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Abstract

The tasks of neural computation are remarkably diverse. To function optimally, neuronal networks
have been hypothesized to operate near a non-equilibrium critical point. However, experimental evidence
for critical dynamics has been inconclusive. Here, we show that the dynamics of cultured cortical net-
works are critical. We analyze neuronal network data collected at the individual neuron level using the
framework of non-equilibrium phase transitions. Among the most striking predictions confirmed is that
the mean temporal profiles of avalanches of widely varying durations are quantitatively described by a
single universal scaling function. We also show that the data have three additional features predicted by
critical phenomena: approximate power law distributions of avalanche sizes and durations, samples in
subcritical and supercritical phases, and scaling laws between anomalous exponents.

The notion of an avalanche flows naturally from the basic operation of the brain’s network. Neurons in-
fluence the firing of other neurons through a network of axons, synapses and dendrites [1]. These connections
allow neuronal firing to propagate, leading to avalanches of activity [2]. Like avalanches seen in physical
systems such as earthquakes, nanocrystals, and magnets, the sizes of neuronal avalanches are typically power
law distributed [2–5]. In condensed matter systems, the power law distribution of avalanche sizes has been
explained by use of the theory of critical phenomena associated with phase transitions [4]. While power law
distributions of neuronal avalanches suggest that neuronal networks may also operate near a critical point,
this hypothesis is controversial due to the many possible mechanisms of generating power law distributions
and the limited resolution of available experimental data [6–10].

Here we go beyond power law analysis by demonstrating that data from high resolution measurements
of cultured cortical slices taken from rats shows the emergence of quantitative universal avalanche dynamics
across many scales. These universal dynamics are found by analysing the mean temporal profiles of the
experimentally measured avalanches over a wide range of durations. Standard rescaling of the axes according
to theory with no adjustable parameters collapses the data and yields a single universal scaling function
[4]. The emergence of universality demonstrated by data collapse is among the most striking and generic
predictions of criticality, and is much less subject to a multiplicity of explanations than power law analysis
alone [4, 11–13]. Additional characteristics of systems near criticality include relations between scaling
exponents and two distinct phases on both sides of the critical point, which were also present in our data.
We emphasize that in addition to confirming the presence of criticality, our results provide a highly detailed
picture of neuronal avalanche dynamics.

To generate sufficiently high resolution data, we removed 400 micron thick slices of cortical tissue from
living rats, cultured them until they reached maturity (approximately one month), and placed them on an
array of 512 electrodes spaced 60 microns apart as shown in Figure 1A (see SI) [14]. Our array allowed us
to generate time series of voltage spikes (firing events) from 100-340 individual neurons at a spacing where
synaptic connections are relatively likely (see Figure 1B-D) [15]. From this data we resolved avalanches
of firing events (Figure 1E-F). For further details, see Supporting Information (SI). In contrast, previous
work used arrays with electrode spacings of 200-500 microns limiting data collection to either widely spaced
neurons [16], or to lower resolution local field potential (LFP) data [2,17]. LFP data convolves all electrical
activity over a wide area. This convolution, combined with the fact that related analyses are usually limited
to seeking power laws, makes drawing conclusions about criticality difficult [6, 9, 10].

Analysis of the avalanche data indicates that like many avalanching systems, cortical tissues can be in one
of two phases: one in which the avalanches are small and die out quickly, and another in which avalanches
are large and tend to span the size of the system. Between these two phases there is a critical point,
where the distribution of avalanche sizes follows a power law. The renormalization group predicts that the
dynamics near the critical point have universal (i.e. detail independent) scale-invariant properties [4]. The
independence from microscopic details implies that an appropriate simple model will capture the universal
dynamics near the critical point.

To probe the universality class, we use a modified version of the discrete time-step model studied by
DeVille et al. [18, 19] (see SI). At any time step each of the N neurons in the system is either firing or not
firing. If neuron i fires at time t, then it has probability pij to trigger neuron j to fire at time t + 1. Here
we use transfer entropy techniques to extract all triggering probabilities pij for each experimental sample
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Figure 1: Recording avalanches from cortical tissue. A, Micrograph of cultured cortical slice on 512 electrode
array. Black rectangle (1 mm x 2 mm) added to highlight location of array. B, Voltage trace from one
electrode. Arrow marks a spike from an individual neuron, expanded in C. Time of spike is marked by black
dot. D, Raster plot of spike times (dots) from many neurons over a 48 s interval. Recordings lasted up
to 8 hrs. E, Expanded view of network activity reveals an avalanche. Each frame represents the array at
one 5 ms bin. Small dots are electrode locations; large dots are spikes on array. An avalanche consists of
consecutively active frames, bracketed by inactive frames, as shown here. F, Avalanche shape is obtained
by plotting the number of spikes in each frame versus time.3



(see SI). These probabilities are then built into the model simulations, so that for each experiment we have
a corresponding set of triggering probabilities and simulation results.

The data taken from both experiment and simulation are structured as a collection of time series of firing
activity, one per neuron. In both cases an avalanche is defined by a consecutive sequence of time steps for
which there is firing activity, bounded before and after by a time interval of zero activity (see Figure 1, D-F).
Each avalanche has a corresponding duration (number of time steps with uninterrupted activity), size (total
number of neurons that fired during the avalanche), and temporal profile or shape (a plot of the number of
neurons that fire in each time step during the avalanche).

Histograms of avalanche sizes and durations from experiments and simulations are shown in Figure 2.
Scaling theory predicts the functional forms for these distributions near a critical point,

f(S) ∼ S−τ (1)

f(T ) ∼ T−α (2)

〈S〉(T ) ∼ T 1/σνz (3)

where f is the probability density function of the associated variable, S is the size of a neuronal avalanche,
T is the duration, and 〈S〉(T ) is the average size conditioned on a given duration [4]. The parameters τ ,
α, and 1/σνz are critical exponents of the system, and are expected to be independent of the details of the
system or model, i.e. to be the same for all systems in the same universality class [4]. These forms are valid
near criticality for intermediate length and time scales [4], although what constitutes “near” can vary from
exponent to exponent. For example, relation (3) above is valid quite far from criticality.

For some experiments, the power law region of the avalanche size distributions span two decades (Figure
2), which is the largest range that can be expected for experiments that track on the order of 100 neurons.
This range of scaling is comparable to cutting edge work on avalanching critical points in condensed matter
systems [13].

For the two critical data sets, we found the following exponents: τ = 1.6 ± 0.2, α = 1.7 ± 0.2, and
1/σνz = 1.3± 0.05. Consistent, well defined, critical exponents are only expected near criticality. To study
the origin of the best characterized exponent, 1/σνz, we simulated the neuronal network under different sets
of assumptions. Possible factors affecting the value of 1/σνz include network structure as encapsulated in
pij , as well as other key physiological properties of neurons such as a refractory period for the neurons and
storage of electrochemical potential. Simulations with refractory periods and stored electrochemical potential
added to the model whose network structure was all to all failed to reproduce the exponent. In contrast,
in simulations with network structures that were given by the appropriate pij drawn from experiments, the
model predicts the same value for 1/σνz (1.3) as obtained in experiments. It also captures qualitatively
the form of the size and duration distributions. Thus the simulation results are satisfactory, considering the
remarkable simplicity of the model. If pij is a constant p for all pairs of neurons, 1/σνz = 2.0. The sensitivity
of the scaling exponents to the matrix pij clearly indicates that the structure of the network qualitatively
affects the critical dynamics and is the primary factor determining the value of 1/σνz.

Scaling theory also predicts exponent relations. In particular the above three exponents are related as

α− 1

τ − 1
=

1

σνz
, (4)

[4]. The experimental exponent values in the critical sample shown in Figure 2 (top row) are consistent
with this relation.

One of the most stringent predictions of the theory of dynamic critical phenomena is that the mean
temporal profile of avalanches is universal across scales (data collapse). For avalanches of duration T we can
write down the average number of neurons firing, s, at time t as

s(t, T ) ∼ T 1/σνz−1F(t/T ), (5)

where F is a universal scaling function that determines the shape of the average temporal profile. S(T ) and

s(t, T ) are related by S(T ) =
∫ T
0
s(t, T )dt. Since a function has infinitely more degrees of freedom than a
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Figure 2: Contrasting size and duration distributions, and average size for fixed duration from a critical data
set (top) and a subcritical data set (bottom). Experimental data is shown by lines with markers and data
from the corresponding models is shown by smooth lines. Note that each experimental data set has its own
simulation as we use information from the experiment to determine the parameters of the simulation (see
SI). The dashed lines in the top (near critical) row correspond to power laws with exponent 1.7, 1.9 and
1.3, corresponding to the critical exponents τ , α, and 1/σνz respectively. These values satisfy the exponent
relation α−1

τ−1 = 1
σνz , as is expected for a system near criticality. Statistical error bars are only significant

for the largest and longest events for the experimental data, and are too small to see in the figure for the
simulations
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Figure 3: Avalanche shape collapses. Shapes and attempted collapses from three data sets, two experimental
and one simulated. Shapes are produced by averaging the temporal profiles of all avalanches of a particular
duration; different colors here represent different durations. The collapses are plotted by rescaling the
horizontal and vertical axes. The left and right most data correspond to experimental data close to and far
from criticality respectively (note these are the same data sets used in Figure 2). Sample 8 clearly shows
the roughly parabolic shapes in the raw data, and a corresponding very clean collapse, as would be expected
from critical data. Sample 6 shows neither. The middle plots are a simulation of sample 8, using TE data
from that set. They clearly show similar shapes and collapse to a universal scaling function.
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single number, scaling functions contain more information than scaling exponents, and collapses fail faster
as one moves away from criticality. Near the critical point, plots of t/T versus s(t, T )T 1−1/σνz for different
T will collapse onto the same universal scaling function, F .

The two critical data sets collapse extremely well to scaling functions F while the other 8 data sets
do not. Figure 3 shows avalanche shapes for avalanches with three different durations. We fit the scaling
functions using a set of orthonormal polynomials [5], and found that the functions are very close to parabolas
as predicted by mean field theory, in contrast to experiments in other systems where large asymmetries or
flattening are present [5,13]. Each shape collapse contains data from tens of thousands of points, and is not
a statistical artifact, as shuffled data sets do not collapse (See SI).

The other eight data sets are in either subcritical or supercritical phases. That cultured samples can
take on a range of non-critical behavior (Figure 4) has been suspected from LFP data and has even been
controlled by the use of drugs [2,20,21]. Both network topology and connection strength influence the phase
of a given sample. Increasing the number or the strength of connections in a network moves the network
toward supercriticality (See SI for example) consistent with simulation results [18]. Based on the histograms,
exponent relations, and data collapse, it appears that sample 8 is close to the critical point while sample
6 is subcritical. Our findings are consistent with cultured experiments showing that networks slowly pass
through subcritical, supercritical and critical phases over weeks of development [22]. For mature cortical
tissue, departures from criticality may correspond to pathological states. Recent studies suggest that epilepsy
is one such state [23].

The above analysis focused on high resolution measurements of organotypic cortical cultures. Use of
these cultures allowed us to analyze the activity of large numbers of individual neurons and obtain detailed
information about the shapes of avalanches and their scaling (see figure 3). The neuronal networks in
cortical cultures are thought to capture many of the gross patterns of connectivity found in intact brains [24],
suggesting that our results may be relevant for intact brains. Experiments using lower resolution local field
potential measurements on intact brains have succeeded in demonstrating power law avalanche size and
duration distributions [17] but have not succeeded in demonstrating shape collapse. We also analyzed data
from ten dissociated cultures of cortical neurons, where connectivity is known to substantially differ from
organotypic cultures [25]. While data from dissociated cultures contained far fewer neurons (∼ 40) than
in the organotypic data sets, we observed approximate shape collapse for seven samples, but with different
critical exponents than those observed in organotypic samples (See SI for representative collapse).

Power law histograms of avalanches in local field potential data have long been suggestive of non-
equilibrium critical behavior, but are not sufficient evidence of criticality. By collecting signals resolved
for closely-spaced individual neurons and extracting universal scaling exponents and functions, we provide
compelling evidence that networks of cultured cortical neurons can operate near a critical point. In con-
trast to condensed matter and geological systems, criticality in cortical tissue has additional significance
through its relation to optimal information processing, information storage, dynamic response, and compu-
tation [2, 20, 21, 26–29]. The collapse of avalanche data onto a universal scaling function as predicted by
the theory of dynamic critical phenomena provides a clear demonstration of quantitative universality in a
biological system [30–33]. The success of a simple model utilizing a complex, empirically determined network
shows that the critical dynamics depend intricately on a unique network structure. Finally, the existence
of both critical and non-critical samples and a criterion for distinguishing them opens the door for precise
experimental tests of the hypothesis that critical neuronal networks function optimally.

We thank Alan Litke, Nigel Goldenfeld, Jonathan Uhl, Andrew Ferguson, Gerardo Ortiz, and Eshel Ben-
Jacob for helpful discussions. We acknowledge the financial support of a Post Graduate Scholarship from
the National Sciences and Engineering Research Council of Canada (NF,BB), National Science Foundation
(NSF) Physics Frontier Center grant 0822613 Center for the Physics of the Living Cell (NF), NSF grants
POLS-1058291 and CRCNS-0904912 (JMB), NSF grant DMR-1005209 (KAD), JSPS Research Fellowships
for Young Scientists (MS) and NSF grant CMG-0934491 (RELD).
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subcritical critical supercritical

Figure 4: Avalanche size histograms from three different samples of rat cortex. The horizontal line represents
a path in some representative (such as increasing mean connection strength or increasing number of connec-
tions) direction in the complex parameter space of network, representing how critical the sample of interest
is. As we move along this path towards greater network connectivity, samples change from having early
exponential cut-offs, to straightforward power laws, to having humps in their distribution. These humps
could be caused by the possibility that the finite system size, rather than the degree of network connection,
is constraining the size of the largest events. These histograms show that different samples exist at different
points in the phase diagram. such as the mean connection strength with fixed network topology. toward
increasing excitability. Factors that determine the phase of a given sample include number of connections
and connection strength. Simulations using a mean field (all-to-all connectivity) version of our model can
move along the phase diagram by increasing connection strength [18, 19]. Experiments have used drugs to
move the network along this line in the parameter space. [2, 20,21].
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