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T Quantum-critical

Why study quantum phase transitions ?

ggc

• Theory for a quantum system with strong correlations:          

describe phases on either side of gc by expanding in                            

deviation from the quantum critical point.                    

• Critical point is a novel state of matter without 

quasiparticle excitations               

• Critical excitations control dynamics in the wide 

quantum-critical region at non-zero temperatures.                      
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Important property of ground state at g=gc :                              

temporal and spatial scale invariance;                                  

characteristic energy scale at other values of g: 
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I. Quantum Ising Chain



I. Quantum Ising Chain
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leads to entangled states at g of order unity
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Experimental realization



Weakly-coupled qubits

Ground state:
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Coupling between qubits creates “flipped-spin” quasiparticle states at momentum p

Entire spectrum can be constructed out of multi-quasiparticle states
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Dynamic Structure Factor :

          Cross-section to flip a   to a (or vice versa)

           while transferring energy

 

  and momentum 
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Structure holds to all orders in 1/g

At 0,  collisions between quasiparticles broaden pole to 

a Lorentzian of width 1 where the  
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S. Sachdev and A.P. Young, Phys. Rev. Lett. 78, 2220 (1997)



Ground states:
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Dynamic Structure Factor :

          Cross-section to flip a   to a (or vice versa)

           while transferring energy
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Entangled states at g of order unity
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“Flipped-spin” 

Quasiparticle

weight Z
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A.V. Chubukov, S. Sachdev, and J.Ye, 

Phys. Rev. B 49, 11919 (1994) 
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P. Pfeuty Annals of Physics, 57, 79 (1970)
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Dynamic Structure Factor :

          Cross-section to flip a   to a (or vice versa)

           while transferring energy
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Quasiclassical

dynamics
Quasiclassical
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S. Sachdev and J. Ye, Phys. Rev. Lett. 69, 2411 (1992).

S. Sachdev and A.P. Young, Phys. Rev. Lett. 78, 2220 (1997).
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III. Superfluid-insulator transition

Boson Hubbard model at integer filling



Bosons at density f = 1
Weak interact ions:  

superfluidity

St rong interact ions:  
Mot t  insulator which 
preserves all lat t ice 

sym m etr ies

LGW theory: continuous quantum transitions between these states

M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch, Nature 415, 39 (2002).



I. The Superfluid-Insulator transition

Boson Hubbard model

†

†

Degrees of freedom: Bosons, ,  hopping between the 

sites, , of a lattice, with short-range repulsive interactions.
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M.PA. Fisher, P.B. Weichmann,     

G. Grinstein, and D.S. Fisher     

Phys. Rev. B 40, 546 (1989).

For small U/t, ground state is a superfluid BEC with

superfluid density         density of bosons≈



What is the ground state for large U/t ?

Typically, the ground state remains a superfluid, but with

superfluid density         density of bosons

The superfluid density evolves smoothly from large values at 

small U/t, to small values at large U/t, and there is no quantum 

phase transition at any intermediate value of U/t.

(In systems with Galilean invariance and at zero temperature, 

superfluid density=density of bosons always, independent of the 

strength of the interactions)



What is the ground state for large U/t ?

Incompressible, insulating ground states, with zero 

superfluid density, appear at special commensurate densities

t

U
−3jn =

7 / 2jn = Ground state has “density wave” order, which 

spontaneously breaks lattice symmetries



Excitations of the insulator: infinitely long-lived, finite energy 

quasiparticles and quasiholes
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Excitations of the insulator: infinitely long-lived, finite energy 

quasiparticles and quasiholes
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Boson Green's function :

          Cross-section to add a boson

           while transferring energy  and momentum 
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Similar result for quasi-hole excitations obtained by removing a boson



Entangled states at of order unity/g t U≡
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A.V. Chubukov, S. Sachdev, and J.Ye, 

Phys. Rev. B 49, 11919 (1994) 



Quasiclassical

dynamics
Quasiclassical

dynamics
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Relaxational dynamics ("Bose molasses") with 

 phase coherence/relaxation time  given by
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Crossovers at nonzero temperature
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IV. Superconductor-metal transition in 

nanowires



T=0 Superconductor-metal transition

Repulsive BCS 

interaction
Attractive BCS 

interaction

R
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Metal Superconductor
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M.V. Feigel'man and A.I. Larkin, Chem. Phys. 235, 107 (1998)

B. Spivak, A. Zyuzin, and M. Hruska, Phys. Rev. B 64, 132502 (2001).



T=0 Superconductor-metal transition
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Continuum theory for quantum critical point



Consequences of hyperscaling
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Effect of the leads



Large n computation of conductance



Quantum Monte Carlo and large n computation of 

d.c. conductance



Conclusions

• Universal transport in wires near the superconductor-metal 

transition

• Theory includes contributions from thermal and quantum phase 

slips ---- reduces to the classical LAMH theory at high 

temperatures

• Sensitivity to leads should be a generic feature of the 

``coherent’’ transport regime of quantum critical points.
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