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Abstract—A novel approach is presented for the long-standing
problem of composite hypothesis testing. In composite hypothesis
testing, unlike in simple hypothesis testing, the probability func-
tion of the observed data, given the hypothesis, is uncertain as it
depends on the unknown value of some parameter. The proposed
approach is to minimize the worst case ratio between the proba-
bility of error of a decision rule that is independent of the unknown
parameters and the minimum probability of error attainable given
the parameters. The principal solution to this minimax problem
is presented and the resulting decision rule is discussed. Since the
exact solution is, in general, hard to find, anda fortiori hard to im-
plement, an approximation method that yields an asymptotically
minimax decision rule is proposed. Finally, a variety of potential
application areas are provided in signal processing and communi-
cations with special emphasis on universal decoding.

Index Terms—Composite hypothesis testing, error exponents,
generalized likelihood ratio test, likelihood ratio, maximum likeli-
hood (ML), universal decoding.

I. INTRODUCTION

COMPOSITE hypothesis testing is a long-standing problem
in statistical inference which still lacks a satisfactory so-

lution in general. In composite hypothesis testing (see, e.g., [19,
Sec. 9.3], [27, Sec. 2.5]) the problem is to design a test, or a
decision rule, for deciding in favor of one out of several hy-
potheses, under some uncertainty in the parameters of the prob-
ability distribution (or density) functions associated with these
hypotheses. This uncertainty precludes the use of the optimal
likelihood ratio test (LRT) or the maximum-likelihood (ML) de-
cision rule.

Composite hypothesis testing finds its applications in a va-
riety of problem areas in signal processing and communications
where the aforementioned uncertainty exists in some way. A few
important examples are: i) signal detection in the presence of
noise, where certain parameters of the desired signal (e.g., am-
plitude, phase, Doppler shift) are unknown [9], [28], ii) pattern
recognition problems like speech recognition [20] and optical
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character recognition [25], iii) model order selection [1], [21],
for instance, estimating the order of a Markov process [16], and
iv) universal decoding in the presence of channel uncertainty [2,
Ch. 2, Sec. 5], [5], [11], [14], [30]. The latter application, which
will receive special attention in this paper, is actually the one
that motivated our general approach in the first place.

We begin with an informal description of the problem and
the general approach proposed in this paper. To fix ideas, let
us consider the binary case, i.e., the case where there are only
two hypotheses , . Of course, the following discus-
sion and the main results described will extend to multiple hy-
potheses, and so, this restriction to binary hypothesis testing is
merely for the sake of simplicity of the exposition. As previously
mentioned, in composite hypothesis testing the probability func-
tion of the observed data given either hypothesis depends on the
unknown value of a certain index, or parameter. Specifically,
for each hypothesis , , there is a family of prob-
ability density functions (pdfs) ,1 where

is a sequence of observations taking on values
in the observation space , is the index of the pdf within the
family (most commonly, but not necessarily, is a parameter
vector of a smooth parametric family), and is the index set

.
A decision rule, or a test is sought, ideally, to minimize

, the probability of error associated withand in-
duced by the true values of and under both hypotheses
where, for the sake of simplicity, it will be assumed that the
two hypotheses area priori equiprobable. As is well known,
the optimal test for simple hypotheses (i.e., knownand ) is
the ML test, or the LRT, denoted , which is based on
comparing the likelihood ratio

(1)

to a certain threshold (whose value is one in the case of a
uniform prior). The minimum error probability associated with

will be denoted by .
In general, the optimum LRT becomes inapplicable in the

lack of exact knowledge of and unless it happens to

1The duplication of the indexi is meant to cover a general case where each
hypothesis may be associated with its own parameter(s). There are, however,
cases (cf. Section IV-B) where the same parameter(s) determine the distribution
under all hypotheses.
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be independent of those parameters, namely, a uniformly
most powerful test exists. In other situations, there are two
classical approaches to composite hypothesis testing. The
first is a Bayesian approach, corresponding to an assumption
of a certain prior on for each hypothesis. This
assumption converts the composite hypothesis problem into a
simple hypothesis testing problem with respect to (w.r.t.) the
mixture densities

and is hence optimally solved (in the sense of the expected
error probability w.r.t. and ) by the LRT w.r.t. those den-
sities. Unfortunately, the Bayesian approach suffers from sev-
eral weaknesses. First, the assumption that the prior
is known, not to mention the assumption that it at all exists,
is hard to justify in most applications. Second, even if existent
and known, the averaging w.r.t. this prior is not very appealing
because once is drawn, it remains fixed throughout the en-
tire experiment. Finally, on the practical side, the above-defined
mixture pdfs are hard to compute in general.

The second approach, which is most commonly used, is
the generalized likelihood ratio test (GLRT) [27, p. 92]. In
the GLRT approach, the idea is to implement an LRT with
the unknown being replaced by their ML estimates under
the two hypotheses. More precisely, the GLRT compares the
generalized likelihood ratio

(2)

to a suitable threshold. Although in some situations the GLRT
is asymptotically optimum in a certain sense (see, e.g., [29] for
necessary and sufficient conditions in a Neyman–Pearson-like
setting, [17] for asymptotic minimaxity, and [2, p. 165,
Theorem 5.2] for universal decoding over discrete memo-
ryless channels), it still lacks a solid theoretical justification
in general. Indeed, there are examples where the GLRT is
strictly suboptimum even asymptotically. One, rather synthetic,
example can be found in [11, Sec. III, pp. 1754–1755]. In
another, perhaps more natural, example associated with the
additive Gaussian channel (see the Appendix), it is shown that
the GLRT is uniformly worse than another decision rule that
is independent of . Moreover, in some situations, the GRLT
becomes altogether totally useless. For example, if the two
classes are nested, that is, if and depends on
the hypothesis only via , then the generalized
likelihood ratio (2) can never be less than unity, and so,
would always be preferred (unless, of course, the threshold is
larger than unity).

In this paper, we propose a new approach to composite hy-
pothesis testing. According to this approach, we seek a decision
rule that is independent of the unknownand , and whose
performance is nevertheless uniformly as close as possible to

that of the optimum LRT for all .
More precisely, we seek an optimum decision rulein the sense
of thecompetitive minimax

(3)

The ratio designates the loss incurred
by employing a decision rule that is ignorant of , rel-
ative to the optimum LRT for that . To make this loss
uniformly as small as possible across , we seek a deci-
sion rule that minimizes the worst case value of this ratio, i.e., its
maximum. This idea of competitive (or, relative) minimax, with
respect to optimum performance for known , has the
merit of partially compensating for the inherently pessimistic
nature of the minimax criterion.

As a general concept, the competitive minimax criterion is by
no means new. For example, the very same approach has been
used to define the notion of the minimax redundancy in uni-
versal source coding [3], where a coding scheme is sought that
minimizes the worst case loss of coding length beyond the en-
tropy of the source. Moreover, even within the framework of
composite hypothesis testing, two ideas in the same spirit have
been studied in the Neyman–Pearson setting of the problem, al-
though in a substantially different manner. The first, referred to
as theexponential rate optimal(ERO) test, was proposed first by
Hoeffding [10], extended later by Tusnády [26], and further de-
veloped in the information theory literature by Ziv [31], Gutman
[8], and others. In this series of works, it is demonstrated that
there exist tests that maximize the error exponent of the second
kind, uniformly across all alternatives, subject to a uniform con-
straint on the error exponent of the first kind across all proba-
bility measures corresponding to the null hypothesis. The short-
coming of the ERO approach, however, is that there may always
exist probability measures corresponding to the alternative hy-
pothesis, for which the probability of error of the second kind
tends to unity.2 The second idea, in this spirit of a competitive
minimax criterion, is the notion of amost stringent test[12, pp.
339–341], where the minimax is taken on the difference, rather
than the ratio, between the powers of the two tests.

The advantage of addressing the ratio between probabilities
as proposed herein (3) is that it corresponds to the difference
between the exponential rates of the error probabilities. As is
well known, under most commonly used probabilistic models
(e.g., independent and identically distributed (i.i.d.) and Markov
sources/channels), normally decays exponentially
rapidly as a function of , the dimension of the observed data
set . Thus, if the value of happens to be a subexponential
function of , i.e., , this means that,
uniformly over , the exponential rate of ,
for the that attains (3), is as good as that of the optimum LRT
for known . In this case, is said to be auniversal de-
cision rule in the error exponent sense.

2In a recent paper [13], the competitive minimax approach considered here is
combined with the ERO approach and this difficulty is alleviated by allowing
the constraint on the first error exponent to depend on the (unknown) probability
measure of the null hypothesis.
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The exact solution to the competitive minimax problem is,
in general, hard to find, anda fortiori, hard to implement. For-
tunately, it turns out that these difficulties are at least partially
alleviated if one is willing to resort to suboptimal solutions that
are asymptotically optimal. The key observation that opens the
door in this direction is that in order for a decision rule to be
universal in the error exponent sense defined above, it need not
be strictly minimax, but may only be asymptotically minimax
in the sense that it achieves (3) within a factor that grows subex-
ponentially with . A major goal of the paper is to develop and
investigate such asymptotically minimax decision rules.

The outline of the paper is as follows. In Section II, we first
characterize and analyze the structure of the competitive min-
imax decision rule. We will also obtain expressions for the min-
imax value , and thereby furnish conditions for the existence
of a universal decision rule in the error exponent sense. As men-
tioned earlier, the strictly competitive minimax-optimal deci-
sion rule in the above-defined sense is hard to derive in general.
In Section III, we present several approximate decision rules
that yield asymptotically the same (or almost the same) error
exponent as this decision rule, but with the advantage of having
explicit forms and performance evaluation in many important
practical cases. In Section IV, we present applications of uni-
versal hypothesis testing in certain communications and signal
processing problems, and elaborate on the universal decoding
problem in communication via unknown channels. Finally, in
Section V, we conclude by listing some open problems.

II. THE COMPETITIVE MINIMAX CRITERION

In this section, we provide a precise formulation of the com-
petitive minimax approach for multiple composite hypothesis
testing, and then study the structure and general properties of
the minimax-optimal decision rule.

Let denote an -dimensional vector of
observations, where each coordinate, , takes
on values in a certain alphabet (e.g., a finite alphabet, a
countable alphabet, an interval, or the entire real line). The

th-order Cartesian power of , which is the space of -se-
quences, will be denoted by . There are ( -integer)
composite hypotheses, , regarding the prob-
abilistic information source that has generated. Associated
with each hypothesis , , there is a family
of probability measures on that possess jointly measurable
Radon–Nykodim derivatives (w.r.t. a common dominating
measure3 ), , where is the parameter,
or more generally, the index of the probability measure within
the family and is the index set . For
convenience,4 will also denote and

. In some situations of practical interest,
may not be free to take on values across the whole Cartesian

product but only within a certain subset as
the components may be related to each other
(see, e.g., Section IV-B, where even ).

3The dominating measure will be assumed the counting measure in the dis-
crete case, or the Lebesgue measure in the continuous case.

4This is meant to avoid cumbersome notation when denoting quantities that
depend on� ; . . . ; � , such as the probability of error.

In such cases, it will be understood thatstands for the set of
allowable combinations of .

A decision rule is a (possibly randomized) map:
, characterized by a conditional probability

vector function

with being the conditional probability of deciding in
favor of given , . Of course, is
never negative and

for all

If a test is deterministic, then for everyand , is ei-
ther zero or one, in which case will designate the subset of
-vectors for which , . For a given

decision rule and , let

for a deterministic decision rule (4)

The (overall) probability of error, for a uniform prior on ,
is given by

(5)

Let denote the optimum ML
decision rule, i.e.,

(6)

where ties are broken arbitrarily, and denote

(7)

Finally, define

(8)

and the competitive minimax is defined as

(9)

While in simple hypothesis testing, the optimal ML decision
rule is clearly deterministic, it turns out that in the com-
posite case, the competitive minimax criterion considered here,
may yield a randomized decision rule as an optimum solution.
Intuitively, this randomization gives rise to a certain compro-
mise among the different ML decision rules corresponding to
different values of . The competitive minimax criterion defined
in (9) is equivalent to

(10)



FEDER AND MERHAV: UNIVERSAL COMPOSITE HYPOTHESIS TESTING 1507

A common method to solve the minimax problem (10) is to use a
“mixed strategy” for . Specifically, note that (10) can be written
as

(11)

where is a probability measure on (defined on a suitably
chosen sigma-algebra of). Note that both and range over
convex sets (as both are probability measures) and thatis a
convex–concave functional (in fact, affine in both arguments).
Therefore, if are such that: i) the space of
decision rules is compact, and ii) is continuous
for every (which is obviously the case, for example, when

), then the minimax value is equal to the maximin value
[24, Theorem 4.2], i.e.,

(12)

For a given , the minimizer of is clearly given
as follows. Let

(13)

Then, is given by

if

if

arbitrary value in if .

(14)
The last line in the above equation tells us that any probability
distribution over the set of indexes that maximize

is a solution to the inner minimization problem of (12).
The maximizing weight function (whenever exists) can
be found by substituting the solution (14) into (12) and maxi-
mizing the resulting expression over. The resulting expression
is therefore

(15)

Note that (15) is also the minimax value of (11), since
the minimax and maximin values coincide. This does not
imply, however, that any maximin decision rule is necessarily
minimax. Nonetheless, whenever there exists a saddle-point

it is both minimax and maximin. In this case, the de-
sired minimax decision rule is of the form of (14), but with

and with certain values of for randomized
tie-breaking. We next demonstrate the intricacy of this problem
by example.

Example: Consider a binary-symmetric channel (BSC)
whose unknown crossover probability can either take the
value or the value , where and
are given and known. Let a single bit be transmitted
across the channel and let be the observed channel
output. The problem of decodingupon observing under the
uncertainty of whether or is, of course, a problem
of binary composite hypothesis testing, where according to
hypothesis , was transmitted, and according to ,

. In this case, we have

(16)

The ML decoder for accepts for and for
, whereas for it makes the opposite decisions.

The resulting error probabilities are, therefore, and
. To describe the minimax decoder, we have

to specify the weights assigned toand . Let
, and for a given value of , let

(17)

and

(18)

Denoting , , and , and
setting , we now have

(19)

where the last two lines tell us that the performance of the de-
coder (in the competitive minimax sense) depends onand

only via the difference between them, and so, with a
slight abuse of notation, we will denote the last line of (19) by

. If we can find a saddle-point of ,
then the decision rule corresponding to would be a min-
imax-optimal. As is well known [22, Lemma 36.2], the pair

where minimizes and where
maximizes is such a saddle-point of . Now,
the maximin decision rule (14) estimatesby using the fol-
lowing rules:

If , then .

If , then .
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If
with probability
with probability . (20)

It then follows (as can also be seen directly from the expression
of ) that the performance of this decision rule for a
given is given by

The maximum of this expression w.r.t.occurs when
(corresponding, in turn, to the previously described randomized
mode of the decoder), which is achieved for

(21)

and so, the maximin value (which is also the minimax value) is
given by

Solving now the minimax problem of , we obtain after
some standard algebraic manipulations

which is always in and hence can be realized as a dif-
ference between some two numbersand in . Thus,
unless happens to be equal to, , or , the minimax de-
coder must be randomized.

This example is interesting, not only in that the minimax de-
coder is randomized, but also because the weight function
is such that the test statistic (cf. (13)) has no unique max-
imum. It turns out that as grows, and as the index sets be-
come more complicated, the test statistic gives rise to a
larger degree of discrimination among the hypotheses, the need
for randomization reduces, and the weight function has a
weaker effect on the decision rule and its performance. Further-
more, it becomes increasingly more difficult to devise the exact
minimax decision rule in closed form. Fortunately, as will be
seen in the next section, one can approximate and the re-
sulting (deterministic) decision rule turns out to be asymptoti-
cally minimax under fairly mild regularity conditions.

We conclude this section by further characterization of the
value of the minimax–maximin game

(22)

To make the derivation simpler, we begin with the case of two
hypotheses and assume thatis a finite set. By plugging the
optimum (Bayesian) decoder for a given, we have

(23)

where we note that

thus, for every , we have

(24)

In view of this, the factor can be thought of as arising from
interchanging the order between the minimization overand
the summation over . Since can also be thought of as the
ratio between the expressions of (23) and (24), we now further
examine this ratio. We start with the left-hand side (LHS) of
(24), which is the denominator of this ratio. Since (24) holds for
any , we may select to be the uniform distribution and then

(25)

On the other hand, the right-hand side (RHS) of (23) is upper-
bounded by

(26)

Combining (23)–(26), we get

(27)

As can be seen, there are two factors on the RHS The first is the
size of index set , which accounts for its richness, and mea-
sures the degree ofa priori uncertainty regarding the true value
of the index or the parameter. The second factor is a ratio be-
tween two expressions which depends more intimately on the
structure and the geometry of the problem. Accordingly, a suf-
ficient condition for the existence of universal decision rules
refers both to the richness of the class and its structure. Note,
in particular, that if the minimax at the integrand of the numer-
ator of (27) happens to agree with the maximin at the denomi-
nator for every (which is the case in certain examples), then

.
In the more general case of hypotheses, let us define the

following operator over a function whose argument takes
values:

(28)

In other words, is the sum of all terms except for the
maximal term of . We then have that is upper-bounded
by the same expression as in (27) except that the ordinary min-
imum over is replaced by over .

In certain examples, we can analyze this expression and de-
termine whether it behaves subexponentially with, in which
case, a universal decision rule exists in the error exponent sense.
As is well known, and will be discussed in Section IV, for the
problem of decoding a randomly chosen block code, in the pres-
ence of an unknown channel from a sufficiently regular class,
there exist universal decision rules (universal decoders) in the
error exponent sense.
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III. A PPROXIMATIONS ANDSUBOPTIMAL DECISIONRULES

The decoder developed in the previous section is hard to im-
plement, in general, for the following reasons. First, the min-
imax decoder that attains (10) and has the structure given by
(13) and (14), is not given explicitly as it depends on the least
favorable weight function , which is normally hard to find.
Secondly, an exact closed-form expression of , which is
necessary for explicit specification of the decision rule, is rarely
available. Finally, even if both and are given explic-
itly, the mixture integral of (13) is prohibitively complicated to
calculate in most cases.

In this section, we propose two strategies of controlling the
compromise between performance and ease of implementation.
The first (Section III-A) leads to asymptotically optimal perfor-
mance (in the competitive minimax sense) under certain con-
ditions. The second strategy (Sections III-B, III-C) might be
suboptimal, yet it is easy to characterize its guaranteed perfor-
mance.

A. An Asymptotically Minimax Decision Rule

In this subsection, we approximate the minimax decision rule
by a decision rule , which is, on the one hand, easier to imple-
ment, and on the other hand, under fairly mild regularity condi-
tions,asymptotically minimax, i.e.,

(29)

where the sequence grows subexponentially in , i.e.,
. Note that if, in addition, is subexpo-

nential as well, then so is the product , and then
is of the same exponential rate (as a function of) as for
every uniformly in .

Consider the test statistic

(30)

and let the decision rule be defined by

(31)

where ties are broken arbitrarily. Observe that this is a variant
of the GLRT except that, prior to the maximization over, the
likelihood functions corresponding to the different hypotheses
are first normalized by , thus giving higher weights to pa-
rameter values for which the hypotheses are more easily distin-
guishable (i.e., where is relatively small). Intuitively, this
manifests the fact that this decision rule strives to capture the
relatively good performance of the ML decision rule at these
points.

We next establish the asymptotic minimaxity of. To this
end, let us define the following two functionals:

(32)

and

(33)

Note that the expression of is similar to that of
except that the supremum overis interchanged with the inte-
gration and summation. Therefore, for every

. Note also that while the minimax decision rule minimizes
, the decision rule minimizes . The following

theorem uses these facts to give an upper bound to the perfor-
mance of (in the competitive minimax sense) in terms of the
optimal value .

Theorem 1: Let be defined as in (31) and let

Then

Proof: Combining the two facts mentioned in the para-
graph that precedes Theorem 1, we have, for every decision
rule

(34)

and the proof is completed by minimizing the rightmost side
w.r.t. .

In view of the foregoing discussion on asymptotic mini-
maxity, Theorem 1 is especially interesting in cases where the
sequence happens to be subexponential. As we shall see
next in a few examples, this is the case as long as the families
of sources, corresponding to the different hypotheses, are not
too “rich.” While the exact value of might be difficult to
compute in general, its subexponential behavior can still be
established by upper bounds.

Examples:

1) Finite Index Sets. Suppose that , ,
are all finite sets and let . Then,
for every

(35)
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and so, independently of . Of course, the above
chain of inequalities continues to hold even if the size of

varies with .
2) Discrete-Valued Sufficient Statistics. Suppose that

can be represented as

that is, depends on only via a sufficient
statistic function , which is independent of. Suppose
further that the supremum of is a max-
imum, and that the range of is a finite set for every ,
i.e., : . This is the case,
for example, with finite-alphabet memoryless sources,
where the sufficient statistic is given by the empir-
ical probability distribution and the number of distinct
empirical probability distributions is polynomial in

. More generally, finite-alphabet Markov chains also
fall in this category. Now, observe that since does
not take on more than distinct values as exhausts

(by assumption), then neither does the maximizer of
. In other words, the cardinality of the set

is at most . Since

we can repeat the chain of inequalities (35) with the finite
summation over being taken over . Finally, the last
equality in (35) is now replaced by an inequality because
the maximum over never exceeds the supremum over

. The conclusion, then, is that in this case .
3) Dense Grids for Smooth Parametric Families. Example 1

essentially extends to the case of a continuous index set
even if the assumptions of Example 2 are relaxed, but then
the requirement would be that is suffi-
ciently smooth as a function of. Specifically, the idea is
to form a sequence of finite grids ,

, , that on the one hand, becomes
dense in as , and on the other hand, its sizeis
subexponential in . These two requirements can simul-
taneously be satisfied as long as the classes of sources are
not large. Now, if in addition

(36)

then again, by a similar chain of inequalities as above, it is
easy to show that . Thus, the asymptotic min-
imaxity of can be established if is subexponen-
tial as well, which is the smoothness requirement needed.
This requirement on might be too restrictive, espe-
cially if is unbounded. Nonetheless, it can sometimes
be weakened in such a way that the supremum in (36)
is taken merely over a bounded set of very high proba-
bility under every possible probability measure of every

hypothesis (see, e.g., [14], [5]). This technique of using
a grid was also used in [5] in the context of universal de-
coding. However, in contrast to [5], here the grid is not
used in the decision algorithm itself, but only to describe
the sufficient condition. Our proposed decision rule con-
tinues to be , independently of the grid. We will further
elaborate on this in Section IV.

Discussion: To gain some more general insight on the condi-
tions under which is subexponential when are contin-
uous, observe that the passage from the expression of to
that of requires that the maximization overand the in-
tegration over would essentially be interchangeable. To this
end, it is sufficient that the integral of

over would be asymptotically equivalent to

in the exponential scale, uniformly for everywith the pos-
sible exception of a set of points whose probability is negligibly
small. Since

(37)

it is sufficient to require that the converse inequality essentially
holds as well (within a subexponetial factor). For the integral of

to capture the maximum of , there should be a
neighborhood of points in , around the maximizer of ,
such that on the one hand, is close to for every

in that neighborhood, and on the other hand, the volume of
this neighborhood is nonvanishing. In this case, the integral of

over is lower-bounded by the volume of this neigh-
borhood multiplied by the minimum of within the neigh-
borhood, but this minimum is still fairly close to .

It is interesting to point out that the very same idea serves
as the basis of asymptotic methods of Laplace integration tech-
niques [4], [23]. We have deliberately chosen to keep the fore-
going discussion informal, but with hopefully clear intuition,
rather than giving a formal condition, which might be difficult
to verify in general.

It should also be pointed out that some of the techniques used
in the above examples were essentially used in [17] to show that
the GLRT is asymptotically minimax in the sense of minimizing

. This observation indicates that the GLRT is a
more pessimistic criterion because performance is not measured
relative to the optimum ML decision rule.

B. Suboptimal Decision Rules

Although the decision rule is easier to implement and more
explicit than the exact minimax decision rule, its implementa-
tion is still not trivial. The main difficulty is that it requires an
exact closed-form expression of for every , which
is, unfortunately, rarely available.

In some situations, where decays exponentially and the
error exponent function
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is available in closed form, then can be further approxi-
mated by

(38)

Clearly, as can be shown using the same techniques as in
Section III-A, the resulting decision rule inherits the asymptotic
minimaxity property of provided that the convergence of

to is uniform across .
In many other situations, however, even the exact exponen-

tial rate function is not available in closed form. Sup-
pose, nonetheless, that there is an explicit expression of anupper
bound to , which is often the case in many applica-
tions. Consider the test statistic

(39)

and let , be a decision rule where

(40)

and where ties are broken arbitrarily. Now, define

(41)

and let be defined similarly as but with the de-
nominator being replaced by , i.e., is replaced by

. Finally, let

(42)

The following theorem gives an upper bound to the error
probability associated with .

Theorem 2: For every

Note that can be assessed using the same considerations
as discussed in Section III-A, and therefore, under certain regu-
larity conditions, it is subexponential similarly to . If, in ad-
dition, is subexponential (i.e., if there exists a universal de-
cision rule in the error exponent sense), then Theorem 2 tells
us that the exponential decay rate of the error probability as-
sociated with is at least as good as that of the upper bound

. This opens a variety of possible tradeoffs between guar-
anteed performance and ease of implementation. Loose bounds
typically have simple expressions but then the guaranteed per-
formance might be relatively poor. On the other hand, more so-
phisticated and tight bounds can improve performance, but then
the resulting expression of might be difficult to work with.
We shall see a few examples in Section IV.

Proof: First observe that since for all ,
then for all . Now, similarly as in the proof
of Theorem 1

and the desired result follows from the definition of .

C. Asymptotic Minimaxity Relative to

Returning to the case where (or at least its asymptotic
exponent ) is available in closed form, it is also interesting
to consider the choice (or ),
where . The rationale behind this choice is the fol-
lowing: In certain situations, the competitive minimax criterion
w.r.t. might be too ambitious, i.e., the value of the min-
imax may grow exponentially with . Nonetheless, a reason-
able compromise of striving to uniformly achieve only a certain
fraction of the optimum error exponent, might be achievable.
Note that the choice of between zero and unity, gives a spec-
trum of possibilities that bridges between the GLRT on the one
extreme , and the new proposed competitive minimax
decision rule on the other extreme . The implementation
of the approximate version of this decision rule is not more dif-
ficult than that of . The only difference is that the denom-
inator of test statistic (38) is replaced by (or,
in view of Section III-B, Theorem 2, it can even be replaced by

for some known lower bound to ,
if itself is not available in closed form). We propose the
following guideline for the choice of. Note that if the compet-
itive minimax value w.r.t. , for a certain value of ,
does not grow exponentially with, then an error exponent of at
least is achieved for all . This guarantees that whenever

decays exponentially rapidly (that is, ), so does
the probability of error of the (approximate) minimax decision
rule competitive to . We would then like to let be the
largest number with this property. More precisely, we wish to
select , where

(43)

and

(44)

In a sense, we can think of the factoras the unavoidable cost
of uncertainty in . Quite clearly, all this is interesting only for
cases where . Fortunately, it turns out that at least in
some interesting examples of the composite hypothesis testing
problem, it is easy to show that . One such example,
which is analyzed in the Appendix, is the following communi-
cation system. Consider the additive Gaussian channel

(45)

where is an unknown gain parameter, and are i.i.d.,
zero-mean, Gaussian random variables with variance. Con-
sider a codebook of two codewords of lengthgiven by

and

where and designate the transmission powers associ-
ated with the two codewords, which may not be the same.
It is demonstrated in the Appendix that while the optimum
error exponent of the ML decision rule is given by

, there is a certain decoder, independent of
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, which will be denoted by , that achieves an error exponent
of . Now, for every

(46)

we have

(47)

which in turn is of the (nonpositive) exponential order of

Therefore, in this case

(48)

The conclusion, therefore, is that the approximate competitive
minimax decision rule with is uniformly
at leastas good as for all in the error exponent sense. Note
that for , we have , which im-
plies that . This means that is universally attainable
for orthogonal signals of the same energy. As shown in the Ap-
pendix, in this particular case, even the GLRT attains uni-
versally. Another example of theoretical and practical interest,
where will be discussed in Section IV-A.

In general, it may not be trivial to compute the exact value
of . However, it might be possible to obtain upper and lower
bounds from lower and upper bounds on , respectively.
Upper bounds on would be interesting for establishing fun-
damental limitations on uniformly achievable error exponents
whereas lower bounds yield positive achievability results.

In the foregoing discussion, we demonstrated one way to ob-
tain a lower bound to from an upper bound to . We now
conclude this subsection by demonstrating another method, that
leads to a single-letter formula of a lower bound to, which is
tight under the mild regularity conditions described in Exam-
ples 1–3 and the Discussion of Section III-A. As an example,
consider the class of discrete of memoryless sources of a
given finite alphabet , where designates the vector of letter
probabilities. Assume further that there are composite
hypotheses, designated by two disjoint subsets,and , of
this class of sources. In the following derivation, where we make
use of the method of types [2], the notation means
that the sequences and are of the same exponential
order, i.e.,

Similarly as in (23), we have

(49)

where the inequality is tight in the exponential order under the
conditions discussed in Section III-A. Now, let denote the
empirical probability mass function (PMF) (relative frequencies

of letters) associated with. Let denote the type class corre-
sponding to , i.e., the set of all -sequences for which

. Finally, let denote the set of all empirical PMFs
of -sequences over . Then it is well known [2] that

(50)

where is the empirical entropy of and is
the relative entropy between and . Using this and the
well-known fact that , we now have

(51)

For this expression to be subexponential in, the following
condition should be satisfied: For every PMFover , either

for all , or for all .
Equivalently

(52)

and so, the RHS is a lower bound to. Note, that if and
are notseparated away, and if and areunrelated(in the
sense that they may take on values inand , respectively, in-
dependently of each other), then there exists for which
both numerators of (52) vanish, yet the denominators are strictly
positive, and so . If, however, and are related (e.g.,

is some function of ), then could be strictly positive
as the denominators of (52) may tend to zero with the numera-
tors. A simple example of this is the class of binary memoryless
sources (Bernoulli) with , where designates the
probability of “ ,” , and . Again, if

and are unrelated, then . However, if and are
related by , then . This is not surprising as
the ML decision rule, which achieves , is independent of
in this case.

IV. A PPLICATIONS

In this section, we examine the applicability of our approach
to two frequently encountered problems of signal processing
and communications. We will also compare our method to other
commonly used methods, in particular, the GLRT. As mentioned
earlier, special attention will be devoted to the problem of uni-
versal decoding that arises in coded communication over un-
known channels.

A. Pattern Recognition Using Training Sequences

Consider the following problem in multiple hypothesis
testing, which is commonly studied in statistical methods
of pattern recognition, like speech recognition and optical
character recognition (see also [31], [8], [15]). There is a
model of some parametric family of pdfs (e.g.,
hidden Markov models in the case of speech recognition), and
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sources , , in this class constitute
the hypotheses to which a given observation sequence
must be classified. For simplicity, let us assume that
and the two sources area priori equiprobable. Obviously, if ,

, were known this would have been a simple hypothesis
testing problem. What makes this a composite hypothesis
testing problem is that, in practice, and are unknown,
and instead, we are given two independent training sequences

and , emitted by and , respectively. To formalize
this in our framework, the entire data set is ,
the parameter is , and

In words, under it is assumed that shares the same param-
eter as , .

Denote by the minimum error probability asso-
ciated with the simple hypothesis testing problem defined by

. This is the error attained by LRT, comparing
to . Based on the above, our asymptotically competitive
minimax decision rule will select the hypothesis for which

is maximum. This is, in general, different from the Bayesian ap-
proach [15], where the decision is according to thethat maxi-
mizes

and from the GLRT [31], [8] used under the Neyman–Pearson
criterion, where

is compared to a threshold (independently of).
As a simple example, consider the case of two Gaussian den-

sities given by

where and take on values in a certain interval ,
, and we are given two training sequencesand of

length . The exact expression of is given by

where

The asymptotic error exponent associated with is
given by

Thus, the computation of , with the denominator approxi-
mated by , involves maximization of a quadratic
function of and , which can be carried out in closed form.
Specifically, the maximizations associated with and
are equivalent to the minimizations of

and

respectively, both over . At this point, it is important
and interesting to distinguish between two cases regarding the
relative amount of training data. If , these
two quadratic functions have positive definite Hessian matrices
(independently of the data), and hence also have global minima
even for . Therefore, if the absolute values of the true

and are significantly less than , then with high proba-
bility, these minimizers are also in the interior of . In
this situation, the proposed approximate minimax decision rule,
similarly to the GLRT, decides according to whether the sample
mean of is closer to the sample mean of or to the sample
mean of . If, on the other hand, , then the
Hessian matrix of each one of the above mentioned quadratic
forms has a negative eigenvalue, and so, its minimum is attained
always at the boundary of . In this case, the decision
rule might be substantially different.

Because of this “threshold effect,” and the intuition that at-
tainable error exponents must depend on the amount of training
data, this example is an excellent example where it would be
advisable to apply an approximate minimax decision rule w.r.t.

for some (cf. Section III-C). At the technical
side, note that below a certain value of(depending on ),
each of the quadratic forms to be minimized over (for
which now the term is multiplied by ) is again
guaranteed to have a positive definite Hessian matrix. As for a
lower bound to for his problem, it is not difficult to show,
using the Chernoff bound, that the GLRT (for ) attains
an error exponent of . It then follows
that, in this case, .

B. Universal Decoding

The problem of universal decoding is frequently encountered
in coded communication. When the channel is unknown, the ML
decoder cannot be implemented and a good decoder is sought
that does not depend on the unknown values of the channel pa-
rameters. We first provide a brief description of the problem and
prior work on the subject, and then examine our approach in this
context.

Consider a family of vector channels ,
where is the channel input,

is the observed channel output, and
is the index (or the parameter) of the channel in the class. A
block code of length and rate is
a collection of vectors of length , which represent
the set of messages to be transmitted across the channel. Upon
transmitting one of the messages , a vector is received
at the channel output, under the conditional pdf .
The decoder, which observesand knows , but does not



1514 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 48, NO. 6, JUNE 2002

know , has to decide which message was transmitted. This
is, of course, a composite hypothesis problem with multiple
hypotheses, where the same parameter valuecorresponds to
all hypotheses and

It is well known [2] that for discrete memoryless channels
(DMCs) (see also [14] for Gaussian memoryless channels) and
more generally, for finite-state (FS) channels [30], [11], there
exist universal decoders in therandom codingsense. Specif-
ically, the exponential decay rate of the average error proba-
bility of these universal decoders, w.r.t. the ensemble of ran-
domly chosen codes, is the same as that of the average error
probability obtained by the optimum ML decoder. Universality
in the random-coding sense does not imply that for a specific
code the decoder attains the same performance as the optimal
ML decoder, nor does it imply that there exists a specific code
for which the universal decoder has good performance.

In a recent work [5], these results have been extended in sev-
eral directions. First, the universality in the random coding sense
has been generalized in [5] to arbitrary indexed classes of chan-
nels obeying some mild regularity conditions on smoothness
and richness. Secondly, under somewhat stronger conditions,
referred to asstrong separabilityin [5], the convergence rate
toward the optimal random coding exponent is uniform across
the index set [5, Theorem 2], namely,

where is the random-coding average error probability
associated with the universal decoder, and is the one
associated with the optimum ML decoder for . Finally, it was
shown that, under the same condition, there exists a sequence
of specific codes , for which the universal
decoder of [5] achieves the random coding error exponent of the
ML decoder uniformly in .

The existence of a universal decoder in the error exponent
sense uniformly in , for both random codes and deterministic
codes, obviously implies that both

and

(53)

where is the probability of error for a specific code
(in the same sequence of codes as in [5]) are subexponential

in (that is, for both). Therefore, similarly as in the
derivation in Section II, it is easy to show that the following de-
cision rule is universal (relative to the random coding exponent)
in both the random coding sense and in the deterministic coding
sense. Decode the messageas the one that maximizes the
quantity

(54)

This decoder can be further simplified by its asymptotically
equivalent version

(55)

where

(whenever the limit exists) is the asymptotic exponent of the
average error probability (random-coding exponent [6]) asso-
ciated with . The latter version is typically more tractable
since, as explained earlier, explicit closed-form expressions are
available much more often for the random coding error expo-
nent function than for the average error probability itself. For
example, in the case of DMCs, Gallager’s reliability function
provides the exact behavior (and not only a lower bound) to the
random-coding error exponent [7]. It should be kept in mind,
however, that in the case of DMCs, the maximum mutual in-
formation (MMI) universal decoder [2], which coincides with
the GLRT decoder for fixed composition codes, also attains

for all , both in the random coding sense and in the
deterministic coding sense. Nevertheless, this may no longer be
true for more general families of channels. It should be stressed,
however, that the existence of a universal decoder (55) in the
deterministic coding sense w.r.t. the random coding error expo-
nent does not imply that there exists one with the same
property w.r.t. the ML-decoding error exponent of the same se-
quence deterministic codes, that is, .

It is important to emphasize also that the universal decoder
of (55) is much more explicit than the one proposed in [5] as it
avoids the need of employing many decoding lists in parallel,
each one corresponding to one point in a dense grid (whose size
grows with ) in the index set, as proposed in [5].

As an additional benefit of this result, more understanding
can be gained regarding the performance of GLRT, which is
so commonly used when the channel is unknown. We have al-
ready mentioned that in some cases (e.g., the class of DMCs) the
GLRT performs equally well as the universal decoder proposed
herein. In some other cases, this is trivially so, simply because
the two decoders coincide. For example, if happens to
be independent of in a certain instance of the problem, then
the GLRT is universal, simply because it coincides with (54).
For example, consider an additive channel with a jammer signal
[14] parameterized by, i.e., , where is ad-
ditive noise (with known statistics) and is a deterministic
jammer signal characterized by(e.g., a sine wave with a cer-
tain amplitude, frequency, and phase). Here, whenis known,

can be subtracted from and so is the same as
for the channel , which in turn is independent of
. Another example, in a continuous time setting, is associated

with a constant energy, orthogonal signal set given by sine waves
at different frequencies (frequency-shift keying—FSK), trans-
mitted via an additive white Gaussian channel (AWGN) with
an unknown all-pass filter parameterized by. Since the sig-
nals remain essentially orthogonal, and with the same energy,
even after passing the all-pass filter, is the probability of
error of an orthogonal system in the AWGN, essentially inde-
pendently of (assuming sufficiently long signaling time).
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Perhaps one of the most important models where the universal
decoder (54) should be examined is the well-known model of
the Gaussian intersymbol-interference (ISI) channel defined by

(56)

where is the vector of unknown ISI coeffi-
cients and is zero-mean Gaussian white noise with variance

(known or unknown). The problem of channel decoding with
unknown ISI coefficients has been extensively investigated, and
there are many approaches to its solution, most of which are
on the basis of the GLRT. As mentioned earlier, the results of
[5] imply that universal decoding, in the random coding sense,
is possible for this class of channels. Therefore, the competi-
tive-minimax decoder, proposed herein, as well as its asymp-
totic approximation,5 is universal as well in the random coding
error exponent sense.

In addition to the random-coding universality, it is especially
appealing, in the case of the ISI channel, to examine the per-
formance of our decoder when it is directed to asymptotic min-
imaxity w.r.t. a specific code. In other words, we wish to im-
plement the same decoder as in (54), but with the denominator
being replaced by the probability of error associated with a spe-
cific code.

To demonstrate the decoding algorithm explicitly in this case,
let us consider, for the sake of simplicity, a codebookof two
codewords, and , and let .
If the ISI channel were known, then the probability of error as-
sociated with optimum ML decoding would have been of the
exponential order of

where the numerator in the exponent is the Euclidean distance
between the two codewords after having passed the ISI filter
(neglecting some edge effects at the beginning of the block). Let
us suppose also that one knowsa priori that the ISI filter is of
limited energy, i.e., , where is given. Then,
our approximate competitive-minimax decoder (for ), in
this case, picks the codeword , , that
minimizes the expression

(57)

subject to the constraint . This is a standard
quadratic minimization problem and the minimizing vector

of ISI filter coefficients is given by solving
the following set of linear equations:

(58)

5cf. Example 3 and Discussion in Section III-A.

where is the identity matrix, is a Lagrange
multiplier chosen so as to satisfy the energy constraint

and is a matrix whose th entry is given
by

For low-rate codebooks of size larger than, a similar idea can
still be used with being approximated using the union
bound, which is given by the pairwise error probability as above,
multiplied by the codebook size . However, this should be
done with some care as the pair of codewords that
achieves the minimum distance, , may
depend on the filter coefficients. For higher rates, where the
union bound is not tight in the exponential scale, more sophis-
ticated bounds must be used.

It is interesting to note that the existence of a universal decoder
in the error exponent sense for a specific orthogonal code, can
be established using (27). For example, consider the channel de-
finedby , where arezero-mean, i.i.d. Gaussian
random variables, andis an unknown constant. Suppose that

for some known constant , and the code-
book consists of two orthogonal codewords,
and . It can easily be seen that for every

, the minimax and maximin values at the numerator
and denominator of (27) are the same. Thus,
and the existence of a universal decoder is established. This ex-
ample can be extended to the case of a larger orthogonal code,
and for any symmetric set. Also, it can be observed that in this
case, the GLRT is a universal decoder. Interestingly, when the
codewords are not orthogonal the minimax and maximin values
are not equal, and this technique cannot be used to determine
whether or not a universal decoder exists. In this case, as shown
in the Appendix, there is a uniformly better decoder than the
GLRT [14]. Unfortunately, even that decoder is not universal in
the error exponent sense for every specific code.

V. CONCLUSION AND FUTURE RESEARCH

In this paper, we proposed and investigated a novel minimax
approach to composite hypothesis testing with applications to
problems of classification and to universal decoding. The main
idea behind this approach is to minimize (or, to approximate the
minimizer of) the worst case loss in performance (in terms of
error probability) relative to the optimum ML test that assumes
knowledge of the parameter values associated with the different
hypotheses. The main important property of the proposed deci-
sion rule is that, under certain conditions, it is universal in the
error exponent sense whenever such a universal decision rule at
all exists. When it is not universal in the error exponent sense,
it means that such a universal decision rule does not exist. We
studied the properties of the proposed competitive-minimax de-
cision rule, first in the general level, and then in some more spe-
cific examples. One of the interesting properties of the proposed
decision rule is that, in general, it might be randomized and this
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Fig. 1. Geometric illustration of the GLRT for two orthogonal codewords.

is different from the classical solutions to the hypothesis testing
problem.

Future research will focus on further studying the properties
of our proposed decision rule, mostly in applications of practical
interest. Specifically, in the context of universal decoding, more
understanding is left to be desired regarding considerations of
code design for universal decoding. Tradeoffs between perfor-
mance and ease of implementation, as discussed in the paper,
will also receive more attention in the future.

APPENDIX

In this appendix, we demonstrate the suboptimality of the
GLRT in a very simple example. Consider the additive Gaussian
channel

(A1)

where is an unknown gain parameter, and are i.i.d.,
zero-mean, Gaussian random variables with variance. Sup-
pose that our codebook consists of two codewords of length
given by

and

where and designate the transmission powers associ-
ated with the two codewords, which may not be the same.6

Now, the GLRT picks the codeword , , that mini-
mizes , which is equivalent to deciding
according to , since all coordinates of
both codewords vanish for . Thus, the problem is actually
in two dimensions. Referring to Fig. 1, the GLRT projects the
vector onto the directions of the two-dimensional vec-
tors formed by the first two coordinates of and (namely,

and , respectively), and decides according to the
smaller between the distances from to the vertical axis
and to the horizontal axis of the coordinate system. In other
words, the GLRT decides in favor of or according to
whether or . Thus, the boundaries be-
tween the two decision regions are straight lines through the
origin at slopes of 45 . Accordingly, the distances from

and to these lines dictate the error proba-
bility (refer to the dashed lines in Fig. 1). Specifically, the dis-
tance from to each of the 45boundary lines is

6Clearly, every orthogonal code of two codewords can be transformed, by an
appropriate orthonormal transformation, to this form. If the original code is not
orthogonal, the first coordinate ofxxx might be nonzero as well, yet the extension
of this example of the suboptimality of the GLRT is still valid.

and the distance from to the same lines
is . It is easy to see then (by rotating the coordinate
system by 45) that the error event given is equivalent to the
event that either or (exclu-
sively) , where and are independent, zero-mean
Gaussian random variables, each with variance. The proba-
bility of error is then given by

(A2)

which is of the exponential order of

It is interesting to observe that one can do better than the
GLRT when is unknown, by using a decoder that selects the
messagefor which is smaller (see [14]),
namely, by projecting the vector formed by the first two coordi-
nates of each in the direction of the first two coordinates of
. In this case, the boundary between the two decision regions

is a pair of straight lines through the origin whose distances to
and to are the same (the slopes of these lines

are ). Elementary geometrical considerations, sim-
ilar to the above (and the union bound) lead to the result that
the error probability, in this case, is of the exponential order of

, which is strictly better than
that of the GLRT for every nonzero value ofand for every or-
thogonal code of two codewords, provided that .

Finally, to complete the picture, consider the ML decision
rule. Since the Euclidean distance between and is

, the error probability of ML decoding is of the
exponential order of , which is
strictly better than both previously mentioned exponents, again,
provided that .

Note that, in a random coding regime, whereand are
random variables, these exponential error bounds should be av-
eraged w.r.t. the joint ensemble of and , and so, the random
coding error exponent of the GLRT might be strictly inferior to
that of the latter universal decoding rule.
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