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Recently, it was discovered that certain non-Hermitian systems can exhibit qualitative different
properties at different system sizes, such as being gapless at small sizes and having topological edge
modes at large sizes L. This dramatic system size sensitivity is known as the critical non-Hermitian
skin effect (cNHSE), and occurs due to the competition between two or more non-Hermitian pump-
ing channels. In this work, we rigorously develop the notion of a size-dependent generalized Brillouin
zone (GBZ) in a general multi-component cNHSE model ansatz, and found that the GBZ exhibits a
universal a+b1/(L+1) scaling behavior. In particular, we provided analytical estimates of the scaling
rate b in terms of model parameters, and demonstrated their good empirical fit with two paradig-
matic models, the coupled Hatano-Nelson model with offset, and the topologically coupled chain
model with offset. We also provided analytic result for the critical size Lc, below which cNHSE scal-
ing is frozen. The cNHSE represents the result of juxtaposing different channels for bulk-boundary
correspondence breaking, and can be readily demonstrated in non-Hermitian metamaterials and
circuit arrays.

I. INTRODUCTION

Non-Hermitian systems harbor a host of interesting
physics not found in equilibrium systems, such as ex-
ceptional point sensitivity and robustness [1–17], en-
larged symmetry classes [18–21], and intrinsically non-
equilibrium topological phases [22–35]. Once thought
to exist almost exclusively as mathematical constructs,
these novel phenomena have one by one been experimen-
tally demonstrated in the recent years, thanks to rapid
technical advances in ultracold atomic gases [36–40], elec-
trical circuits [41–53], photonic systems [11, 23, 54–62],
coupled acoustic cavities [63–67], as well as other meta-
materials [68–80].

A particularly intriguing type of non-Hermitian phe-
nomenon is the breaking of conventional bulk-boundary
correspondences (BBCs), which generically occurs when-
ever reciprocity is also broken. Topological BBCs re-
late boundary topological states with bulk topologi-
cal invariants, and are cherished tenets in topological
classification [81–86]. The most well-studied type of
non-Hermitian BBC is the non-Hermitian skin effect
(NHSE) [87–104], which is characterized by exponentially
large boundary state accumulation that leads to very dif-
ferent energy spectra under open and periodic boundary
conditions (OBCs and PBCs). To restore an effective
bulk theory, the customary approach has been to define
a generalized Brillouin zone (GBZ) with complexified mo-
mentum [91, 105–112], such that quantities computed in
the GBZ correctly correspond to physical observations.

Most interesting is the relatively little-understood sce-
nario of critical NHSE (cNHSE) [113], where even the
scaling properties of the system are drastically modified
by non-Hermiticity. For instance, the same metamaterial
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exhibiting cNHSE can behave qualitatively differently
at different system sizes, such as being gapless (metal-
lic) at small sizes but topologically insulating at large
sizes [113–116]. Physically, such peculiar size-dependent
transitions are due to the competition between multiple
NHSE channels (non-reciprocity strengths) in the system
– at different length scales, the same physical coupling
can be “renormalized” to very different values dependent
on the dominant NHSE channel. Due to their peculiar
size dependency, the cNHSE systems also harbor differ-
ent entanglement scaling laws [113] from those of other
Hermitian and non-Hermitian phases [7–9, 117–126].

In this work, we focus on addressing the following open
question: How exactly can we understand cNHSE scaling
behavior in terms of the GBZ, which is widely used for
restoring the BBC in the thermodynamic limit? Specifi-
cally, we find that a cNHSE system of finite size can be
accurately described through an “interpolated” GBZ that
lies between the competing GBZs describing the same
(but behaviorally distinct) system in the small and large
size limits. Furthermore, this interpolation occurs at a
rate obeying a universal exponential scaling law, with ex-
ponent inversely proportional to system size. Since the
effective GBZ allows one to represent the system with
a Hamiltonian with an effective Bloch description, this
scaling law carries over into most physical properties of
cNHSE lattices.

To motivate and substantiate our results, we consider
a generic two-component ansatz for modeling a cNHSE
system with two competing NHSE channels. Our ansatz
encompasses the minimal model studied in Ref. [127],
and showcases how some of its results can be generalized
in the context of arbitrary NHSE channels. By subse-
quently specializing into two paradigmatic models, we
provide detailed derivations of the universal a+ b1/(L+1)

scaling behavior governing the effective finite-size GBZ,
where L is the system size, and a, b constants depend-
ing on the model details. We also provide detailed and
empirically verified estimates of the lower critical system
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size Lc above which such a scaling relation holds.
We pause to briefly elaborate on the experimental

prospects for the cNHSE models discussed in this work.
Most directly, electrical circuits, i.e., “topolectrical cir-
cuits” can be connected in very versatile manners, and
are thus readily suited for their experimental implemen-
tation [41–53]. In general, operation amplifiers serve
as almost perfectly linear components with asymmet-
ric Laplacians [42], and are thus ideal building blocks
for models with the asymmetric couplings necessary for
cNHSE. Recently the coupled Hatano-Nelson cNHSE
model of this work has also been realized in an even
simpler experimental circuit platform [52] involving only
RLC circuit components, since asymmetric couplings can
be rendered symmetric via a basis rotation in this model.
Circuit realizations can also be largely generalized to pho-
tonic platforms [55, 128–134]. Coupled resonator arrays
can be used to experimentally realize the arrays in our
models, with the ring resonators [128] (which are the
primary resonators) representing the sites in our model
chains. Experimental values of the hoppings in such pho-
tonic systems are highly tunable, ranging approximately
from 5 GHz to 30 GHz [135, 136]. The optical gain and
loss in a photonic system can be used to experimentally
realize the gain and loss in our non-Hermitian models.

The paper is organized as follows: In section II, we set
up the cNHSE formalism using a general two-component
ansatz. Next, we illustrate our results through de-
tailed calculations on two paradigmatic models, a cou-
pled Hatano-Nelson model with energy offset (section III)
and a model with size-dependent topology (section IV).
We show how their OBC spectra and effective GBZs de-
pend greatly on the system size, and provide quantita-
tive derivations of their exponential scale dependence, as
well as the critical system size above which such scaling
holds. In section V, we demonstrate the robustness of the
scaling of imaginary energy against substantial disorder.
Finally, we summarize the key findings in the discussion
in section VI.

II. GENERAL TWO-COMPONENT CNHSE
ANSATZ

To understand the cNHSE phenomenon, we first re-
view the concept of the GBZ. The GBZ formalism re-
stores the BBC via a complex momentum deformation.
For a momentum-space one-dimensional (1D) Hamilto-
nian H(z) with z = eik, the GBZ corresponding to an
eigenenergy E can be obtained from solving for z = eik in
the following characteristic Laurent polynomial [89, 105]:

f(z, E) := det[H(z)− E I] = 0. (1)

For E that does not coincide with any of the PBC
eigenenergies, i.e., eigenvalues of H(eik) for real k, we
must have complex k = −i ln z. Such E lies in the OBC
spectrum when the latter is very different from the PBC
spectrum. It can be shown that [87, 89, 91, 99, 101, 110]

in the thermodynamic limit, the OBC eigenenergies are
given by [137] solutions of k that are doubly degenerate
in both Im(k) and E: For such solutions, we define the
GBZ as κ(k), where the complex momentum deformation
is given by k → k+iκ(k). In other words, we say that the
conventional (Bloch) BZ is replaced by the (non-Bloch)
GBZ defined by z → eike−κ(k).

To understand how the GBZ formalism needs to be
modified in a cNHSE system, we start from a generic
two-component ansatz cNHSE Hamiltonian, written in

the component basis Ck =
(
ck,A, ck,B

)T
as

Hg(z)=

(
Haa(z) Hab(z)
Hba(z) Hbb(z)

)
=

n+∑
n=−n−

(
haan habn
hban hbbn

)
zn,

(2)

where n± ∈ Z, z = eik. In principle, cNHSE exists as
long as Haa and Hbb exhibit dissimilar inverse skin local-
ization lengths κ(k), and couplings Hab,Hba 6= 0. The
former condition is equivalent to having asymmetric hop-
pings haan 6= haa−n and hbbn 6= hbb−n for some n, as well as
haan /h

aa
−n 6= hbbn /h

bb
−n.

To implement OBCs, we first Fourier transform to
real space, where one obtains the real-space tight-binding
Hamiltonian

Hgr=

L∑
i=1

n+∑
n=−n−

C†i

(
haan habn
hban hbbn

)
Ci+n, (3)

where L is the system size, i.e., number of unit cells,
1 6 n± 6 L/2, Ci =

(
ci,A, ci,B

)T with the annihi-
lation (creation) operator ci,α (c†i,α) on site α (α =

A,B) in cell i. For a real-space wave function |ψ〉 =

(ψ1,A, ψ1,B, ψ2,A, ψ2,B, · · · , ψL,A, ψL,B)
T, we express the

real-space Schrödinger equation Hgr|ψ〉 = EOBC|ψ〉 as
∑n+

n=−n−

(
haan ψi+n,A+habn ψi+n,B

)
=EOBCψi,A,∑n+

n=−n−

(
hban ψi+n,A+hbbn ψi+n,B

)
=EOBCψi,B,

(4)

where Hgr is the Hamiltonian matrix of Hgr in the ba-
sis (C1, C2, · · · , CL)T and EOBC is the eigenenergy un-
der OBC. To relate to the complex momenta present
in non-Hermitian skin modes, we solve the real-space
Schrödinger equation via the ansatz

(ψn,A, ψn,B)
T

=
∑
j

(βj)
n
(
φ
(j)
A , φ

(j)
B

)T
, (5)

where A, B are the site indices in the cell, and n repre-
sents the position of the cell (A,B) in the real space. Here,
βj are specific solutions to z = eik, and characterizes the
spatial localization of the boundary skin-localized wave
function. By substituting Eq. (5) into (4), we can write
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the bulk eigenequation as

[∑n+

n=−n−h
aa
n (βj)

n−EOBC

]
φ
(j)
A +

∑n+

n=−n−h
ab
n (βj)

nφ
(j)
B

=0,∑n+

n=−n−h
ba
n (βj)

nφ
(j)
A +

[∑n+

n=−n−h
bb
n (βj)

n−EOBC

]
φ
(j)
B

=0.

(6)

Equation (6) can be recast into the energy dispersion
characteristic equation

E2
OBC−

n+∑
n=−n−

(
haan +hbbn

)
(βj)

nEOBC

+

 n+∑
n=−n−

haan (βj)
n

 n+∑
n=−n−

hbbn (βj)
n


−

 n+∑
n=−n−

habn (βj)
n

 n+∑
n=−n−

hban (βj)
n

=0, (7)

where we have labeled the solutions βj with increasing
magnitude |β1| 6 |β2| 6 · · · 6 |β2M |. HereM = n−+n+.

Importantly, the key property required for restoring
BBCs – the complex momentum deformation (effective
GBZ) – does not require intimate knowledge of most of
these β solutions. This is because fundamentally, the
required complex deformation depends on the decay rate
of the eigenstates, which turns out to depend only on
two dominant β solutions. Below, we derive the precise
conditions from the bulk eigenequations (6) as well as
constraints from the OBCs ψ−n−,α = · · · = ψ−1,α =
ψ0,α = ψL+1,α = ψL+2,α = · · · = ψL+n+,α = 0 (α =
A,B; 1 6 n± 6 L/2).

By eliminating φ(j)B in terms of φ(j)A , we obtain 2M simultaneous linear equations in φ(j)A , (j = 1, 2, . . . , 2M), which
yield nonvanishing solutions only if the determinant∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

F
(a,1)
1 β1 F

(a,1)
2 β2 · · · F

(a,1)
2M β2M

F
(b,1)
1 β1 F

(b,1)
2 β2 · · · F

(b,1)
2M β2M

...
...

...
...

F
(a,n+)
1 (β1)

n+ F
(a,n+)
2 (β2)

n+ · · · F
(a,n+)
2M (β2M )

n+

F
(b,n+)
1 (β1)

n+ F
(b,n+)
2 (β2)

n+ · · · F
(b,n+)
2M (β2M )

n+

G
(a,1)
1 (β1)

L−(n−−1) G
(a,1)
2 (β2)

L−(n−−1) · · · G(a,1)
2M (β2M )

L−(n−−1)

G
(b,1)
1 (β1)

L−(n−−1) G
(b,1)
2 (β2)

L−(n−−1) · · · G(b,1)
2M (β2M )

L−(n−−1)

...
...

...
...

G
(a,n−)
1 (β1)

L
G

(a,n−)
2 (β2)

L · · · G
(a,n−)
2M (β2M )

L

G
(b,n−)
1 (β1)

L
G

(b,n−)
2 (β2)

L · · · G
(b,n−)
2M (β2M )

L

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0, (8)

as derived in more detail in Appendix A. This determi-
nant expression captures the constraints from OBCs at
both boundaries. In general, it is a complicated expres-
sion, but can still be written explicitly in terms of βj and
EOBC for the two-band ansatz:

F
(a,i)
j =

n+∑
n=−(i−1)

(haan + fjh
ab
n ) (βj)

n − EOBC, (9)

F
(b,i)
j =

n+∑
n=−(i−1)

(hban + fjh
bb
n ) (βj)

n − fjEOBC, (10)

G
(a,i)
j =

n−−i∑
n=−n−

(haan + fjh
ab
n ) (βj)

n − EOBC, (11)

G
(b,i)
j =

n−−i∑
n=−n−

(hban + fjh
bb
n ) (βj)

n − fjEOBC, (12)

where

fj =
φ
(j)
B

φ
(j)
A

=
EOBC −

∑n+

n=−n− h
aa
n (βj)

n∑n+

n=−n− h
ab
n (βj)

n

=

∑n+

n=−n− h
ba
n (βj)

n

EOBC −
∑n+

n=−n− h
bb
n (βj)

n . (13)

Equation (8) can be rearranged in a compact multi-
variate polynomial form

∑
P,Q

J(βi∈P , βj∈Q, EOBC)

[∏
i∈P

(βi)
k

]∏
j∈Q

(βj)
k′

=0,

(14)

where k = 1, · · · , n+, k′ = L−(n−−1), · · · , L, sets P and
Q are two disjoint subsets of the set {1, 2, · · · , 2M} with
M elements, respectively, and J(βi∈P , βj∈Q, EOBC) is the
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EOBC-dependent coefficient corresponding to a particular
permutation of P and Q. By separating the product
contributions of the βs which are exponentiated by L,
we can extract out contributions that scale differently
with L.

Furthermore, in the case n+ = n− where the maximal
left and right hopping distances are the same, Eq. (14)
simplifies to

∑
P,Q

J(βi∈P , βj∈Q, EOBC)

[∏
i∈P

(βi)
L+1

]
=0. (15)

In the thermodynamic limit, the large L in the ex-
ponents picks up the slowest decaying terms, and
these would be the physically dominant contributions
amidst the complicated jungle of terms. Specifi-
cally, in Eq. (15), we find that there are two leading
terms proportional to (βMβM+2βM+3 · · ·β2M )L+1 and
(βM+1βM+2βM+3 · · ·β2M )L+1, which yield in the limit
of large system size L∣∣∣∣ βMβM+1

∣∣∣∣ ' ∣∣∣∣−J(βi∈P1
, βj∈Q1

, EOBC)

J(βi∈P2 , βj∈Q2 , EOBC)

∣∣∣∣ 1
L+1

EOBC=E∞

, (16)

where P1 = {M + 1,M + 2,M + 3 · · · , 2M}, Q1 =
{1, 2, 3, · · · ,M}, P2 = {M,M + 2,M + 3, · · · , 2M},
Q2 = {1, 2, · · · ,M−2,M−1,M+1},M = n++n−, and
L is the system size with L → ∞. We emphasize that
the form of this result Eq. (16) with L → ∞ still holds
for general higher-component or multi-band models [see
Eq. (B19), albeit with more complicated J functions], as
derived in Appendix B. The details are complicated, but
physically, we expect qualitatively similar behavior be-
cause the critical NHSE essentially arises from the com-
petition between the NHSE and the couplings, and with
greater number of bands, we will have more avenues for
the competition. But unless the model is fine tuned, we
will generically still see the direct competition between
pairs of bands, which thus reduces qualitatively to two-
band behavior.

We comment on a few key takeways from Eq. (16).
Without any assumption on the detailed hoppings in
the 1D tight-binding model, we showed how the require-
ment of satisfying OBCs at both ends generically lead
to Eq. (16), which relates |βM/βM+1|L+1 with a combi-
nation of L-independent model parameters. It picks out
the solutions βM and βM+1 of Eq. (7) as the dominant
ones at large L, although in this regime, the L depen-
dence is also generally weak since the exponent 1/(L+1)
changes slowly. Below, we discuss further on the large L
and moderate L regimes separately.

In the thermodynamic limit of L→∞, the right hand
side of Eq. (16) tends to unity, giving rise to the standard
GBZ result |βM | = |βM+1| discussed in [87, 89, 91, 110,
113, 127, 138]. Hence, to draw the GBZ for L → ∞, we
uniformly vary the relative phase between βM and βM+1,
and trace out the trajectory Cβ satisfying |βM | = |βM+1|.
Since L is large, each point in the GBZ curve is separated

by a 2π/L phase interval that converges to a continuum,
resulting in continuum complex energy bands.

For finite L away from the thermodynamic limit,
we emphasize that this standard GBZ construction for
E∞ = limL→∞EOBC may no longer be valid. While
in many cases, EOBC does not change significantly as
L is extrapolated down to moderate [i.e., L ∼ O(10)], in
cNHSE cases, the spectra and hence other physical prop-
erties vary strongly with system size. To characterize
such cNHSE scenarios at finite L, we note from Eq. (16)
that the magnitudes |βM | and |βM+1| can no longer
be treated as equal. Physically, this implies that the
OBC eigenstates are superpositions of different modes
with inverse spatial decay lengths of either − ln |βM | or
− ln |βM+1|. As such, the effective cNHSE GBZ is de-
scribed by both |βM | and |βM+1|, which are no longer
equal. Contributions from other βj solutions affect the
eigenstate decay rates negligibly even in the presence of
cNHSE, as numerically verified for our illustrative cou-
pled Hatano-Nelson model in Appendix C.

In the following two sections, we shall elaborate on
how the pair of GBZ solutions |βM | and |βM+1| scale
with system size L. Since the exact scaling dependencies
can be highly complicated, we shall illustrate our results
concretely through two paradigmatic cNHSE models, the
minimal coupled Hatano-Nelson model with energy offset
in section III and a model with size-dependent topological
states in section IV.

III. COUPLED HATANO-NELSON MODEL
WITH ENERGY OFFSET

In this section, we elaborate on a cNHSE model formed
by coupling the simplest possible NHSE chains – two
equal and oppositely oriented Hatano-Nelson chains. Go-
ing beyond the minimal model introduced in Ref. [127],
which provided elegant analytic results, we additionally
introduce on-site energy offsets ±V on the two chains,
respectively, such that the inter-chain coupling now also
faces nontrivial competition from the energetic sepa-
ration of 2|V |. The coupled chains are illustrated in
Fig. 1(a), with each chain constituting one of the sub-

lattices A and B. In the basis Ck =
(
ck,A, ck,B

)T
, its

momentum-space Hamiltonian is

H(z) =

(
t+a z + t−a /z + V t0

t0 t+b z + t−b /z − V

)
, (17)

where t±a = t1 ± δa, t±b = t1 ± δb, t0 is the inter-chain
hopping, and ±V is the on-site potential energy. We
denote z = eik as before, where k is the momentum. It is
related via Fourier transformation to the corresponding
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B B B

A A A
(a)

-2 -1 0 1 2
ReE

0.6

0.4

0.2

0.0

0.2

0.4

0.6

Im
E

(b1) V = 0

-2 -1 0 1 2
ReE

0.6

0.4

0.2

0.0

0.2

0.4

0.6 (b2) V = 0.5

FIG. 1. (a) Coupled Hatano-Nelson chain model [Eq. (18)]
with inter-chain hopping t0, intra-chain hopping asymmetries
t±a = t1 ± δa and t±b = t1 ± δb, and chain energy offsets ±V .
(b) Energy spectra of Eq. (18) under PBCs (blue) and OBC
(red) in the L → ∞ limit for (b1) V = 0 and (b2) V = 0.5.
Parameters are t0 = 0.01, t1 = 0.75, and δa = −δb = 0.25.
While the PBC and OBC spectra coincide in the V = 0 case
studied in [127], they deviate when V 6= 0, leading to broken
bulk-boundary correspondence.

real-space tight-binding Hamiltonian

Hr =
∑
n

(
t+a c
†
n,Acn+1,A + t−a c

†
n+1,Acn,A + t0c

†
n,Acn,B

+t+b c
†
n,Bcn+1,B + t−b c

†
n+1,Bcn,B + t0c

†
n,Bcn,A

+V c†n,Acn,A − V c
†
n,Bcn,B

)
, (18)

where cn,α (c†n,α) is the annihilation (creation) operator
on site α (α = A,B) in unit cell n. Evidently, t+a /t−a and
t+b /t

−
b are the hopping asymmetries of chains A and B.

The energy eigenvalues of the Hamiltonian (17) under
PBCs are given by

E
(±)
PBC(k) = 2t1 cos k + i(δa + δb) sin k

±
√

[i(δa − δb) sin k + V ]2 + t20, (19)

where k ∈ R and t±a = t1±δa, t±b = t1±δb. In Fig. 1(b1),
we see that in the large-L limit, the PBC spectrum (blue)
agrees well with the OBC spectrum (red) only in the
V = 0 case which Ref. [127] has considered. When V 6= 0
[Fig. 1(b2)], the OBC spectrum lies in the interior of
the PBC loops and can only agree with E

(±)
PBC(k) if we

perform an appropriate complex momentum deformation
k → k + iκ(k) [89, 91, 99, 101, 110, 113]. While it may
appear here that the V = 0 case does not experience BBC
breaking (i.e., the NHSE), that is actually untrue once
we consider finite system sizes [127]. Below, we show that
this model exhibits cNHSE at finite system sizes for all

values of V , and compare some analytic approximations
with numerical results.

A. Finite-size scaling from the cNHSE

To understand how the PBC and OBC spec-
tra differ beyond the thermodynamic limit shown in
Figs. 1(b1) and 1(b2), we examine the real-space
Schrödinger’s equation Hr|ψ〉 = EOBC|ψ〉, where |ψ〉 =

(ψ1,A, ψ1,B, ψ2,A, ψ2,B, · · · , ψn,A, ψn,B, · · · )T:{
t−a ψn−1,A+t0ψn,B+t+a ψn+1,A+V ψn,A =EOBCψn,A,

t−b ψn−1,B+t0ψn,A+t+b ψn+1,B−V ψn,B =EOBCψn,B,
(20)

where Hr is the Hamiltonian matrix of Hr in the basis
(C1, C2, · · · , Cj , · · · )T . Based on the approach developed
in the section II, we can use as an eigenstate ansatz which
is a linear combination of β solutions, such as to solve the
real-space Schrödinger equation [87, 112, 127]:(

ψn,A

ψn,B

)
=

4∑
j=1

(βj)
n

(
φ
(j)
A

φ
(j)
B

)
. (21)

This allows us to rewrite Eq. (20) as(
t+a β+t−a β

−1+V t0
t0 t+b β+t−b β

−1−V

)(
φA
φB

)
=EOBC

(
φA
φB

)
,

(22)

where we have written βj = β and φ(j)α = φα (α = A,B)
for notational simplicity, since Eq. (22) applies separately
to different j. Essentially, this ansatz has allowed us to
replace z = eik by β. Nontrivial solutions to Eq. (22)
satisfy the bulk characteristic dispersion equation

t+a t
+
b β

2 − [(t+a + t+b )EOBC + (t+a − t+b )V ]β

+
(
t+a t
−
b + t−a t

+
b + E2

OBC − t20 − V 2
)

−[(t−a + t−b )EOBC + (t−a − t−b )V ]β−1+t−a t
−
b β
−2 =0.

(23)

For each value of EOBC, there are four solutions β = βj ,
j = 1, 2, 3, 4, since the maximal and minimal powers of β
are n+ = n− = 1.

1. Finite-size scaling of the OBC spectra

To understand the OBC spectrum EOBC in terms of
non-Bloch theory, we need to obtain its effective GBZ.
For finite L, the GBZ comprises the two dominant β so-
lutions such that EPBC(−i log β) numerically coincides
with EOBC. The numerically computed EOBC is shown
in Fig. 2 for both (a) V = 0 and (b) V = 0.5. Evi-
dently, the OBC spectra in both cases depends strongly
on L, being real for small L (i.e., L = 10), and gradually
morphing into the large L spectrum previously shown
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0.0
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0.4
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0.0
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L =
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0.4
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0.0

0.2

0.4
(b2)V=0.5

L = 10
L = 20
L = 50
L = 100
L =

FIG. 2. OBC energy spectra of the coupled Hatano-Nelson
model Hamiltonian (18) with (a1) V = 0 and (b1) V = 0.5
at different finite system sizes L = 10 (black), 20 (blue), 50
(red), 100 (yellow), ∞ (green). When V = 0, the spectrum is
real for short chains, but complex for long chains due to the
strong effective couplings from large L. But interestingly for
V 6= 0, short chains can possess some complex energies, and
long chains possess some real energies. PBC energy spectra
of the coupled Hatano-Nelson model Hamiltonian (18) with
(a2) V = 0 and (b2) V = 0.5 at different finite system sizes
L = 10 (black), 20 (blue), 50 (red), 100 (yellow), ∞ (green).
Parameters are t0 = 0.01, t1 = 0.75, and δa = −δb = 0.25,
the same as those in Fig. 1.

in Fig. 1. Physically, the spectrum remains real when
the couplings (here with small bare values t0 = 0.01)
are strong enough for the directed amplifications from
both chains to cancel [139]; as the system gets larger,
the cNHSE becomes exponentially stronger and the cou-
plings serve to “close up” [52, 115, 140] the amplification
loops, causing unchecked amplification that corresponds
to complex energies. For V 6= 0, some eigenenergies can
remain real even at arbitrarily large system sizes pre-
sumably because the potential offsets obstruct unchecked
amplification.

2. From OBC spectra to size-dependent cNHSE GBZs

While the size-dependent spectra in Fig. 2 unambigu-
ously signify the presence of cNHSE, size-dependencies in
the spectra are model-specific. Key to more fundamental
understanding of cNHSE scaling is the scaling behavior of
the GBZ [141]. To compute the GBZ, we substitute the
OBC energies into the characteristic equation (23) and
obtain the β solutions. Here, for each EOBC point, we
have four solutions |β1| 6 |β2| 6 |β3| 6 |β4| and the GBZ
is given by the two solutions βM = β2 and βM+1 = β3.
Figure 3 shows the GBZ computed at various finite sys-
tem sizes L = 10, 20, 50, 100; the L = ∞ case (green)

is plotted by solving Eq. (23) with the standard con-
dition |β2| = |β3| (i.e., intersecting β2 and β3 solution
curves) [91, 106–112] valid in the thermodynamic limit.

FIG. 3. GBZ of the coupled Hatano-Nelson model Hamilto-
nian (18) at different finite system sizes L = 10 (black), 20
(blue), 50 (red), 100 (yellow),∞ (green) for (a) V = 0 and (b)
V = 0.5. At finite L, the GBZ is given by solutions βM = β2
and βM+1 = β3; as L→∞, the β2 and β3 loops converge to-
wards the standard GBZ solution |β2| = |β3|. Note that this
standard GBZ can consist of two loops (as in (b)), since this
is a two-band model. Parameters are t0 = 0.01, t1 = 0.75,
and δa = −δb = 0.25, the same as those in Fig. 1.

For the finite-size cases under V = 0 shown in Fig. 3(a),
there are two loops in the Re(β)-Im(β) plane for each
value of L, corresponding to the β2 and β3 solutions.
As the system size L increases to infinity, they con-
verge towards each other, as expected from the condition
|β2| = |β3|. Similarly, for the V 6= 0 case in Fig. 3(b), the
two loops in the Re(β)-Im(β) plane get closer and closer
to each other as the system size L increases. However,
in this case, they do not converge into one single loop
because the GBZ solution |β2| = |β3| itself consists of
two loops [green in Fig. 3(b)]. Here the GBZ solutions
are also highly anisotropic in the wave number arg(β),
exhibiting cusps at β corresponding to branch points in
the spectrum [99, 101].



7

3. Finite scaling behavior of the GBZ

Having numerically seen how the GBZ varies with sys-
tem size, we now rigorously derive the scaling rules gov-
erning it. To do so, we examine the OBC constraints
in detail. As elaborated in Appendix D, imposing open
boundaries at x = 1 and x = L, i.e., ψ0,α = ψL+1,α = 0
gives rise to the condition

X1,4X2,3

[
(β1β4)

L+1
+ (β2β3)

L+1
]

−X1,3X2,4

[
(β1β3)

L+1
+ (β2β4)

L+1
]

+X1,2X3,4

[
(β1β2)

L+1
+ (β3β4)

L+1
]

= 0, (24)

where Xi,j are defined as

Xi,j ≡ t+a (βj − βi) + t−a (β−1j − β
−1
i ) (25)

with i, j = 1, 2, 3, 4. This result is equivalent to Eq. (8),
but specialized to our coupled Hatano-Nelson model
Hamiltonian. Interestingly, it is independent of V and
EOBC, even though they both definitely affect the values
of βj , since the individual βj solutions are determined
by the characteristic dispersion equation (23). When L
is varied, the βj solutions of Eq. (23) vary since EOBC

changes with L. How exactly EOBC can change is in-
directly constrained by Eq. (24), which imposes a L-
dependent relation between the βj solutions correspond-
ing to the value of EOBC.

FIG. 4. The GBZ radii |β2| and |β3| of our coupled Hatano-
Nelson model Hamiltonian (18) with V = 0.5, plotted against
the system size L for (a) arg(β) = π

2
and (b) arg(β) = π

4
. Re-

sults obtained from the numerical OBC spectra exhibit excel-
lent fitting with the exponential scaling of Eq. (28), with fitted
parameters a(arg(β) = π

2
) ≈ 0.050, b(arg(β) = π

2
) ≈ 78.65,

a(arg(β) = π
4
) ≈ −0.057, and b(arg(β) = π

4
) ≈ 198.11. The

scaling is frozen below the lower critical length Lc ≈ 14, lim-
ited by the bare asymmetric couplings t±a and t±b . Parameters
are t0 = 0.01, t1 = 0.75, and δa = −δb = 0.25, the same as
those in Fig. 1.

To make progress in deriving the finite-size scaling
properties of the βs, our strategy is to consider the
large-L limit and obtain the leading-order scaling be-
havior. In this limit, we can approximate the boundary
equation (24) by retaining only the two dominant terms
−X1,3X2,4 (β2β4)

L+1 and X1,2X3,4 (β3β4)
L+1. To make

FIG. 5. (a), (b) Exponential scaling parameters a and b
[Eq. (28)] of |β3| as a function of V at arg(β) = π

2
. Their

numerical values are extracted from the plot of |β3| against
L, which is computed from the numerical EOBC data. In (b),
this numerically obtained b is shown to be well predicted from
the model parameters through the analytic result Eq. (29),
which is derived under the small V approximation. (c), (d)
Show the numerically obtained a and b as a function of arg(β),
at fixed V = 0.5. Parameters are t0 = 0.01, t1 = 0.75, and
δa = −δb = 0.25, the same as those in Fig. 1.

further headway, we note that the cNHSE is already well
manifested when the bare value of the coupling t0 is very
small, i.e., t0 = 0.01 as in Fig. 1. (In fact, if t0 is of the
same order as the two Hatano-Nelson chains, it would be
difficult to see the weak coupling/small-L limit with real
spectra.) As such, we can expand up to the second order
of the coupling parameter t0 (see Appendix E) to obtain∣∣∣∣β2β3

∣∣∣∣' ∣∣∣∣X1,2X3,4

X1,3X2,4

∣∣∣∣ 1
L+1

≈
∣∣(t+a t−b −t−a t+b )2f∞(E∞)t20

∣∣ 1
L+1 , (26)

where E∞ ≡ limL→∞EOBC, and

f∞(E∞) =

√
(E∞ − V )2 − 4t+a t

−
a

√
(E∞ + V )2 − 4t+b t

−
b

h2(E∞)
,

(27)

h(E∞) = E2
∞(t−a − t−b )(t+a − t+b ) + (t+a t

−
b − t−a t

+
b )2 +

2E∞(t+a t
−
a − t+b t

−
b )V + (t+a + t+b )(t−a + t−b )V 2. Notice

that E∞ in Eq. (26) depends on t0. Equation (26) is
Eq. (16) specialized to our coupled Hatano-Nelson model
Hamiltonian [Eq. (18)]. It expresses the ratio of the GBZ
quantities |β2| and |β3| as a constant exponentiated by
1/(L + 1), which is a scaling behavior that is universal
across cNHSE models.

While the 1/(L+1) exponential scaling behavior holds
generally for the ratio |βM/βM+1|, it can apply to |βM |
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or |βM+1| individually if they are related in special ways.
In Fig. 4, we show the numerically extracted |β2| and
|β3| at two special values of arg(β), where |β2| ≈ 1/|β3|
in Fig. 4(a) and |β2| is constant in Fig. 4(b). As such,
|β2/β3| ≈ |β2|2 ≈ |β3|−2 in Fig. 4(a) and |β2/β3| ∝ |β3|−1
in Fig. 4(b), hence allowing for |β3| to be fitted to an
exponential form

|β3| = a+ b
1

L+1 , (28)

where the parameters a, b ∈ R, b > 0, and |a| � 1� |b|.
In general, this exponential relation fits the numerically
obtained |β|s very well for sufficiently large L, as demon-
strated in Fig. 4. The actual values of fitting parameters
a and b are shown in Fig. 5 as functions of the on-site
energy V [Figs. 5(a) and 5(b)] and arg(β) [Figs. 5(c)
and 5(d)]. It is found that both a and b are mono-
tonically increasing functions of the on-site energy V at
arg(β) = π

2 [Figs. 5(a) and 5(b)]. Also, in the range
of arg(β) ∈ [π4 ,

π
2 ] for V = 0.5, a is a monotonically

increasing function of arg(β), but b is a monotonically
decreasing function of arg(β). We see that the condition
|a| � |b| is always satisfied with different on-site energy
V and arg(β).

The correctness of our exponential fit can be checked
by comparing against analytic results involving the model
parameters. From Eq. (26), we see that in the case of
|β2| ≈ 1/|β3|, the parameter b in the exponential scaling
relation is approximately given by

b ≈
∣∣(t+a t−b −t−a t+b )2f∞(E∞)t20

∣∣−1/2 . (29)

As shown in Fig. 5(b), both the analytical and numer-
ical results agree well with each other when the on-site
energy V is smaller than 0.2, where the |β2| ≈ 1/|β3| ap-
proximation accurately holds. For different fixed arg(β),
EOBC would be different, leading to different values of
b. Indeed, as evident in Fig. 3(b), the convergence be-
havior of |β| and hence b varies significantly with arg(β)
[Fig. 5(d)].

B. Lower critical system size for the cNHSE

As seen in Fig. 4, the scaling of the GBZ parameters
|βM | and |βM+1| (M = 2 here) is only exponential and
described by Eq. (28) above a certain lower critical sys-
tem size Lc. Below that, they remain effectively con-
stant, indicative of the absence of the cNHSE. The rea-
son is that the spatial skin decay lengths −1/ ln |βM | and
−1/ ln |βM+1| cannot be faster than that of the physical
NHSE chains in the cNHSE model. In our model, not-

ing that |β3| > |β2|, we must have |β3c| =
√
t+a /t

−
a and

|β2c| =
√
t+b /t

−
b , corresponding to the |β|s of the individ-

ual Hatano-Nelson chains.
Substituting |β2/β3| with |β2c/β3c| in Eq. (26), we ob-

tain the critical system size Lc of our coupled Hatano-

FIG. 6. (a) Critical system size Lc versus V at arg(EOBC) =
π
2
. The analytical result given by Eq. (30) (blue) agrees rea-

sonably well with numerical results (red stars) estimated by
the threshold system size L = Lc, below which the spectrum
is unaffected by L. We observe that Lc increases with V ,
confirming the intuition that the inter-chain energy offset V
obstructs critical NHSE hybridization. (b) Absolute value of
the maximal imaginary part of the eigenvalues |Im(EOBC)max|
as a function of the system size L, also at arg(EOBC) = π

2
.

The onset of complex EOBC typically occurs at Lc, except
for small systems (L = 10), where the nonzero V offset can
give rise to complex energies [see Fig. 2(b)]. Parameters are
t0 = 0.01, t1 = 0.75, and δa = −δb = 0.25, the same as those
in Fig. 1.

Nelson model as

Lc≈
2 ln

∣∣(t+a t−b − t−a t+b )2f∞(E∞)t20
∣∣

ln
∣∣t+b t−a /(t−b t+a )

∣∣ − 1. (30)

As shown in Fig. 6(a) for arg(EOBC) = π
2 , this analytic

expression [Eq. (30)] for Lc (blue curve) agrees rather well
with its numerical determination (red stars), i.e., from
plots such as Fig. 4. Not surprisingly, it increases mono-
tonically with the inter-chain energy offset V , since the
offset impedes energy matching and acts as an obstruc-
tion to the critical coupling between the Hatano-Nelson
chains.
Lc can also be thought of as the lower critical length

above which the inter-chain coupling t0 is “switched on”
to cause the cNHSE. As seen in Fig. 6(b), the energy
spectrum becomes complex precisely above Lc. Since
our OBC Hatano-Nelson chains have real spectra when
uncoupled, it means that they become effective coupled
only when L ≥ Lc. Naively, we would expect small t0 to
continuously give rise to small imaginary energies; yet, in
reality, there exists a sharp real-to-complex spectral tran-
sition [113, 127] controlled by Lc. We note that Lc →∞
as t0 → 0, consistent with the expectation that uncou-
pled chains will never experience the cNHSE.

IV. TOPOLOGICALLY COUPLED CHAIN
MODEL

To complement the exposition of our coupled Hatano-
Nelson cNHSE model above, we next consider more
sophisticated inter-chain couplings which lead to size-
controlled topological states, as first designed in [113].
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In the basis Ck =
(
ck,A, ck,B

)T
, it is given by

Htop(z) =

(
t+a z + t−a /z + V δab(z + 1/z)
−δab(z + 1/z) t+b z + t−b /z − V

)
, (31)

where t±a = t1 ± δa, t±b = t1 ± δb, and z = eik. Here, the
simple inter-chain couplings t0 of the coupled Hatano-
Nelson model are replaced by criss-crossing inter-chain
couplings ±δab which can potentially introduce topolog-
ical flux [142]. Under PBCs, the energy eigenvalues can

B B B

A A A
δ

δ δ
δ

FIG. 7. Topologically coupled two-chain model [Eq. (33)] with
criss-crossing inter-chain non-reciprocal couplings ±δab and
asymmetric hoppings t±a = t1 ± δa and t±b = t1 ± δb in chains
A and B. The chains are given energy offsets of ±V .

FIG. 8. OBC energy spectra of the topologically coupled
chain model Hamiltonian (33) with (a) V = 0 and (b) V = 0.5
at different system sizes L = 10 (black), 30 (blue), 50 (red),
100 (yellow), ∞ (green). Notably, topological zero modes
(circled) appear at E = 0 in the point gap only at sufficiently
large system sizes of L = 50, 100. The other parameters are
δab = 0.5× 10−3, t1 = 0.75, and δa = −δb = 0.25.

be simply obtained from the Hamiltonian (31) as

E
(±)
PBC(k)=2t1 cos k + i(δa + δb) sin k

±
√

[i(δa − δb) sin k+V ]2−4δ2ab cos2 k. (32)

with k = −i ln z ∈ R and t±a = t1 ± δa, t±b = t1 ± δb. By
Fourier transformation, one obtains the real-space tight-
binding Hamiltonian (Fig. 7):

Ht =
∑
n

(
t+a c
†
n,Acn+1,A + t−a c

†
n+1,Acn,A + δabc

†
n,Acn+1,B

−δabc†n+1,Bcn,A + t+b c
†
n,Bcn+1,B + t−b c

†
n+1,Bcn,B

+δabc
†
n+1,Acn,B − δabc

†
n,Bcn+1,A + V c†n,Acn,A

−V c†n,Bcn,B
)
, (33)

where cn,α (c†n,α) is the annihilation (creation) operator
on site α (α = A,B) in cell n.

Following the similar derivations as Eq. (23), we can
obtain the characteristic energy dispersion equation

(t+a t
+
b + δ2ab)β

2 + [−(t+a + t+b )EOBC − (t+a − t+b )V ]β

+
(
t+a t
−
b + t−a t

+
b + 2δ2ab + E2

OBC − V 2
)

+ [−(t−a + t−b )EOBC − (t−a − t−b )V ]β−1

+ (t−a t
−
b + δ2ab)β

−2 = 0. (34)

Similarly as before, we can compute the OBC energy
spectra and the GBZ of the topological coupled chain
model Hamiltonian (33) at different finite system sizes
L = 10, 30, 50, 100, ∞ as shown in Figs. 8 and 9, re-
spectively. We find that they are qualitatively similar to
those of the coupled Hatano-Nelson model, except that
there is a topological zero mode at E = 0 (dirty red and
yellow). These topological modes also correspond to iso-
lated solutions in the GBZ plot (Fig. 9), although they
are exempted from the finite-size scaling behavior. It is
found that the topological zero modes appear at E = 0
in the point gap only at sufficiently large system sizes as
shown in Fig. 8. The reason is that the GBZ depends
strongly on the system size as shown in Fig. 9, and so
does the OBC spectrum as shown in Fig. 8. When we
tune the system size L (regarding L as a parameter), the
OBC spectrum changes. At a critical L, the OBC spec-
trum’s gap closes and after that, topological zero modes
appear, as shown in Fig. 13 in Appendix F. Different from
the famous single-chain Su-Schrieffer-Heeger model [143–
148], our topologically coupled chain model has two cou-
pled chains, i.e., the coupling between these two chains
plays an important role here. In the topologically cou-
pled chain model, the competition between the coupling
of the two chains and the finite system size determines
the existence or absence of the topological zero modes.
This conclusion can be found by calculating the topo-
logical phase diagram of the topologically coupled chain
model as shown in Fig. 4(d) in a previous work [113].
Therefore, the strength of the coupling of the two chains
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FIG. 9. GBZ of the topologically coupled chain model Hamil-
tonian (33) at different finite system sizes L = 10 (black), 20
(blue), 50 (red), 100 (yellow), ∞ (green) with (a) V = 0 and
(b) V = 0.5. Parameters are δab = 0.5× 10−3, t1 = 0.75, and
δa = −δb = 0.25, the same as those in Fig. 8. The GBZ is
qualitatively similar to that in Fig. 3, apart from the isolated
topological modes (dirty red and yellow) which by definition
do not belong to any continuum of states.

determines the threshold system size which is required
for the topological modes.

By enforcing OBCs in the real-space Hamiltonian, we
arrive at

[
Z

(b)
1,4Z

(a)
2,3 (β1β4)

L+1
+Z

(a)
1,4Z

(b)
2,3 (β2β3)

L+1
]

−
[
Z

(b)
1,3Z

(a)
2,4 (β1β3)

L+1
+Z

(a)
1,3Z

(b)
2,4 (β2β4)

L+1
]

+
[
Z

(b)
1,2Z

(a)
3,4 (β1β2)

L+1
+Z

(a)
1,2Z

(b)
3,4 (β3β4)

L+1
]

=0, (35)

where dispersion relation solutions βj (j = 1, 2, 3, 4) are
arranged so that |β1| 6 |β2| 6 |β3| 6 |β4|, and Z(c)

i,j (i, j =

1, 2, 3, 4; c = a, b) are defined as

Z
(c)
i,j = X

(c)
i Y

(c)
j −X(c)

j Y
(c)
i . (36)

FIG. 10. The GBZ radii |β2| and |β3| of the topologically
coupled chain model Hamiltonian (33) versus the system size
L at (a) arg(β) = π

2
and (b) arg(β) = π

4
. The exponential

fits of |β3| correspond to scaling parameters a(arg(β) = π
2
) ≈

0.0520, b(arg(β) = π
2
) ≈ 1476.563, a(arg(β) = π

4
) ≈ −0.0607,

and b(arg(β) = π
4
) ≈ 8791.616. The cNHSE scaling is frozen

below L = Lc ≈ 23, but at arg(β) = π
4
, |β2| remains constant

across all L. Here, V = 0.5 and the other parameters δab =
0.5 × 10−3, t1 = 0.75, and δa = −δb = 0.25 are the same as
those in Fig. 9.

Here, X(c)
j and Y (c)

j are defined as

X
(a)
j = EOBC−(t+a −t−a )βj − V, (37)

Y
(a)
j = EOBC−(t+b −t

−
b )βj + V, (38)

X
(b)
j = EOBC+(t+a −t−a )β−1j − V, (39)

Y
(b)
j = EOBC+(t+b −t

−
b )β−1j + V. (40)

The corresponding derivation of Eq. (35) is given in Ap-
pendix G.

To deal with Eq. (35), we only consider the two domi-
nant terms −Z(a)

1,3Z
(b)
2,4 (β2β4)

L+1 and Z(a)
1,2Z

(b)
3,4 (β3β4)

L+1

on the left-hand side. In this case, by substituting the
solutions of the characteristic equation (34) into this
approximated boundary equation, we can approximate
Eq. (35) as∣∣∣∣β2β3

∣∣∣∣'
∣∣∣∣∣Z

(a)
1,2Z

(b)
3,4

Z
(a)
1,3Z

(b)
2,4

∣∣∣∣∣
1

L+1

EOBC=E∞

≈

∣∣∣∣∣ ∆a(E∞−V +∆a)∆b(E∞+V +∆b)

2t+a t
−
b

[
V 2−E2

∞+2(t+a t
−
b +t+b t

−
a )+∆a∆b

]∣∣∣∣∣
1

L+1

,

(41)

where ∆a =
√

(E∞ − V )2 − 4t+a t
−
a , ∆b =√

(E∞ + V )2 − 4t+b t
−
b , and we have used the ap-

proximation δab → 0 under the condition of weak
inter-chain couplings. Notice that E∞ in Eq. (41)
depends on δab. Therefore, we can also follow Eq. (28)
and postulate an exponential fitting ansatz of |β3| as

|β3| = a+ b
1

L+1 , (42)

for cases where |β2| ≈ 1/|β3|. The scaling behavior of a
and b in Eq. (42) can be extracted or estimated from the
asymptotic result Eq. (41) with the model parameters.
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In Figs. 10(a) and 10(b), we show |β2| and |β3| for
the topologically coupled chain model Hamiltonian (33)
as a function of the system size L both from the ex-
ponential formula in Eq. (42) and from numerical diag-
onalization. We observe an exponential scaling behav-
ior qualitatively similar to that of the coupled Hatano-
Nelson model, which should also universally holds for
other cNHSE models.

V. ROBUST SPECTRAL SCALING BEHAVIOR
UNDER DISORDER

FIG. 11. Absolute value of the maximal imaginary part of
the eigenvalues |Im(EOBC)max| for different system sizes L,
which is satisfied for the eigenenergy with arg(EOBC) =

π
2
. In

both (a) the coupled Hatano-Nelson model [Eq. (18)] and (b)
the topologically coupled chain model [Eq. (33)], the spectral
scaling behavior is very robust up to disorder strength w =
0.2, as defined in Eq. (43). Even at much larger disorder
w = 0.5, the same qualitative spectral scaling prevails. Here,
V = 0.5 and the other parameters are t0 = 0.01, δab = 0.5×
10−3, t1 = 0.75, and δa = −δb = 0.25, the same as those in
previous figures on these respective models.

In this section, we check the robustness of the scaling
behavior of the OBC spectra in the presence of uniformly
distributed on-site disorder

Hdis =
∑
n,α

w̃(n, α)c†n,αcn,α (43)

with random number w̃ ∈ [−w/2, w/2] and α = A,B are
the site indices in the cell n. Since the GBZ is directly
determined through the OBC spectrum, robustness in
the scaling behavior in the spectrum would also imply
similar robustness in the GBZ.

In Fig. 11, we plot the absolute value of the maximal
imaginary part of the eigenenergies |Im(EOBC)max| as a
function of the system size L under different disorder
strengths from w = 0 to 0.5. |Im(EOBC)max| determines
the “width” of the spectrum in the imaginary direction
and can be used as a measure of how the shape of the
spectrum is deformed under disorder. For our models,
|Im(EOBC)max| usually occurs when arg(EOBC) = π

2 , but
that is not necessarily universal. From Fig. 11, we find

that relatively weak disorder (w < 0.2) affects the spec-
trum negligibly, but moderately large disorder (w = 0.5)
gives rise to visible spectral perturbations. However,
the qualitative spectral scaling behavior remains very ro-
bust, which indicates that the cNHSE is strongly robust
against on-site disorder. This is not surprising given that
the cNHSE arises from the competition between differ-
ent NHSE channels, and should not be affected too much
by the on-site energy landscape. It has to be noted that
hopping disorder, however, can affect the long-time state
dynamics and hence significantly modify the overall en-
ergy spectrum [126, 149–152].

VI. DISCUSSION

Systems experiencing the critical non-Hermitian skin
effect (cNHSE) are particularly sensitive to the system
size, exhibiting qualitatively different spectra and spatial
eigenstate behavior at different sizes L. How the cNHSE
scaling is exactly described by the GBZ, particularly for
a system of finite size, is an open question. As we already
know, the GBZ can be used to restore the BBC in the
thermodynamic limit. But for a system of finite size, can
GBZ still be a valid theoretical framework? Using the
GBZ as a tool to investigate the cNHSE scaling behav-
ior provides an effective way to understand the physical
picture of the finite-size effect on the competing NHSE
tendencies between small and large size limits.

In this work, we considered a generic two-component
cNHSE ansatz model with two competing NHSE chan-
nels, and provided detailed studies of two paradigmatic
models, of which the minimal model studied by Ref. [127]
is a special case. We find that our effective finite-size
GBZ obeys a universal exponential scaling law, with ex-
ponent inversely proportional to the system size, and
scaling rate b expressible in term of the model param-
eters in certain cases. Based on this, we provide detailed
and empirically verified estimates of the critical system
size Lc where such a scaling relation begins to hold both
analytically and numerically.

Such cNHSE phenomena can be readily experimentally
demonstrated in non-Hermitian metamaterials with well-
controlled gain/loss and effective couplings, such as pho-
tonic crystal arrays and electrical circuits. Since the non-
reciprocity from different NHSE can cancel, the setup
may not even require physical asymmetric couplings,
such as in the recent experiment [52]. Moving forward, it
would be immensely interesting to explore the interplay
of cNHSE and many-body interactions in emerging and
rapidly progressing platforms such as ultracold atomic
arrays and quantum circuits.
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Appendix A: Derivation of the determinant form of the OBC constraints for a two-band cNHSE model
[Eq. (8)]

From the bulk eigenequation in Eq. (6), we obtain:
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which also relates EOBC with βj solutions.

Substituting these real-space eigenequations under the OBC constraints ψ−n−,α = · · · = ψ−1,α = ψ0,α = ψL+1,α =
ψL+2,α = · · · = ψL+n+,α = 0 (α = A,B; 1 6 n± 6 L/2) into the real-space Schrödinger equation Hgr|ψ〉 = EOBC|ψ〉
[where Hgr is the Hamiltonian matrix of Hgr in the basis (C1, C2, · · · , CL)T ], we can get
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Invoking the non-Bloch ansatz (ψn,A, ψn,B)
T

=
∑2M
j=1 (βj)

n
(
φ
(j)
A , φ

(j)
B

)T
(M = n−+n+) into the above equations
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(A5), we have, generalizing [89],



∑2M
j=1

∑n+

n=0 h
aa
n (βj)

1+n
φ
(j)
A +

∑2M
j=1

∑n+

n=0 h
ab
n (βj)

1+n
φ
(j)
B =EOBC

∑2M
j=1 (βj)φ

(j)
A ,∑2M

j=1

∑n+

n=0 h
ba
n (βj)

1+n
φ
(j)
A +

∑2M
j=1

∑n+

n=0 h
bb
n (βj)

1+n
φ
(j)
B =EOBC

∑2M
j=1 (βj)φ

(j)
B ,∑2M

j=1

∑n+

n=−1 h
aa
n (βj)

2+n
φ
(j)
A +

∑2M
j=1

∑n+

n=−1 h
ab
n (βj)

2+n
ψ
(j)
B =EOBC

∑2M
j=1 (βj)

2
φ
(j)
A ,∑2M

j=1

∑n+

n=−1 h
ba
n (βj)

2+n
φ
(j)
A +

∑2M
j=1

∑n+

n=−1 h
bb
n (βj)

2+n
φ
(j)
B =EOBC

∑2M
j=1 (βj)

2
φ
(j)
B ,

...∑2M
j=1

∑n+

n=−(n+−1) h
aa
n (βj)

n++n
φ
(j)
A +

∑2M
j=1

∑n+

n=−(n+−1) h
ab
n (βj)

n++n
φ
(j)
B =EOBC

∑2M
j=1 (βj)

n+ φ
(j)
A ,∑2M

j=1

∑n+

n=−(n+−1) h
ba
n (βj)

n++n
φ
(j)
A +

∑2M
j=1

∑n+

n=−(n+−1) h
bb
n (βj)

n++n
φ
(j)
B =EOBC

∑2M
j=1 (βj)

n+ φ
(j)
B ,∑2M

j=1

∑n−−1
n=−n− h

aa
n (βj)

L−(n−−1)+n φ
(j)
A +

∑2M
j=1

∑n−−1
n=−n− h

ab
n (βj)

L−(n−−1)+n φ
(j)
B =EOBC

∑2M
j=1 (βj)

L−(n−−1) φ
(j)
A ,∑2M

j=1

∑n−−1
n=−n− h

ba
n (βj)

L−(n−−1)+n φ
(j)
A +

∑2M
j=1

∑n−−1
n=−n− h

bb
n (βj)

L−(n−−1)+n φ
(j)
B =EOBC

∑2M
j=1 (βj)

L−(n−−1) φ
(j)
B ,

...∑2M
j=1

∑1
n=−n− h

aa
n (βj)

L−1+n
φ
(j)
A +

∑2M
j=1

∑1
n=−n− h

ab
n (βj)

L−1+n
φ
(j)
B =EOBC

∑2M
j=1 (βj)

L−1
φ
(j)
A ,∑2M

j=1

∑1
n=−n− h

ba
n (βj)

L−1+n
φ
(j)
A +

∑2M
j=1

∑1
n=−n− h

bb
n (βj)

L−1+n
φ
(j)
B =EOBC

∑2M
j=1 (βj)

L−1
φ
(j)
B ,∑2M

j=1

∑0
n=−n− h

aa
n (βj)

L+n
φ
(j)
A +

∑2M
j=1

∑0
n=−n− h

ab
n (βj)

L+n
φ
(j)
B =EOBC

∑2M
j=1 (βj)

L
φ
(j)
A ,∑2M

j=1

∑0
n=−n− h

ba
n (βj)

L+n
φ
(j)
A +

∑2M
j=1

∑0
n=−n− h

bb
n (βj)

L+n
φ
(j)
B =EOBC

∑2M
j=1 (βj)

L
φ
(j)
B .

(A6)

Substituting Eq. (A4), i.e., φ(j)B = fjφ
(j)
A into the above equations (A6) such as to eliminate the φ(j)B , we have
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We can express Eq. (A7) in more compact notation
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A = 0,∑2M

j=1 F
(b,1)
j βjφ

(j)
A = 0,

...∑2M
j=1 F

(a,n+)
j (βj)

n+ φ
(j)
A = 0,∑2M

j=1 F
(b,n+)
j (βj)

n+ φ
(j)
A = 0,∑2M

j=1G
(a,1)
j (βj)

L−(n−−1) φ
(j)
A = 0,∑2M

j=1G
(b,1)
j (βj)

L−(n−−1) φ
(j)
A = 0,

...∑2M
j=1G

(a,n−)
j (βj)

L
φ
(j)
A = 0,∑2M

j=1G
(b,n−)
j (βj)

L
φ
(j)
A = 0,

(A8)

where

F
(a,i)
j =

n+∑
n=−(i−1)

(haan + fjh
ab
n ) (βj)

n − EOBC, (A9)

F
(b,i)
j =

n+∑
n=−(i−1)

(hban + fjh
bb
n ) (βj)

n − fjEOBC, (A10)

G
(a,i)
j =

n−−i∑
n=−n−

(haan + fjh
ab
n ) (βj)

n − EOBC, (A11)

G
(b,i)
j =

n−−i∑
n=−n−

(hban + fjh
bb
n ) (βj)

n − fjEOBC. (A12)

For a nontrivial state φ(j)A (j = 1, 2, . . . , 2M) that does not vanish, we hence require the vanishing determinant∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

F
(a,1)
1 β1 F

(a,1)
2 β2 · · · F

(a,1)
2M β2M

F
(b,1)
1 β1 F

(b,1)
2 β2 · · · F

(b,1)
2M β2M

...
...

...
...

F
(a,n+)
1 (β1)

n+ F
(a,n+)
2 (β2)

n+ · · · F
(a,n+)
2M (β2M )

n+

F
(b,n+)
1 (β1)

n+ F
(b,n+)
2 (β2)

n+ · · · F
(b,n+)
2M (β2M )

n+

G
(a,1)
1 (β1)

L−(n−−1) G
(a,1)
2 (β2)

L−(n−−1) · · · G(a,1)
2M (β2M )

L−(n−−1)

G
(b,1)
1 (β1)

L−(n−−1) G
(b,1)
2 (β2)

L−(n−−1) · · · G(b,1)
2M (β2M )

L−(n−−1)

...
...

...
...

G
(a,n−)
1 (β1)

L
G

(a,n−)
2 (β2)

L · · · G
(a,n−)
2M (β2M )

L

G
(b,n−)
1 (β1)

L
G

(b,n−)
2 (β2)

L · · · G
(b,n−)
2M (β2M )

L

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0. (A13)

Appendix B: Derivation of the determinant form of the OBC constraints for a general multi-band model

Here, we generalize the above derivation to a general multi-band model, and show that the OBC constraints result
in an analogous vanishing determinant expression. In momentum space, an N -band model Hamiltonian in the basis

Ck =
(
ck,1, ck,2, · · · , ck,N

)T
is given by

Hmb(z)=

n+∑
n=−n−


h11n h12n · · · h1Nn
h21n h22n · · · h2Nn
...

...
...

...
hN1
n hN2

n · · · hNNn

 zn, (B1)
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where N is the number of bands, which we set to be an even number.
By Fourier transformation, one obtains the real-space tight-binding Hamiltonian of this system as

Hmbr=

L∑
j=1

n+∑
n=−n−

C†j


h11n h12n · · · h1Nn
h21n h22n · · · h2Nn
...

...
...

...
hN1
n hN2

n · · · hNNn

Cj+n, (B2)

where Cj = (cj,1, cj,2, · · · , cj,N )
T .

With |ψ〉 = (ψ1,1, ψ1,2, · · · , ψ1,N , ψ2,1, ψ2,2, · · · , ψ2,N , · · · , ψL,1, ψL,2, · · · , ψL,N )
T, the solutions of the real-space

Schrödinger equation Hmbr|ψ〉 = EOBC|ψ〉 [where Hmbr is the Hamiltonian matrix of Hmbr in the basis
(C1, C2, · · · , CL)T ] can be given by 

ψn,1
ψn,2
...

ψn,N

 =

2M∑
j=1

(βj)
n


φ
(j)
1

φ
(j)
2
...

φ
(j)
N

 , (B3)

where 2M = N × (n− + n+) and β = βj are the solutions of the characteristic equation

Det [Hmb(β)− EOBC] = 0, (B4)

where Hmb(β) is the non-Bloch matrix [127] as

Hmb(β)=

n+∑
n=−n−


h11n h12n · · · h1Nn
h21n h22n · · · h2Nn
...

...
...

...
hN1
n hN2

n · · · hNNn

βn. (B5)

In general, the characteristic equation (B4) has 2M solutions for β, where M = N × (n− + n+)/2 is an integer and
N is an even number. We label these solutions such that |β1| 6 |β2| 6 · · · 6 |β2M |.

From the eigenequations, we obtain

∑n+

n=−n− h
11
n (βj)

n
φ
(j)
1 +

∑n+

n=−n− h
12
n (βj)

n
φ
(j)
2 +· · ·+

∑n+

n=−n− h
1N
n (βj)

n
φ
(j)
N =EOBCφ

(j)
1 ,∑n+

n=−n− h
21
n (βj)

n
φ
(j)
1 +

∑n+

n=−n− h
22
n (βj)

n
φ
(j)
2 +· · ·+

∑n+

n=−n− h
2N
n (βj)

n
φ
(j)
N =EOBCφ

(j)
2 ,

...∑n+

n=−n− h
N1
n (βj)

n
φ
(j)
1 +

∑n+

n=−n− h
N2
n (βj)

n
φ
(j)
2 +· · ·+

∑n+

n=−n− h
NN
n (βj)

n
φ
(j)
N =EOBCφ

(j)
N ,

(B6)

i.e., 

[∑n+

n=−n− h
11
n (βj)

n−EOBC

]
φ
(j)
1 +

∑n+

n=−n− h
12
n (βj)

n
φ
(j)
2 +· · ·+

∑n+

n=−n− h
1N
n (βj)

n
φ
(j)
N =0,∑n+

n=−n− h
21
n (βj)

n
φ
(j)
1 +

[∑n+

n=−n− h
22
n (βj)

n−EOBC

]
φ
(j)
2 +· · ·+

∑n+

n=−n− h
2N
n (βj)

n
φ
(j)
N =0,

...∑n+

n=−n− h
N1
n (βj)

n
φ
(j)
1 +

∑n+

n=−n− h
N2
n (βj)

n
φ
(j)
2 +· · ·+

[∑n+

n=−n− h
NN
n (βj)

n−EOBC

]
φ
(j)
N =0,

(B7)

i.e., 

[∑n+

n=−n− h
11
n (βj)

n−EOBC

]
φ
(j)
1 +

∑n+

n=−n− h
12
n (βj)

n
f
(2)
j φ

(j)
1 +· · ·+

∑n+

n=−n− h
1N
n (βj)

n
f
(N)
j φ

(j)
1 =0,∑n+

n=−n− h
21
n (βj)

n
φ
(j)
1 +

[∑n+

n=−n− h
22
n (βj)

n−EOBC

]
f
(2)
j φ

(j)
1 +· · ·+

∑n+

n=−n− h
2N
n (βj)

n
f
(N)
j φ

(j)
1 =0,

...∑n+

n=−n− h
N1
n (βj)

n
φ
(j)
1 +

∑n+

n=−n− h
N2
n (βj)

n
f
(2)
j φ

(j)
1 +· · ·+

[∑n+

n=−n− h
NN
n (βj)

n−EOBC

]
f
(N)
j φ

(j)
1 =0,

(B8)

where f (α)j = φ
(j)
α /φ

(j)
1 with α = 1, 2, · · · , N , i.e.,

φ(j)α = f
(α)
j φ

(j)
1 , (B9)
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where α = 1, 2, · · · , N .

As we know, Eq. (B3) has 2M ×N unknown coefficients, but with the real-space Schrödinger equation Hmbr|ψ〉 =
EOBC|ψ〉 and an additional 2M boundary conditions, the 2M × N coefficients can be reduced to 2M -independent
coefficients. By rewriting the coupling constraints in terms of φ(j)1 (j = 1, 2, . . . , 2M), which should have nonzero
values, we have, analogously as before,

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

F̃
(1,1)
1 β1 F̃

(1,1)
2 β2 · · · F̃

(1,1)
2M β2M

F̃
(2,1)
1 β1 F̃

(2,1)
2 β2 · · · F̃

(2,1)
2M β2M

...
...

...
...

F̃
(N,1)
1 β1 F̃

(N,1)
2 β2 · · · F̃

(N,1)
2M β2M

...
...

...
...

F̃
(1,n+)
1 (β1)

n+ F̃
(1,n+)
2 (β2)

n+ · · · F̃
(1,n+)
2M (β2M )

n+

F̃
(2,n+)
1 (β1)

n+ F̃
(2,n+)
2 (β2)

n+ · · · F̃
(2,n+)
2M (β2M )

n+

...
...

...
...

F̃
(N,n+)
1 (β1)

n+ F̃
(N,n+)
2 (β2)

n+ · · · F̃
(N,n+)
2M (β2M )

n+

G̃
(1,1)
1 (β1)

L−(n−−1) G̃
(1,1)
2 (β2)

L−(n−−1) · · · G̃(1,1)
2M (β2M )

L−(n−−1)

G̃
(2,1)
1 (β1)

L−(n−−1) G̃
(2,1)
2 (β2)

L−(n−−1) · · · G̃(2,1)
2M (β2M )

L−(n−−1)

...
...

...
...

G̃
(N,1)
1 (β1)

L−(n−−1) G̃
(N,1)
2 (β2)

L−(n−−1) · · · G̃(N,1)
2M (β2M )

L−(n−−1)

...
...

...
...

G̃
(1,n−)
1 (β1)

L
G̃

(1,n−)
2 (β2)

L · · · G̃
(1,n−)
2M (β2M )

L

G̃
(2,n−)
1 (β1)

L
G̃

(2,n−)
2 (β2)

L · · · G̃
(2,n−)
2M (β2M )

L

...
...

...
...

G̃
(N,n−)
1 (β1)

L
G̃

(N,n−)
2 (β2)

L · · · G̃
(N,n−)
2M (β2M )

L

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0, (B10)

where

F̃
(1,i)
j =

n+∑
n=−(i−1)

(h11n + f
(2)
j h12n + · · ·+ f

(N)
j h1Nn ) (βj)

n − EOBC, (B11)

F̃
(2,i)
j =

n+∑
n=−(i−1)

(h21n + f
(2)
j h22n + · · ·+ f

(N)
j h2Nn ) (βj)

n − f (2)j EOBC, (B12)

...

F̃
(N,i)
j =

n+∑
n=−(i−1)

(hN1
n + f

(2)
j hN2

n + · · ·+ f
(N)
j hNNn ) (βj)

n − f (N)
j EOBC, (B13)

G̃
(1,i)
j =

n−−i∑
n=−n−

(h11n + f
(2)
j h12n + · · ·+ f

(N)
j h1Nn ) (βj)

n − EOBC, (B14)

G̃
(2,i)
j =

n−−i∑
n=−n−

(h12n + f
(2)
j h22n + · · ·+ f

(N)
j h2Nn ) (βj)

n − f (2)j EOBC, (B15)

...

G̃
(N,i)
j =

n−−i∑
n=−n−

(hN1
n + f

(2)
j hN2

n + · · ·+ f
(N)
j hNNn ) (βj)

n − f (N)
j EOBC. (B16)
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We can collect the terms and express Eq. (B10) as a multivariate polynomial of the form

∑
P,Q

J̃(βi∈P , βj∈Q, EOBC)

[∏
i∈P

(βi)
k

]∏
j∈Q

(βj)
k′

=0, (B17)

where k = 1, · · · , n+, k′ = L−(n−−1), · · · , L, the sets P and Q are two disjoint subsets of the set {1, 2, · · · , 2M}
with M elements, respectively.

By setting n+ = n−, Eq. (B17) can be reduced to

∑
P,Q

J̃(βi∈P , βj∈Q, EOBC)

[∏
i∈P

(βi)
L+1

]
=0. (B18)

In Eq. (B18), there are two leading terms proportional to (βMβM+2βM+3 · · ·β2M )L+1 and
(βM+1βM+2βM+3 · · ·β2M )L+1. Therefore, in the limit of large system size L, we can reduce (B18), which
solves the characteristic dispersion equation (B4) and open boundary conditions, to the familiar form

∣∣∣∣ βMβM+1

∣∣∣∣ '
∣∣∣∣∣− J̃(βi∈P1

, βj∈Q1
, EOBC)

J̃(βi∈P2 , βj∈Q2 , EOBC)

∣∣∣∣∣
1

L+1

EOBC=E∞

, (B19)

where P1 = {M + 1,M + 2,M + 3, · · · , 2M}, Q1 = {1, 2, 3, · · · ,M}, P2 = {M,M + 2,M + 3, · · · , 2M}, Q2 =
{1, 2, · · · ,M − 2,M − 1,M + 1}, and L is the system size with L→∞. For large L, the right hand side (RHS) tends
towards unity, and hence |βM | ≈ |βM+1| for the OBC eigenfunctions in the thermodynamic limit (in practice, L ' 20
is usually sufficient large when the cNHSE is absent).

Appendix C: Numerical confirmation of the validity of the GBZ upon extrapolating to finite-size systems

Here in Fig. 12, we numerically confirm that for our coupled Hatano-Nelson model, the GBZ solutions βM = β2
and βM+1 = β3 still largely determine the eigensolution decay rates down to small system sizes.
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FIG. 12. Spatial decay of eigenstates and how they are determined by βM and βM+1 (M = 2). Plotted are the log(|ψ(x)|)
(log(|ψ(x)|) = ln(|ψ(x)|)) of two representative eigenstates with different left/right localizations (red stars and blue disks), at
different finite system sizes L = 10, 20, 30, 40 (a)–(d). Compared against them are the decay profiles corresponding to the
four κ = − log |β| = − ln |β| solutions. We see that |β2| = e−κ2 and |β3| = e−κ3 controls the eigenstate decay rate very well
down to L = 20, even though in principle, they rigorously determine the decay rate only in the thermodynamic limit. (a) The
eigenstates correspond to arg(EOBC) = 0 and Max(Re(EOBC)). (b)–(d) The eigenstates correspond to arg(EOBC) =

π
2
. Here,

V = 0.5 and the other parameters are t0 = 0.01, t1 = 0.75, and δa = −δb = 0.25, which are the same as those in Fig. 1 of the
main text.
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Appendix D: Derivation of Eq. (24) for the OBC constraints of the coupled Hatano-Nelson model

From the real-space eigenequations (20) subjected to OBCs ψ0,α = ψL+1,α = 0 (α = A,B), we have
t0ψ1,B + t+a ψ2,A + V ψ1,A = EOBCψ1,A,

t0ψ1,A + t+b ψ2,B − V ψ1,B = EOBCψ1,B,

t−a ψL−1,A + t0ψL,B + V ψL,A = EOBCψL,A,

t−b ψL−1,B + t0ψL,A − V ψL,B = EOBCψL,B.

(D1)

By substituting the ansatz (ψn,A, ψn,B)
T

=
∑4
j=1 β

n
j

(
φ
(j)
A , φ

(j)
B

)T
into Eq. (D1), we can get

t0
∑4
j=1 βjφ

(j)
B + t+a

∑4
j=1 β

2
jφ

(j)
A + V

∑4
j=1 βjφ

(j)
A = EOBC

∑4
j=1 βjφ

(j)
A ,

t0
∑4
j=1 βjφ

(j)
A + t+b

∑4
j=1 β

2
jφ

(j)
B − V

∑4
j=1 βjφ

(j)
B = EOBC

∑4
j=1 βjφ

(j)
B ,

t−a
∑4
j=1 β

L−1
j φ

(j)
A + t0

∑4
j=1 β

L
j φ

(j)
B + V

∑4
j=1 β

L
j φ

(j)
A = EOBC

∑4
j=1 β

L
j φ

(j)
A ,

t−b
∑4
j=1 β

L−1
j φ

(j)
B + t0

∑4
j=1 β

L
j φ

(j)
A − V

∑4
j=1 β

L
j φ

(j)
B = EOBC

∑4
j=1 β

L
j φ

(j)
B ,

(D2)

Furthermore, by using the bulk eigenequation in Eq. (22):{
(t+a β + t−a β

−1 + V − EOBC)φA + t0φB = 0, φB

φA
= − (t+a β+t

−
a β
−1+V−EOBC)
t0

,

t0φA + (t+b β + t−b β
−1 − V − EOBC)φB = 0, φB

φA
= − t0

(t+b β+t
−
b β
−1−V−EOBC)

,
(D3)

i.e.,

φ
(j)
B

φ
(j)
A

=
(EOBC − t+a βj − t−a β−1j − V )

t0
=

t0

(EOBC − t+b βj − t
−
b β
−1
j + V )

= fj , (D4)

t20 = (EOBC − t+a βj − t−a β−1j − V )(EOBC − t+b βj − t
−
b β
−1
j + V ), (D5)

φ
(j)
B = fjφ

(j)
A , (D6)

we have 
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L
j fjφ
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j φ
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A = EOBC
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j φ
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j φ
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L
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L
j fjφ

(j)
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(D7)



∑4
j=1(EOBC − t+a βj − t−a β−1j − V )βjφ
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2
jφ
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∑4
j=1(−t−a β−1j )βjφ

(j)
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(t+b βj−V−EOBC)

(EOBC−t+b βj−t−b β
−1
j +V )

βjφ
(j)
A = 0,∑4

j=1(−t+a βj)βLj φ
(j)
A = 0,∑4

j=1

(t−b β
−1
j −V−EOBC)

(EOBC−t+b βj−t−b β
−1
j +V )

βLj φ
(j)
A +

∑4
j=1 β

L
j φ

(j)
A = 0,

(D9)
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∑4
j=1 φ

(j)
A = 0,∑4

j=1
1

(EOBC−t+b βj−t−b β
−1
j +V )

φ
(j)
A = 0,

∑4
j=1 φ

(j)
A =

∑4
j=1(EOBC − t+a βj − t−a β−1j − V )φ

(j)
A = 0,∑4

j=1 β
L+1
j φ

(j)
A = 0,∑4

j=1
1

(EOBC−t+b βj−t−b β
−1
j +V )

βL+1
j φ

(j)
A = 0,

∑4
j=1(EOBC − t+a βj − t−a β−1j − V )βL+1

j φ
(j)
A = 0,

(D10)

where we have used the characteristic dispersion equation

1

(EOBC − t+b βj − t
−
b β
−1
j + V )

=
(EOBC − t+a βj − t−a β−1j − V )

t20
. (D11)

Imposing the condition that φ(j)A (j = 1, 2, 3, 4) do not vanish, we must have the vanishing determinant:∣∣∣∣∣∣∣∣∣∣

1 1 1 1

X1 X2 X3 X4

βL+1
1 βL+1

2 βL+1
3 βL+1

4

X1β
L+1
1 X2β

L+1
2 X3β

L+1
3 X4β

L+1
4

∣∣∣∣∣∣∣∣∣∣
= 0, (D12)

where |β1| 6 |β2| 6 |β3| 6 |β4|. Here, Xj (j = 1, 2, 3, 4) are defined as

Xj ≡ EOBC − t+a βj − t−a β−1j − V, (j = 1, 2, 3, 4) . (D13)

Simplifying, we obtain the boundary equation (24) from Eq. (D12):

X1,4X2,3

[
(β1β4)

L+1
+ (β2β3)

L+1
]
−X1,3X2,4

[
(β1β3)

L+1
+ (β2β4)

L+1
]

+X1,2X3,4

[
(β1β2)

L+1
+ (β3β4)

L+1
]

= 0,

(D14)

where Xi,j (i, j = 1, 2, 3, 4) are defined as

Xi,j ≡ Xi −Xj = t+a (βj − βi) + t−a (β−1j − β
−1
i ), (i, j = 1, 2, 3, 4) . (D15)

Appendix E: Derivation of Eq. (26)

We start from the characteristic equation of our coupled Hatano-Nelson model with offset:

t+a t
+
b β

2 + [−(t+a + t+b )EOBC − (t+a − t+b )V ]β +
(
t+a t
−
b + t−a t

+
b + E2

OBC − t20 − V 2
)

+ [−(t−a + t−b )EOBC − (t−a − t−b )V ]β−1 + t−a t
−
b β
−2 = 0. (E1)

We consider a perturbative solution up to the second order in t0 by first expanding in terms of the βs:

β1 ' x(a)− + y
(a)
− t20,

β2 ' x(a)+ + y
(a)
+ t20,

β3 ' x(b)− + y
(b)
− t20,

β4 ' x(b)+ + y
(b)
+ t20,

(E2)

where t+a > t−a , t
+
b < t−b , t

+
a > t+b , V > 0, |β1| 6 |β2| 6 |β3| 6 |β4|,

x
(a)
± =

1

2t+a
(EOBC − V ±∆a),

x
(b)
± =

1

2t+b
(EOBC + V ±∆b),

y
(a)
± =

−[E2
OBC − 2t+a t

−
a + V (V ∓∆a)− (2V ∓∆a)EOBC]

g
(a)
±

,

y
(b)
± =

[E2
OBC − 2t+b t

−
b + V (V ±∆b) + (2V ±∆b)EOBC]

g
(b)
±

,

(E3)
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and

∆a =

√
(EOBC − V )2 − 4t+a t

−
a , (E4)

∆b =
√

(EOBC + V )2 − 4t+b t
−
b , (E5)

g
(a)
± = E3

OBC(t+a − t+b )− 4t+a t
−
a (t+a + t+b )V + (t+a + t+b )V 3 ∓ 2t+a (t+a t

−
b − t

−
a t

+
b )∆a

∓(t+a + t+b )∆aV
2 + E2

OBC[(3t+b − t
+
a )V ± (t+a − t+b )∆a]

+EOBC[−4t+a t
−
a (t+a − t+b )− (t+a + 3t+b )V 2 ± 2t+b ∆aV ], (E6)

g
(b)
± = E3

OBC(t+a − t+b )− 4t+b t
−
b (t+a + t+b )V + (t+a + t+b )V 3 ∓ 2t+b (t+a t

−
b − t

−
a t

+
b )∆b

±(t+a + t+b )∆bV
2 + E2

OBC[(3t+a − t+b )V ± (t+a − t+b )∆b]

+EOBC[−4t+b t
−
b (t+a − t+b ) + (t+b + 3t+a )V 2 ± 2t+a ∆bV ]. (E7)

With Eq. (E2) and (D13), we can get

X1,2 =
(t+a t

−
b − t−a t

+
b )∆at

2
0

E2
OBC(t−a − t−b )(t+a − t+b ) + (t+a t

−
b − t

−
a t

+
b )2 + 2EOBCV (t+a t

−
a − t+b t

−
b ) + (t−a + t−b )(t+a + t+b )V 2

+O(t40),

X3,4 =

(
t+a
t+b
− t−a
t−b

)
∆b +O

(
t20
)
,

X1,3 =
1

2

[
t+a
t+b

(EOBC + V −∆b)− (EOBC − V −∆a)

]
+

[
2t+b t

−
a

EOBC + V −∆b
− 2t+a t

−
a

EOBC − V −∆a

]
+O(t20),

X2,4 =
1

2

[
t+a
t+b

(EOBC + V + ∆b)− (EOBC − V + ∆a)

]
+

[
2t+b t

−
a

EOBC + V + ∆b
− 2t+a t

−
a

EOBC − V + ∆a

]
+O(t20).

(E8)

We can obtain Eq. (26) by substituting Eq. (E8) into X1,2X3,4/(X1,3X2,4) and expanding up to the second order in
t0.

Appendix F: OBC spectra for topologically coupled chain model

In this appendix, in order to understand why the topological zero modes appear at E = 0 in the point gap only at
sufficiently large system sizes, we show the OBC energy spectra of the topologically coupled chain model (33) with
V = 0 for various system sizes.
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FIG. 13. OBC energy spectra of the topologically coupled chain model Hamiltonian (33) with V = 0 at different system sizes
(a) L = 10, (b) L = 30, (c) L = 32, (d) L = 35, (e) L = 40, (f) L = 50. Notably, topological zero modes appear at E = 0 in
the point gap only at sufficiently large system sizes of L = 35, 40, 50. The other parameters are δab = 0.5 × 10−3, t1 = 0.75,
and δa = −δb = 0.25.
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It is indicated from Fig. 13 that, when we tune the system size L (regarding L as a parameter), the OBC spectrum
changes. At a critical L, the OBC spectrum’s gap closes and after that, topological zero modes appear.

Appendix G: Derivation of Eq. (35)

In this appendix, we describe the derivation of Eq. (35), which expresses the OBC constraint of our coupled
topological model. Under OBCs, we can write the real-space Schrödinger equation Ht|ψ〉 = EOBC|ψ〉 [where Ht is the
Hamiltonian matrix of Ht in the basis (C1, C2, · · · , CL)T ], where |ψ〉 = (ψ1,A, ψ1,B, ψ2,A, ψ2,B, . . . , ψn,A, ψn,B, . . . )

T,
as {

t−a ψn−1,A + δabψn−1,B + V ψn,A + t+a ψn+1,A + δabψn+1,B = EOBCψn,A,

t−b ψn−1,B − δabψn−1,A − V ψn,B + t+b ψn+1,B − δabψn+1,A = EOBCψn,B.
(G1)

According to the theory of linear difference equations, we can take as an ansatz for the eigenstates the linear combi-
nation: (

ψn,A

ψn,B

)
=

4∑
j=1

βnj

(
φ
(j)
A

φ
(j)
B

)
. (G2)

Hence, Eq. (G1) can be rewritten as(
t+a β + t−a β

−1 + V δab(β + β−1)

−δab(β + β−1) t+b β + t−b β
−1 − V

)(
φA

φB

)
= EOBC

(
φA

φB

)
. (G3)

From the real-space eigenequation in Eq. (G1) and the open boundary conditions ψ0,α = ψL+1,α = 0 (α = A,B), we
can get the equations for the eigenstates in real space as

δabψ2,B + t+a ψ2,A + V ψ1,A = EOBCψ1,A,

−δabψ2,A + t+b ψ2,B − V ψ1,B = EOBCψ1,B,

t−a ψL−1,A + δabψL−1,B + V ψL,A = EOBCψL,A,

t−b ψL−1,B − δabψL−1,A − V ψL,B = EOBCψL,B.

(G4)

Now, Eq. (G4) can be rewritten into coupled equations for the coefficients φ(j)α (α = A,B; j = 1, 2, 3, 4) by substituting

the general solution (ψn,A, ψn,B)
T

=
∑4
j=1 β

n
j

(
φ
(j)
A , φ

(j)
B

)T
as

δab
∑4
j=1 β

2
jφ

(j)
B + t+a

∑4
j=1 β

2
jφ

(j)
A + V

∑4
j=1 βjφ

(j)
A = EOBC

∑4
j=1 βjφ

(j)
A ,

−δab
∑4
j=1 β

2
jφ

(j)
A + t+b

∑4
j=1 β

2
jφ

(j)
B − V

∑4
j=1 βjφ

(j)
B = EOBC

∑4
j=1 βjφ

(j)
B ,

t−a
∑4
j=1 β

L−1
j φ

(j)
A + δab

∑4
j=1 β

L−1
j φ

(j)
B + V

∑4
j=1 β

L
j φ

(j)
A = EOBC

∑4
j=1 β

L
j φ

(j)
A ,

t−b
∑4
j=1 β

L−1
j φ

(j)
B − δab

∑4
j=1 β

L−1
j φ

(j)
A − V

∑4
j=1 β

L
j φ

(j)
B = EOBC

∑4
j=1 β

L
j φ

(j)
B .

(G5)

Furthermore, by using the bulk eigenequation in Eq. (G3): (t+a β + t−a β
−1 + V − EOBC)φA + δab(β + β−1)φB = 0, φB

φA
= − (t+a β+t

−
a β
−1+V−EOBC)

δab(β+β−1) ,

−δab(β + β−1)φA + (t+b β + t−b β
−1 − V − EOBC)φB = 0, φB

φA
= δab(β+β

−1)

(t+b β+t
−
b β
−1−V−EOBC)

,
(G6)

i.e.,

φ
(j)
B

φ
(j)
A

=
(EOBC − t+a βj − t−a β−1j − V )

δab(β + β−1)
=

−δab(β + β−1)

(EOBC − t+b βj − t
−
b β
−1
j + V )

= fj , (G7)

− δ2ab(β + β−1)2 = (EOBC − t+a βj − t−a β−1j − V )(EOBC − t+b βj − t
−
b β
−1
j + V ), (G8)

φ
(j)
B = fjφ

(j)
A . (G9)
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The general solution is written as a linear combination:(
ψn,A
ψn,B

)
= βn1

(
φ
(1)
A

φ
(1)
B

)
+ βn2

(
φ
(2)
A

φ
(2)
B

)
+ βn3

(
φ
(3)
A

φ
(3)
B

)
+ βn4

(
φ
(4)
A

φ
(4)
B

)
(G10)

which should satisfy the open boundary conditions (G5):

δab
∑4
j=1 β

2
j fjφ

(j)
A + t+a

∑4
j=1 β

2
jφ

(j)
A + V

∑4
j=1 βjφ

(j)
A = EOBC

∑4
j=1 βjφ

(j)
A ,

−δab
∑4
j=1 β

2
jφ

(j)
A + t+b

∑4
j=1 β

2
j fjφ

(j)
A − V

∑4
j=1 βjfjφ

(j)
A = EOBC

∑4
j=1 βjfjφ

(j)
A ,

t−a
∑4
j=1 β

L−1
j φ

(j)
A + δab

∑4
j=1 β

L−1
j fjφ

(j)
A + V

∑4
j=1 β

L
j φ

(j)
A = EOBC

∑4
j=1 β

L
j φ

(j)
A ,

t−b
∑4
j=1 β

L−1
j fjφ

(j)
A − δab

∑4
j=1 β

L−1
j φ

(j)
A − V

∑4
j=1 β

L
j fjφ

(j)
A = EOBC

∑4
j=1 β

L
j fjφ

(j)
A ,

(G11)



∑4
j=1

(EOBC−t+a βj−t−a β
−1
j −V )

βj+β
−1
j

β2
jφ

(j)
A =

∑4
j=1(EOBC − t+a βj − V )βjφ

(j)
A ,

−δab
∑4
j=1 β

2
jφ

(j)
A +

∑4
j=1(t+b βj − V − EOBC)βjfjφ

(j)
A = 0,∑4

j=1

(EOBC−t+a βj−t−a β
−1
j −V )

βj+β
−1
j

βL−1j φ
(j)
A =

∑4
j=1(EOBC − t−a β−1j − V )βLj φ

(j)
A ,∑4

j=1(t−b β
−1
j − V − EOBC)βLj fjφ

(j)
A − δab

∑4
j=1 β

L−1
j φ

(j)
A = 0,

(G12)



∑4
j=1

[
(EOBC − t+a βj − t−a β−1j − V )βj − (EOBC − t+a βj − V )(βj + β−1j )

]
βjφ

(j)
A = 0,∑4

j=1 β
2
jφ

(j)
A +

∑4
j=1

(βj+β
−1
j )(t+b βj−V−EOBC)

(EOBC−t+b βj−t−b β
−1
j +V )

βjφ
(j)
A = 0,∑4

j=1

[
(EOBC − t+a βj − t−a β−1j − V )β−1j − (EOBC − t−a β−1j − V )(βj + β−1j )

]
βLj φ

(j)
A = 0,∑4

j=1

(βj+β
−1
j )(t−b β

−1
j −V−EOBC)

(EOBC−t+b βj−t−b β
−1
j +V )

βLj φ
(j)
A +

∑4
j=1 β

L−1
j φ

(j)
A = 0,

(G13)



∑4
j=1

[
−t−a − (EOBC − t+a βj − V )β−1j

]
βjφ

(j)
A = 0,∑4

j=1

[
(EOBC − t+b βj − t

−
b β
−1
j + V )βj − (EOBC − t+b βj + V )(βj + β−1j )

]
βjφ

(j)
A = 0,∑4

j=1

[
−t+a − (EOBC − t−a β−1j − V )βj

]
βLj φ

(j)
A = 0,∑4

j=1

[
(EOBC − t+b βj − t

−
b β
−1
j + V )β−1j − (EOBC − t−b β

−1
j + V )(βj + β−1j )

]
βLj φ

(j)
A = 0,

(G14)



∑4
j=1

[
−t−a − (EOBC − t+a βj − V )β−1j

]
βjφ

(j)
A = 0,∑4

j=1

[
−t−b − (EOBC − t+b βj + V )β−1j

]
βjφ

(j)
A = 0,∑4

j=1

[
−t+a − (EOBC − t−a β−1j − V )βj

]
βLj φ

(j)
A = 0,∑4

j=1

[
−t+b − (EOBC − t−b β

−1
j + V )βj

]
βLj φ

(j)
A = 0,

(G15)



∑4
j=1 [EOBC − (t+a − t−a )βj − V ]φ

(j)
A = 0,∑4

j=1

[
EOBC − (t+b − t

−
b )βj + V

]
φ
(j)
A = 0,∑4

j=1

[
EOBC + (t+a − t−a )β−1j − V

]
βL+1
j φ

(j)
A = 0,∑4

j=1

[
EOBC + (t+b − t

−
b )β−1j + V

]
βL+1
j φ

(j)
A = 0.

(G16)
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Here, we have obtained the coupled equations in terms of only φ(j)A (j = 1, 2, 3, 4). For φ(j)A (j = 1, 2, 3, 4) to have
nonzero values, the determinant condition is∣∣∣∣∣∣∣∣∣∣∣

X
(a)
1 X

(a)
2 X

(a)
3 X

(a)
4

Y
(a)
1 Y

(a)
2 Y

(a)
3 Y

(a)
4

X
(b)
1 βL+1

1 X
(b)
2 βL+1

2 X
(b)
3 βL+1

3 X
(b)
4 βL+1

4

Y
(b)
1 βL+1

1 Y
(b)
2 βL+1

2 Y
(b)
3 βL+1

3 Y
(b)
4 βL+1

4

∣∣∣∣∣∣∣∣∣∣∣
= 0 (G17)

with |β1| 6 |β2| 6 |β3| 6 |β4|. Here, Xj and Yj (j = 1, . . . , 4) are defined as

X
(a)
j = EOBC−(t+a −t−a )βj − V = EOBC−2δaβj − V, (j = 1, . . . , 4) , (G18)

Y
(a)
j = EOBC−(t+b −t

−
b )βj + V = EOBC−2δbβj + V, (j = 1, . . . , 4) , (G19)

X
(b)
j = EOBC+(t+a −t−a )β−1j − V = EOBC+2δaβ

−1
j − V, (j = 1, . . . , 4) , (G20)

Y
(b)
j = EOBC+(t+b −t

−
b )β−1j + V = EOBC+2δbβ

−1
j + V, (j = 1, . . . , 4) . (G21)

Finally, we can obtain the boundary equation (35) from Eq. (G17) as[
Z

(b)
1,4Z

(a)
2,3 (β1β4)

L+1
+ Z

(a)
1,4Z

(b)
2,3 (β2β3)

L+1
]

−
[
Z

(b)
1,3Z

(a)
2,4 (β1β3)

L+1
+ Z

(a)
1,3Z

(b)
2,4 (β2β4)

L+1
]

+
[
Z

(b)
1,2Z

(a)
3,4 (β1β2)

L+1
+ Z

(a)
1,2Z

(b)
3,4 (β3β4)

L+1
]

= 0, (G22)

where βj (j = 1, 2, 3, 4) satisfy |β1| 6 |β2| 6 |β3| 6 |β4|, and Z(c)
i,j (i, j = 1, 2, 3, 4; c = a, b) are defined as

Z
(c)
i,j = X

(c)
i Y

(c)
j −X(c)

j Y
(c)
i (G23)

=

{
[(t+b − t

−
b )(EOBC − V )− (t+a − t−a )(EOBC + V )](βi − βj), c = a

[(t+b − t
−
b )(EOBC − V )− (t+a − t−a )(EOBC + V )](β−1j − β

−1
i ), c = b

, (G24)

where i, j = 1, 2, 3, 4; c = a, b.
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