1).

B Current algebra and flavored partition function

We have argued that the transformation property,

Z
(
τ ′, z′

)
= eπi

cz2

cτ+dZ(τ, z) , (B.1)

relies on the universal structure of the current algebra, rather than any theory specific

details. Here we demonstrate this in gory detail.
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B.1 Perturbative argument

Our strategy will be to calculate the transformation property of the flavored partition

function (B.1) order by order in z about 0. The transformation rule can be verified at each

order using the structure of the current algebra without any knowledge of the particular

theory. We demonstrate this explicitly at quadratic order in z and then present the general

argument. As the rule is theory independent we can thus read it off from any theory we like,

for instance the free boson, for which the rule (B.1) is well known (see [50] for instance).

Quadratic Order. At quadratic order we have,

∂2
zZ(τ ′)

∣∣∣
z=0

= (cτ + d)2

(
∂2
zZ(τ)

∣∣∣
z=0

+ 2πi
c

cτ + d
Z(τ)

∣∣∣
z=0

)
. (B.2)

The z derivatives are always evaluated at z = 0, but we refrain from writing this be-

low, to avoid clutter. We want to check this second order transformation by explicitly

computing,

∂2
zZ(τ) = (2πi)2 Tr

(
qL0−c/24J2

0

)
. (B.3)

In order to do this, we would like to find a primary that contains J2
0 as part of its

zero mode, as well as other known contributions. This is convenient as we know how

primary one point functions transform, and thus can solve for the transformation of

∂2
zZ(τ). Such an operator is given by,

O2(z) = J2(z)− 2

c
T (z)↔

(
J2
−1 −

2

c
L−2

)
|0〉 , (B.4)

which has a zero mode,

(O2)0 = J2
0 + 2

∑
n≥1

J−nJn −
2

c
L0 . (B.5)

We can compute the torus one point function of O2.18

FO2(τ) ≡ (2πi)2Tr
(
qL0−c/24(O2)0

)
= (2πi)2Tr

(
qL0−c/24J2

0

)
︸ ︷︷ ︸

∂2
zZ(τ)

+2(2πi)2
∑
n≥1

Tr
(
qL0−c/24J−nJn

)
−2

c
(2πi)2Tr

(
qL0−c/24L0

)
.

(B.6)

The second and third terms on the second line can be simplified. Starting with the

third term we have,

Tr
(
qL0−c/24L0

)
= q−c/24

(
q∂q(q

c/24Z(τ))
)

= ∂τZ(τ) +
c

24
Z(τ) ,

(B.7)

18This style of computation is similar to that presented in [51], for example.
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while for the second term we use,

Tr
(
qL0−c/24J−nJn

)
= qn Tr

(
qL0−c/24JnJ−n

)
=

nqn

1− qn
Z(τ) ,

(B.8)

and the definition of the Eisenstein series to write,∑
n≥1

Tr
(
qL0−c/24J−nJn

)
=

1− E2(τ)

24
Z(τ) . (B.9)

Putting this together, we can solve for ∂2
zZ(τ).

∂2
zZ(τ) = FO2(τ) + (2πi)2

(
E2(τ)

12
+

2

c
∂τ

)
Z(τ) . (B.10)

We are now in a position to write down the transformation properties of ∂2
zZ(τ) .

∂2
zZ
(
τ ′
)

= (cτ + d)2∂2
zZ(τ) + 2πic(cτ + d)Z(τ), (B.11)

as desired.

In deriving this, we used the fact that both FO2(τ) and ∂τZ(τ) are modular

forms of weight 2, as well as the anomalous transformation of E2(τ) written in (A.6).

General Order. To compute at arbitrary order we can replicate the argument style used

above. To compute Tr
(
qL0−c/24Jm0

)
, we look for a primary operator which contains

Jm0 as part of its zero mode. In addition it will contain terms of weight zero built

out of Lm and Jm modes. The traces over these terms can be evaluated, as they

were in the quadratic case, using only the current algebra to reduce them to modular

differential operators acting on traces with fewer powers of J0. Thus the modular

properties of Tr
(
qL0−c/24Jm0

)
only depend on the universal current algebra, and so

at each order, the transformation rule is identical in any theory. In particular, we

can compute the transformation rule in the case of the free boson. This gives (B.1),

and so it must also be correct for any theory with a U(1) symmetry.

C Transformation of characters

Modular invariance can be thought of as a sharp relation between the UV and the IR

spectrum of the theory. One way to build some additional intuition on the relation in a

general theory is to look at the image under S : τ → − 1
τ of an individual character. In [52],

the transformation of characters of the Virasoro algebra were derived. One might hope

that further development of this approach to include the image under the full modular

group could allow one to construct representations of Virasoro plus modular invariance,

which could then be used as modules to be added to add additional states the full partition

function. In the case of chiral theories, Rademacher sums indeed make this a viable and

useful method. In the general non-holomorphic case, the major obstacle is that the image
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under S produces a continuous, rather than a discrete, spectrum, and it is not clear how to

systematically correct this. Moreover, since the image of a single character is an integral

over a continuum of characters up to arbitrarily high weight, for the analysis to be “closed”

in a sense one must also characterize the modular image of infinite sums over characters

as well. Despite these caveats, we find the results of [52] to provide some useful guidance

in thinking about modular transformations of non-holomorphic theories. In this appendix,

we will therefore consider the modular transformation of an individual Virasoro × current

algebra character, which we describe below. We assume the existence of both left and right

U(1) currents for ease of exposition.

The holomorphic Virasoro × U(1) Affine Kac-Moody algebra is given by,

[Lm, Ln] = (m− n)Lm+n +
c

12
m(m2 − 1)δm+n,0,

[Lm, Jn] = −nJn+m,

[Jm, Jn] = mkδn+m,0 , (C.1)

and similarly for the anti-holomorphic algebra. If c > 2, the full irreducible representations

of the Virasoro and current algebra are generated by all combinations of J−n, n ≥ 1 and

L−n, n ≥ 2, acting on the primary states, as well as the anti-holomorphic modes. Since

these do not change the total U(1) charge, and they raise the L0 eigenvalue by n, one can

immediately write the characters as products of the characters χJ and χT under the two

sectors separately:

χJ(q) =

∞∏
n=1

1

1− qn
,

χT (q) = qh

( ∞∏
n=1

1

1− qn

){
1− q vacuum

1 h > − c
24

}
. (C.2)

The full character is

χh,Q,c(q, y) = yQχT (q)χJ(q)ȳQ̄χ̄T (q̄)χ̄J(q̄) (C.3)

where we have graded over the U(1) left- and right-moving charges Q, Q̄ with y = e2πiz.

It is convenient to multiply by the modular invariant function
∣∣(iτ)1/4η(τ)

∣∣4 to get the

“reduced” characters:

χ̂(q, y) = |τ |(qq̄)
1
12

{
yQȳQ̄qhq̄h̄ h > − c

24 , h̄ > −
c̄

24 ,

(1− q)(1− q̄) vacuum

}
. (C.4)

We want to consider what happens if we add an extra non-vacuum state to a theory.

We can focus on the left-moving part of the reduced character

χ̂(τ, z) = (iτ)1/2e2πi(τEL+zQ). (C.5)

Under S, this character gets mapped to

e−2πi c
6
z2

τ (iτ)−1/2e−2πiEL/τe
2πizQ
τ . (C.6)
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Our goal is to decompose this into an integral over the untransformed characters times a

density of states ρ(E,Q):∫
dE′LdQ

′ρ(E′L, Q
′)(iτ)1/2e2πi(τE′L+zQ′) . (C.7)

Integrating both sides against
∫
dze−2πiQ′′ , we obtain∫

dE′Le
2πiτE′Lρ(E′, Q′′) =

1

(iτ)
e−2πiEL/τ

∫
dze
−2πi

(
c
6
z2

τ
+Q′′z− zQ

τ

)

= −
√

3√
−icτ

e−2πiEL/τe
3πi(Q−Q′′τ)2

cτ . (C.8)

This is just the left-moving piece of the full character; multiplying by the corresponding

right-moving piece, we find∫
dE′LdE

′
Rρ(E′L, E

′
R, Q

′′, Q̄′′)e2πi(τE′L+τ̄E′R) =
3

c|τ |
e
−2πi

(
EL
τ

+
ER
τ̄

)
e

3πi(Q−Q′′τ)2

cτ
+

3πi(Q̄−Q̄′′τ̄)2

cτ̄ .

(C.9)

If we assume that the theory satisfies charge conjugation symmetry, then for each state

with charge (Q, Q̄) and energy (EL, ER), there is another state with charge (−Q,−Q̄) and

energy (EL, ER). Adding these two contributions together, their image under S has a

spectrum given by∫
dE′LdE

′
Rρ(E′L,E

′
R,Q

′′,Q̄′′)e2πi(τE′L+τ̄E′R)=
3

c|τ |
e
−2πi

(
EL
τ

+
ER
τ̄

)
e

3πi(Q2+Q′′2τ2)2

cτ
+

3πi(Q̄2+Q̄′′2τ̄)2

cτ̄

×2cos

(
6π

c
(QQ′′+Q̄Q̄′′)

)
. (C.10)

To bring this into a more natural form, we can massage it a little to be∫
dE′LdE

′
Rρ(E′L, E

′
R, Q

′, Q̄′)e
2πi

(
τ

(
E′L−

3Q′2
2c

)
+τ̄

(
E′R−

3Q̄′2
2c

))

=
3

c|τ |
e
−2πi

(
1
τ

(
EL− 3Q2

2c

)
+ 1
τ̄

(
ER− 3Q̄2

2c

))
× 2 cos

(
6π

c
(QQ′ + Q̄Q̄′)

)
. (C.11)

Clearly, it is natural to define the variables

ẼL ≡ EL −
3Q2

2c
, ẼR ≡ ER −

3Q̄2

2c
. (C.12)

In terms of these variables, the above relation takes the simple form∫
dẼ′LdẼ

′
Rρ(Ẽ′L, Ẽ

′
R, Q

′, Q̄′)e2πi(τẼ′L+τ̄ Ẽ′R) =
6

c|τ |
e
−2πi

(
ẼL
τ

+
ẼR
τ

)
cos

(
6π(QQ′ + Q̄Q̄′)

c

)
.

(C.13)

This has reduced to the transformation for the case Q = 0, up to an extra cos factor,

and with the E’s are replaced by Ẽ’s. But that is exactly the transformation that was
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derived in [52]19 Adopting their result (and keeping track of our slightly different integration

measure), we finally arrive at

ρ(Ẽ′L, Ẽ
′
R, Q

′, Q̄′) =
12

c
Θ(Ẽ′L)Θ(Ẽ′R)

1√
Ẽ′LẼ

′
R

cosh(4πi

√
ẼLẼ′L) cosh(4πi

√
ẼRẼ′R)

× cos

(
6π

c
(QQ′ + Q̄Q̄′)

)
. (C.14)
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