
54 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 35, NO 1, JANUARY 1989

Universal Data Compression and
Repetition Times

Abstract -A new universal data compression algorithm is described.
This algorithm encodes L source symbols at a time. For the class of binary
stationary sources, its rate does not exceed (H(U. , U l , . . . , UL ~ +
[log, (L + 1)1)/L bits per source symbol. In our analysis, a property of
repetition times turns out to be of crucial importance.

I. INTRODUCTION

N A DATA compression situation an encoder observes I the output stream of an information source and trans-
forms it into a code stream. We assume that the informa-
tion source is stationary. The code stream is sent to a
decoder whose task is to reconstruct the source stream
from the code stream. The rate of such a system is defined
as the expected number of code symbols per source sym-
bol.

When the source statistics are known, we can design
encoder-decoder pairs with rates arbitrarily close to the
entropy of the source. Rates smaller than the entropy of
the source cannot be achieved.

A data compression algorithm is called universal if the
corresponding encoder and decoder are designed without
knowing the source statistics. Such a universal compres-
sion algorithm is optimal if encoder-decoder pairs that
achieve rates as close to source entropy as desired can be
constructed via this algorithm no matter what the statistics
of the actual source are.

We present an optimal universal data compression
method for binary sources and a binary code alphabet.
Also, we describe a modification to this method that
decreases the complexity. Both methods can easily be
generalized to arbitrary source and code alphabets.

11. STATEMENT OF RESULT

Consider a binary source producing {ut}?= -m, a se-
quence of source outputs with values in the alphabet
(0, l}. The integer t can be identified with time. Through-
out this paper we assume that the source is stationary. (For
definitions we refer to Gallager [l, sect. 3.51.)

The encoder chops the source output stream into source
words u (k) := (2 4 (k - 1) ~ , U (k _ l) L + 1 , ' ", U k L - 1) of length L

Manuscript received April 28,1986; revised August 3,1987. This paper
was presented at the Obenvolfach Information Theory Meeting, Obenvol-
fach, Germany, May 11-17, 1986.

The author is with the Electrical Engineering Department, Eindhoven
University of Technology, P.O. Box 513, 5600 MB Eindhoven, The
Netherlands.

IEEE Log Number 8825701.

(k integer). At time t = kL the source word u(k) is
transformed into a variable-length codeword c(k) . The
length of this codeword is L g (c (k)) code symbols. Just
like the source symbols, the code symbols take values in
the alphabet (0, l}. When forming the codeword c (k) , the
encoder uses

. . .
:= (u (k - l) L - B ? u (k - l) L - B + l ~ u (k - l) L - l) ,

i.e., the B most recent source outputs. These outputs are
assumed stored in a buffer. The encoder can now be
described as follows:

c (k) := Fe(&), (1)
We require that the set of codewords generated by the
encoder satisfies the prefix condition (see Gallager [l, par.
3.21).

Just like the encoder, the decoder uses a buffer of size B .
At time kL the contents Q d (k) of this buffer are assumed
to be equal to @ , (k) . When the decoder receives the
codeword c (k) , it uses Q d (k) to form the replica u (k) of
u (k) . Hence

u (k) := &(4~),@&)). (2)
The code is a prefix code. Therefore, it is uniquely decod-
able, i.e., for all source words U and all buffer contents @,

U = & (P e (U > @) , @) . (3)

Consequently, u (k) = u(k), and with t h s u (k) and Q d (k)
the decoder forms Od(k + l), i.e., it updates its buffer.
Note that again Dd(k + 1) = Qe(k + 1).

The rate R of the above coding system is defined as

R := E [Lg(c (k))] / L (4)
where k is arbitrary. The expectation in (4) is evaluated
using the statistics of the source being compressed.

In Sections IV and V of this paper we describe and
analyze an encoder-decoder pair for which

B = 2 L - 1 (5 4
R I (H (U , , U l , . . . ,UL- l)+r log(L+l) l) /L . (5b)

(All algorithms in this paper are assumed to have base 2,
and [a1 is equal to the smallest integer 2 a.)

Because of (5b) and the fact that for any coding system
R 2 H,(U), it is clear that (see again Gallager [l, sect.
3.51)

lim R = H , (u) (6)
L + m

0018-9448/89/0100-0054$01 .OO 01989 IEEE

WILLEMS: UNIVERSAL DATA COMPRESSION AND REPETITION TIMES 55

where H,(U) is the entropy of the (stationary) source.
From (6) we conclude that our coding strategy is optimal.

Our analysis hinges on a crucial result concerning repeti-
tion times. The next section is devoted to this subject.

these B vectors of length L, the encoder determines
whether or not the value m , of the repetition time of w,
exceeds B and, if this is not the case, the value of m,. For
the sets M p defined as:

111. REPETITION TIMES

A discrete stationary source generates the sequence
{x,}:-~. We say that the (value of the) repetition time
M, of the source output x, is equal to m if X,+, # x, for
1 < n < m and = x,. For x such that P (X , = x) > 0,
the average repetition time T (x) of x is defined as

where

Q , (x) : = P (M , = m l X , = x)

= P (X - , = x , X l - m f ~ , . . . , X - , f x l X , , = ~) (7b)

for m = 1,2,3, . . . and arbitrary t (stationarity). Two im-
portant properties of repetition times are stated in the
following lemma.

Lemma: For a discrete stationary source and for any x
for which P (X , = x) > 0,

{ m : 2p1 m I 2 ~ + ' - 1 } , for p = O,I;.-, L -1, i { m : m > P } , for p = L ,
&qp :=

the encoder can assign to each m , a set index p such that
m , E AP. This set index p is transmitted to the decoder
by means of a fixed-length prefix of [log(L + 1)1 binary
digits. This prefix is the first part of the codeword c (k) .
The construction of the second part of c (k) , the suffix,
depends on the value of the set index p .

First assume that p < L. The objective of the encoder is
to send the repetition time m , to the decoder. To this end,
it determines the member index q of m,. More precisely,
q:=m,-2P. Since q E {0 ,1 ; . - , 2P- l } , a suffix of p
binary digits suffices to send this member index q to the
decoder.

When the set index p = L , the source word w, does not
occur in the buffers @.,(k) and a d (k) , and instead of a
member index, the encoder sends the entire source word
u (k) to the decoder. T h s requires a suffix of L binary
digits.

One easily verifies that the decoder, after having re-
ceived the codeword c (k) , can reconstruct U(k) . Note that
the codewords emitted by the encoder satisfy the prefix
condition and consequently are uniquely decodable.

Example (see Table I) : Let L = 3 and t = 0. Assume
that the buffer contains

1) E m = i , m Q m (x) and
2) P (X , = x). T(x) = 1 - lim , ~ P (X , f x, X , # x,

. . . , X , # x).

Proof: See the Appendix.

Note that when the source { is stationary, the
source { w,}y= - -M with w, := (u t - L , . ., ut - l) is also
stationary. Therefore, the lemma applies to the source @e(') = (u-10, U-95' ' . 9 U-,) = (o ~ l ~ o ~ o ~ l ~ o ~ o) _ _
{ w, };"= as well.

IV. THE ALGORITHM

and that

is the future string. We find the following repetition times:
3\11 2 8(1(6\4(2 81. 1 . . Note that a repetition time m ,

u t -L , . . ., u , - ~) . These repetition times give rise to

Rough Outline

time of the source word to be transmitted. Ths repetition
time is transformed into a codeword that is sent to the

Using its buffer the encoder determines the repetition equal to one occurs if (u , - ~ , . . * , u r p 1) =

the following codewords:
decoder. Knowing this codeword, the decoder reconstructs
the repetition time. With t h s repetition time the decoder I01,l IO0 I 11,011 IO0 I 10,lO 1 10,oo I 11,001 I . '
can recover the source word from its buffer. Since the
buffers have finite length, it is possible that the encoder is
unable to determine the repetition time of a source word.

(prefix and suffix are separated by a comma).

In this case the source word is sent uncoded to the de- TABLE I
ENCODING TABLE FOR L = 3 coder.

Formal Description
n' P q Prefix Suffix Length
1 0 0 0 0 - 2
2 1 0 0 1 0 3

In keeping with (sa), we set B := 2'- - 1. Now assume 3 1 1 0 1 1 3
that t = kL , and hence w, = u (k) = (u , - ~ + ~ , . . . , 4 2 0 1 0 0 0 4

content ~ e (k) = (~ , - L - B , ~ , - L - B + l , . . . , ~ , - L - l) , the en- 7 2 3 1 0 1 1 4
coder has access to all w , - ~ with m =1,2;..,B. With 2 8 3 - 1 1 u (h) 5

5 2 1 1 0 0 1 4
6 2 2 1 0 1 0 4 u t - l) is being encoded. Knowing this u (k) and the buffer

56 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 35, NO 1, JANUARY 1989

V. ANALYSIS

Again let t = kL (hence w, = u (k) is being encoded).
From the description of the algorithm we know that

where l a] denotes the largest integer s a. Suppose that w
is such that P(W, = w) > 0. For the average length L(w)
of the codeword c (k) when W, = w, it follows that

L (w) = Q,(w>([log(L+1)1+ Llog(m)l)
mi = 1 , 2 L - 1

+ Q,(W>([log(L+1)1+ L)

5 Q,(w>([log(L+1)1 +log(m))

Ilog(L +1>1+ c Q,,(w>log(m)

4 ~ l o s (L + l) l +log(mQ,,(w))

ni = 2‘. m

m = l , O o

m = l , m

m = l , m

= [log(L+1)1 +log(T(w))

2 [l o g (L + 1) ~ - l o g (P (r q = w)) . (10)
Here equality a follows from part 1) of the lemma in
Section 111, b from the convexity of the log(.) fucction
and part 1) of the lemma, and c from part 2) of the lemma.

Using (10) we can now upper-bound the rate of our code
in the following way:

R L = 1 P (W , = w) L (w)
M’: P(w, = W) > 0

I P(rq=w)([log(L+1)1

- l o g (P (w , = 4))
= [log (L + 1)1 + H (w,)
=H(U,,U,;- ,UL-,)+ [log(L+1)1 (11)

M’: P(= MI) > 0

where we have used the convention O.log(0) = 0. This
concludes the result mentioned in Section 11.

VI. THE MODIFIED ALGORITHM

In this section we slightly modify our algorithm. We
show that for a given buffer size B = 2’ - 1 (A is a positive
integer), the length of the transmitted source words can be
increased from L = X to L = X + [log(A)] without affecting
the factor [log(X + l) l / X much. Again we make use of
subsets .Adp that are now defined as follows:

{ m: 2 ~ 2 m I 2P+’-1},

{ m : m>2’}), f o r p = A
for p = 0,1, . . . , X - 1 . (12)

After having determined the set index p of m, , this set
index is transmitted to the decoder. To do ths, instead of a
fixed-length prefix as in Section IV, we apply a variable-
length prefix (see Table 11). To distinguish between the sets
Ao, A,,. . . , AA- 1, the encoder sends a zero followed by
[log(X)1 binary digits and, as before, the suffix is the
member index. For the remaining set Ax, the prefix is
one, while the suffix is the source word u (k) , which now
has length L = A + [log(X)l.

TABLE I1
ENCODING TABLE FOR h = 4 (L = 6)

m P q Prefix Suffix Length

1 0 0 0 0 0 - 3
0 0 0 1 0 4 2 1

3 1 1 0 0 1 1 4
4 2 0 0 1 0 0 0 5
5 2 1 0 1 0 0 1 5

2 0 1 0 1 0 5 6 2
7 2 3 0 1 0 1 1 5
8 3 0 0 1 1 0 0 0 6
9 3 1 0 1 1 0 0 1 6

15 3 7 0 1 1 1 1 1 6
2 1 6 4 - 1 d k) 7

.

If we analyze this modified algorithm for a given value
of X we find that

L := x + [log(h)l (1 3 4

B k 2 A - 1 0 3 b)

R S (H (U,, U,,. . ., UL-1) + [lOg(X)] + l)/L. (1 3 ~)
Note that for practical values of X = log(B + l), say X I
24, the term [log(X + l) l / X in expression (Sb) is bigger
than the corresponding term ([log(A)] + 1)/(A +[log(A)])
in (13c). In addition, the modified algorithm has the
advantage that the rate R is always less than or
equal to (L + l)/L. Nevertheless, for large values of A ,
the term [log(X + l) l / X appears to be smaller than
(Ilog(X)l+ 1)/(X + IlOS(X)l).

VII. IMPLEMENTATION AND COMPLEXITY

A simple implementation for the main algorithm is
achieved by using shift registers (SRs) as buffers. In this
case the storage and search complexities for both the
encoder and the decoder are

C;iyge = Cstorage dec = 2 L - 1 binary locations, (14a)

C y h = Cizyh = 2L - 1 shfts/source word. (14b)

An obvious disadvantage of this SR-implementation is
the high search complexity. A low search complexity can
be achieved if we use two random accessible memories
(RAM’S) at the encoder and one RAM at the decoder
instead of SRs. These three RAM’S all have L address
lines. Both the encoder and the decoder use a (word-)
RAM which at time t contains all the source words w, for
t - B I T 2 t - 1. This is accomplished by storing w, at

an
the

WILLEMS: UNIVERSAL DATA COMPRESSION AND REPETITION TIMES

address t m 0 d (2 ~ - 1) at time t . The encoder uses
additional (time-) RAM, which contains at address w

~

value r m 0 d (2 ~ - 1) of the most recent time r for which
w, = w. Note that the two RAMS in the encoder are
updated at the end of every time unit and not just at
multiples of L.

Now suppose that at time t = kL the word w, = U(k) = w
is the output of the source. Then the encoder uses w
to find in the time-RAM the (reduced) time T~ =
r m 0 d (2 ~ - 1) such that r is the most recent time for
which w, = w. With t h s rr it checks, using the word-RAM,
whether or not the word w is stored at address T ~ . If so, it
concludes that rn, - 1 = t - T~ - 1 m 0 d (2 ~ - 1). If not,
rn, 2 2L. Now the two RAM’S at the encoder are updated
and the codeword c (k) corresponding to rn, is sent to the
decoder. If rn, I 2L -1, the decoder can reproduce m,.
With this rn, it determines rr and finally w, by using its
time-RAM. Note that for 1 I rn, I L - 1, t h s last opera-
tion is slightly more complex than for L I rn, I 2‘- - 1. If
m, 2 2L the source word w, is contained in the codeword.
With w, the decoder updates its word-RAM (L times). For
the storage and search complexities we now find that

(154

(W

storage = 2 . C storage = 2 . 2 Source words ‘enc dec

C,sn:carch = 2. p y h = 2 mem. references/source word

We see that the search complexity is decreased enormously
at the expense of an increase in storage complexity. The
updating complexities are not considered here. It is clear
that the modfied algorithm can be implemented in a
similar way.

VIII. PERSPECTIVES

The basic idea behind the algorithms described here is
“repetition time coding.” The author discovered and ana-
lyzed this principle in January 1986. It was first presented
in May 1986 at the Obenvolfach meeting on Information
Theory. In a recent paper Elias [2] investigates a universal
source coding algorithm that employs what he calls “inter-
val coding.” It turns out that interval coding and repetition
time coding are the same idea. However, t h s common
basic principle is applied in a different way in the present
paper than in Elias’s paper. The main difference between
the two algorithms is that Elias’s can only encode intervals.
Therefore, all source words must occur somewhere in the
“past.” This is accomplished by proper initialization. In
our algorithm repetition times are only encoded if they are
small enough (I 2L - 1). If not, the source word is sent to
the decoder in an uncoded form. T h s has the advantage
that the time at which a source word occurred can be
stored modulo (2L - 1) and no reinitialization is required
(note that for the modified algorithm, occurrence times of
source words of length L = X + [log(A)] can even be stored
modulo 2’ - 1). Another advantage of our bounded repeti-
tion time scheme is that the average codeword length of
source word w can be upper-bounded by - log(E‘(W, = w))

51

plus some constant, instead of some other function G(.) of
log(P (W, = w)) . This results in a bound on the rate which
appears very natural (see (5b)).

Section I11 of our paper deals with repetition times. The
lemma given was proved in a slightly weaker form by Kac
[3]. Since this lemma may be of importance to information
theorists and is rather unknown, a proof of it is given in
the Appendix.

In this paper a new fixed-to-variable-length universal
source coding algorithm is proposed. Many authors in the
past have treated universal source coding in ways that are
in some respects different from our approach and in other
ways similar. Early contributions in this field (e.g., the
“enumerative” Lynch-Davisson-Schalkwijk algorithm)
were put into the proper perspective by Davisson [4]. A
few years later Gallager [5] and other researchers investi-
gated the so-call “dynamic” Huffman code, which is an
on-line adaptive version of the Huffman code. More so-
phisticated are the Ziv-Lempel [6], [7] algorithms in which
the encoder references substrings that have occurred in the
past. Referencing items in the past is also the basic idea in
this paper and in Elias’s paper [2]. A related idea, “recency
rank coding,” is investigated in a paper by Bentley et al.
[8], and also by Elias [2]. Finally, we mention Rissanen’s
paper [9] which demonstrates the close connection between
universal source coding, information, prediction, and esti-
mation. Despite this close connection, the present paper
shows that it is not necessary for a universal source en-
coder to contain an explicit modeler or estimator. It may
be possible, however, that the performance (complexity,
speed of approaching the entropy) of a universal algorithm
can be improved by using a modeler and/or an estimator.

ACKNOWLEDGMENT

The author would like to acknowledge discussions with
R. Ashlswede, J. Massey, L. Ozarow, T. Tjalkens, and A.
Wyner concerning the lemma in Section 3 and the algo-
rithm and also thank the reviewers for their valuable
comments and suggestions.

APPENDIX
THE PROOF OF THE LEMMA IN SECTION I11

Let

P,,(x) : = P (X , = x , X ~ + x ; . . , X , , ~ , # x , X , , = x) . (Al)

From

P(x, = x)

= P(x, = x, x, = x) + P(4, = x, x, # x)

= P(x, = x, x, = x) + P(x, = x, x, f x, xz = x)

+ P (x, = x, x, # x, x, # x)

= . . . = Pn,(x) + P(x, = x, x, # x; . ’ , x, # x),

(A21
m = l . N

58 IEEE TRANSACTIONS ON INFORMATION THEOKY. VOL. 35. NO 1. JANUARY 1989

we find that

The equalities marked with an asterisk follow from the stationar-
ity of the source. Dividing (A3) by P(X, = x) proves part 1) of
the lemma. We proceed with

P (x, = x) .T(x)

= mP(X,,, = x , X, - m + x ; . . , X - , + x , X, = x)
m = l , m

c mPn, (x) .
m = l , m

Noting that

2 C mPm(x)
m = l , N

(equality 1 follows from (A3)), we may conclude that
P(x, = x) . T (x)

(A6)

Finally with (A6) and
P(x, = x, x, = x) + 2 P (x, = x , x, f x , x, = x)

+ 3P(x, = x, x, f x, x, f x, x, = x) + . . ’
+ NP(x, = x , x, f x , . . . , x, 1 # x , x, = x)

+(N+1) P(x, = x , x, # x ; . .) x, f x)

1 P(x, =x)+ P(x,=x, x, f x)

+ P(x, = x , x, f x , x, f x) + . . .
+ P(x, = x , x, f x, . . . , x,- 1 f x)

+ P(x, = x, x, f x , . . . , x, f x)

+ P(x, = x, x, f x , x, f x) + . . ’
+ P(x, = x, x, f x , ’ . . , x,- 1 f x)

+ P(x, f x ; . .) x, f x) - P (xo+ X , . . ’ , x, f x)

+ P(x, = x , x, f x , x, f x) + ’ . ’
+ P(x, = x, x, f x , . . . , x, - 1 f x)

+ P(X” f x ; . . , x,-, f x) - P(x, f x;.., x, f x)

+ P (x, = x, x, f x , x, f x) + ’ . .
+ P(x, f x; . . , x,- 1 f x) - P (x, f x , . . . , x, + x)

(‘47) - - . . . =1- P (x, f X,’ . . , x, f x) ,

= P(x, =x) + P(x, = x , x, f x)

2 P(x, = x) + P(x, = x, x, # x)

= P(x, = x) + P(x, =x, x, f x)

we obtain part 2) of the lemma. Equality 2 follows from Massey’s
[lo] “leaf-node theorem” and the asterisk marks equality from
stationarity of the source.

REFERENCES

[l]

[2]

R. G. Gallager, Information Theory and Reliuble Communicution.
New York: Wiley, 1968.
P. Elias, “Interval and recency rank source coding: Two on-line
adaptive variable-length schemes,” IEEE Trans. Inform. Theoiy,
vol. IT-33, pp. 3-10, Jan. 1987.
M. Kac, “On the notion of recurrence in discrete stochastic pro-
cesses,” Bull, Amer. Muth. Soc., vol. 53, pp. 1002-1010, Oct. 1947.
L. D. Davisson, “Universal noiseless coding,” IEEE Truns. Inform.
Theory, vol. IT-19, pp. 783-795, Nov. 1973.
R. G. Gallager, “Variations on a theme by Huffman,” IEEE Truns.
Inform. Theory, vol. IT-24, pp. 668-674, NOV. 1978.
J. Ziv and A. Lempel, “A universal algorithm for sequential data
compression,” IEEE Truns. Inform. Theory, vol. IT-23, pp.
337-343, May 1977.
-, “Compression of individual sequences via variable-rate cod-
ing,” IEEE Truns. Inform. Theory, vol. IT-24, pp. 530-536, Sept.
1978.
J. L. Bentley, D. D. Sleator, R. E. Tarjan, and V. K. Wei, “A locally
adaptive data compression scheme,” Commun. Ass. Comput. Much.,
vol. 29, pp. 320-330, April 1986.
J. Rissanen, “Universal coding, information, prediction, and esti-
mation,” IEEE Truns. Inform. Theory, vol. IT-30, pp. 629-636.
July 1984.
J. L. Massey, “The entropy of a rooted tree with probabilities,”
presented at the IEEE Int. Symp. Inform. Theory, St. Jovite,
Canada, Sept. 26-30, 1983.

[3]

[4]

[5]

[6]

(71

[8]

[9]

[lo]

