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Bandwidth-Constrained Sensor Network

Jin-Jun Xiao, Student Member, IEEE, and Zhi-Quan (Tom) Luo, Senior Member, IEEE

Abstract—Consider the problem of decentralized detection with
a distributed sensor network where the communication channels
between sensors and the fusion center are bandwidth constrained.
Previous approaches to this problem typically rely on quantization
of either the sensor observations or the local likelihood ratios, with
quantization levels optimally designed using the knowledge of noise
distribution. In this paper, we assume that each sensor is restricted
to send a 1-bit message to the fusion center and that the sensor
noises are additive, zero mean, and spatially independent but oth-
erwise unknown and with possibly different distributions across
sensors. We construct a universal decentralized detector using a
recently proposed isotropic decentralized estimation scheme [10],
[11] that requires only the knowledge of either the noise range or its
second-order moment. We show that the error probability of this
detector decays exponentially at a rate that is lower bounded either
in terms of the noise range for bounded noise or the signal-to-noise
ratio for noise with unbounded range.

Index Terms—Distributed detection, large deviation, sensor
networks.

1. INTRODUCTION

E CONSIDER the problem of decentralized detection
with a wireless sensor network consisting of a fusion
center and a large number of geographically distributed sen-
sors. We assume that sensor nodes can communicate with the
fusion center but not with each other, and there is no feed-
back from the fusion center to local sensors. Because of their
low-power budget, sensors may have limited dynamic range,
resolution, or communication capability. As a result, local quan-
tization/compression of sensor observations is of great impor-
tance. In general, optimal local compression schemes are depen-
dent on sensor noise distributions that, in many practical situa-
tions, can be hard to characterize due to large network size and
unpredictable environment change. Consequently, we are mo-
tivated to design decentralized detection algorithms that work
universally for any unknown noise and have low bandwidth re-
quirements.
There has been a long history of research on decentralized
detection (see [17] for an excellent survey of the early work
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and [1] and [20] for a more recent tutorial on this subject).
Typically, the sensor observations are assumed to be condition-
ally independent with known distributions [16], since, in the
absence of conditional independence assumption, the problem
of determining the optimal decentralized detection strategy
is NP-hard [18]. Other work [6], [9] focused on exploiting
the known joint observation probability distribution function
(pdf) to design local quantization schemes. The decentralized
detection problem with communication constraint was studied
in [15], whereby the sensors employ a “send/no send” strategy
depending on whether the likelihood ratios fall in a certain
range. Also, the quantization or thresholding of local likelihood
ratios is studied in [2], [3], [17], and [19], where the goal is to
reduce the communication requirement from sensors to the fu-
sion center. Without the knowledge of observation distribution,
the work of [14] proposed to use a training sequence to aid the
design of local data quantization strategies.

Recently, several universal decentralized estimation schemes
were proposed [10], [12], [13] for distributed parameter esti-
mation in the presence of unknown, additive sensor noises that
are bounded and identically distributed. These universal decen-
tralized estimation schemes have a low bandwidth requirement:
Each observation is compressed to exactly one binary bit per
sensor. In particular, half of the sensors will send to the fusion
center the first most significant bit (MSB) of their observations,
one fourth of the sensors will send the second MSB of their ob-
servations, and so on. When properly combined at the fusion
center, these bits can be used to estimate the unknown param-
eter, resulting in a mean-squared error (MSE) that is within a
constant factor of four to the minimum achievable. The isotropic
universal estimation in a bandwidth-constrained ad hoc sensor
network was considered in [11], where sensors adopt an iden-
tical probabilistic quantization strategy: Each sensor quantizes
its observation to the first MSB with probability 1/2, quantizes
to the second MSB with probability 1/4, and so on.

In this paper, we construct a universal decentralized scheme
for the detection of a deterministic signal corrupted by addi-
tive noise with unknown distribution by using the recently pro-
posed isotropic decentralized estimation scheme [10], [11]. Op-
erationally, each sensor collects an observation, performs a local
probabilistic compression, and sends a 1-bit message to the fu-
sion center, while the latter performs the final detection by ap-
propriately combining the received bits from all sensors. The re-
sulting universal distributed detection scheme requires only the
knowledge of either the noise range or its second-order moment
and has an error probability that decays exponentially. More-
over, the decaying rate (called error exponent) is shown to be
lower bounded either in terms of the noise range when noise is
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Fig. 1. Decentralized detection scheme.
bounded or the signal-to-noise ratio (SNR) for noise with un-
bounded range.

Our paper is organized as follows. In Section II, the decentral-
ized detection problem is formulated. In Section III, we propose
a decentralized detection scheme for the bounded noise case. Its
performance is analyzed and compared with that of a detection
scheme based on real-valued observations. The extension of this
decentralized detection scheme to the case of unbounded noises
is given in Section IV. Section V contains some concluding re-
marks.

II. PROBLEM FORMULATION

We consider the decentralized binary hypothesis detection
problem structured in Fig. 1. Suppose that the two prior hy-
potheses are Hy, H1, and there are K distributed sensor nodes.
To accomplish the detection task, each sensor collects a noisy
observation xj, performs a (probabilistic) local quantization,
and then transmits the quantization result my, () (which is also
called local message function) to the fusion center. Upon re-
ceiving the messages {m1,ma, ..., mx }, the fusion center se-
lects one of the two hypotheses as the final decision by com-
bining the received messages according to a detection rule (to
be designed). Our goal is to design the decentralized detec-
tion scheme (DDS), which consists of the local message func-
tions {my,ms,...,mx}, and the final fusion strategy at the
fusion center, so that the detection error probability P.(K) =
P(*H; # 'H;) is minimized. In contrast to DDS, a centralized de-
tection scheme (CDS) does not perform local decisions; it gen-
erates the final detection decision on the basis of real-valued
sensor observations.

In what follows, we consider the problem of detecting a
known deterministic signal corrupted by additive noises. For
symmetry, we assume that the sensor observations are described
by

Ho: ) = —d + ng,
Hi:zp = d+ ng,

k=1,2,... K
k=1,2,....K (1)
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where d and —d are the deterministic signals under hypothesis
Ho and H; respectively, and {n1,nse, ..., nk } are mutually in-
dependent noise random variables with zero mean. The distribu-
tions of sensor noises are unknown and may be different across
sensors. The variances of nj, are assumed to be upper bounded
by a known constant o2,

The error probability is given by
P.(K) = P(decide H1 | Ho)P(Ho)+P(decide Ho | H1)P(H1).-

For any reasonable detection strategy, the associated detection
error P.(K) typically decays exponentially as K — oo. Thus,
we can define the error exponent as

R = liminf R(K), where R(K) = —% log P.(K). (2)

When the noise pdfs {fx(z) : k = 1,2,..., K} and the prior
probabilities of the hypotheses P(H) and P(H;) are known,
the optimal decision rule that minimizes the detection error
probability is given by the maximum a posteriori detector (see,
e.g., [8]). The decision rule of this detector is the likelihood
ratio test (LRT)

K
1 —d
?E 1ngk(xk7 3)
k=1

S —log .
Jewn+d) 7 K °° P(Hy)

When {ni,ns,...,ng} are independent and identically dis-
tributed (i.i.d.) with pdf f(z), the error exponent attained by the
LRT in (3) is the Chernoff distance between go(z) = f(z + d)
and g1 (z) = f(x—d) (if go(x) and g1 () are mutually absolute
continuous; see, e.g., [5])

C(g0,91) = — min log/go(w)sg%*s(df) dz.

0<s<1

Notice that go(z) = f(x + d) and g1(z) = f(xz — d) are the
conditional sensor observation distributions under hypotheses
Ho and H;, respectively. Chernoff distance characterizes the
largest possible exponential rate at which the error probability of
any detection scheme decreases to zero as K — oo. Therefore,
it can serve as a useful benchmark for evaluating the asymptotic
error performance of various detection schemes.

Implementing the above likelihood test in a sensor network
requires both the knowledge of the noise pdfs and the trans-
mission of real-valued messages. This makes distributed like-
lihood-testing impractical for a large—scale sensor network. To
ensure low bandwidth requirement and universality to noise dis-
tributions, we will constrain the message function my () to be
0-1 valued and be independent of noise pdf. A main objective
of this paper is to understand the impact of these constraints on
the decentralized detection performance.

As an example, consider the simple choice of taking each my
as a sign detector

L

ma(x) = {0,

if:L’k Z 0
if z;, < 0.
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It is easy to see that m, has the conditional distribution
-0
P(mk =0 | Ho) = / fk(:c + d)dx = Fk(d)
P(my = 1|Ho) = / fe(z + d)dz = 1 — Fi,(d)
0

where Fj(z) is the cumulative noise density function of ny.
Similarly

P(mk = 0|H1) = Fk(—d)
P(mk =1 |H1) =1- Fk(—d)

However, if fip(z) = Oforall z € [-d,d]and 1 < k < K,
then Fy(—d) = F(d), which implies that the distributions of
my, are the same under both hypotheses H( and H;. Hence,
‘Ho and ‘H; are not distinguishable from the message functions
{mi,ma,...,mx}. Thus,local sign detectors cannot work uni-
versally for all noise pdfs. In the ensuing sections, we describe
universal DDSs for both bounded and unbounded noises.

III. DETECTION IN BOUNDED NOISE CASE

In this section, the sensor noises are assumed to be bounded
in an interval [—U, U]. In other words, if we let

U U
My = {f(x) /_Uf(w)dx: 1, /Uwf(x)da::O

f(z) >0, supp(f) C[-U, U]}

then the noise pdfs fr(z) € My forall k = 1,2,..., K. Let
us now recall two large deviation results.

Proposition 3.1 (Hoeffding [7]): Let {m,n2,...,nKx} be
mutually independent random variables with a < 7, < b for all
k= 127K Suppose K = (I/K)(nl +n2t +77K)’
then for any ¢ > 0

P(ix — E(7x) > €) } < exp <_ (1)2{(;2)2> '

P(E(7x) — ik > ¢)

Proposition 3.2 (Chernoff [4]): Let{(1,(2,...,(x } beiid.
Bernoulli random variables with P((x = 0) = ¢,P((x = 1) =
p. Suppose (x = (1/K)(¢1 + (2 + -+ + (x); then for any
s > 0, it holds that

P({k
P((x

| Y

s) < eXI)(—K¢1)(5))7
) < exp(—Kﬁbp(s))v

ifs>p

IN IV
»

ifs<p “4)

where

1—s

qﬁp(s):sln;—i—(l—s)lnl_p.

Moreover, ¢,(s) is the best achievable exponent in (4) in the
sense that, for any ¢ > ¢, (s), there holds

l%ninf P((x > s)exp(K¢) = 0o, ifs>p
l%ninf P((x < s)exp(K¢) = 0o, ifs <p.
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A. Centralized Detection With Real-Valued Observations

We first consider the centralized detection scheme (CDS)
where the detector has direct access to the sensor observations
{z1,29,...,2K}, but the noise pdfs are unknown. Due to
the insufficient statistic, it is natural to perform the following
decision strategy:

1 &L Ho

_ L <
TR = K E T = 5

k=1 Hl

where the threshold 7 is to be chosen. By applying Proposition
3.1 to the detection scheme (5), we have the following result.

Theorem 3.3: For the detection problem (1), if the noises
{ni,mna,...,nx} are bounded in [—U, U], then the detection
scheme (5) with threshold v = 0 (see Fig. 2) achieves detection
error probability that decays exponentially with rate

2

R(K) > —

(K)> oo

where R(K) is defined in (2). Thus, the error exponent
2

> —.
- 202

forall K >0

R = liminf R(K)

K—oo

(6)

Proof: Notice that E(zy, | Ho) = —d, E(xy | H1) = d, so
E(EK|H0) = —d, E(EK|H1) =d.
The sensor observations are bounded as

—U-d<a, <U—d,
U+d<a <U+d,

Applying Proposition 3.1, we obtain the error probability of (5)
Po(K) =P(zg > v|Ho)P(Ho) + P(zx < v[H1)P(H1)
= P(:fK — E(:TTK) >d+ ’V|H0)P(Ho)
+ P(E(f[{) — T >d-— ’7|H1)P(H1)

<o (L P

202
+exp <_ ) P(Hy) %

K(d—1)?
202
where the last step applied the fact that z; takes value in an
interval of length 2U under either hypothesis. Since the error
exponent is determined by the least of the two exponents in (7),
we take v = 0 and obtain

Kd?
PE(K) S exp <_W>

under H
under H;.

and
2

K)> —
R(K) 2 57

forall K > 0.



2620

x1 b(y1 ) U/])

+
v
N =

+
A
N =

b(yx,ax)

.TJK@
\fi

Fig. 3. Universal decentralized detection in bounded noise case.

Thus, letting K — oo shows that the error exponent R is also
lower bounded by d?/2U2. d

The lower bound (6) on the error exponent is universal for all
noise distributions fr € My. When U is much larger than d,
this bound is actually tight since (6) holds with equality when
the noises are i.i.d. with pdf f(z) = 1/26(z+U)+1/26(x—U),
where 6( - ) denotes the usual point mass delta function. In par-
ticular, we can, in this case, linearly transform each observation
z) to a 0-1 Bernoulli random variable and apply Proposition
3.2 to obtain the error exponent

1 1 d?

4 Utd @
v BU—d”~ w2

when U > d.

This matches the lower bound (6).

Notice that the detection strategy (5) is universal since it does
not require the knowledge of noise pdf. However, when ap-
plied in sensor networks, it is not bandwidth efficient since real-
valued messages need to be transmitted from local sensors to
the fusion center. In what follows, we impose a 1-bit per sample
bandwidth constraint at each sensor node and develop a uni-
versal DDS under this condition.

B. Decentralized Detection Under a 1-Bit
Bandwidth Constraint

Throughout this section, we assume that each local message
is a 0-1 binary function. The basic idea is to introduce, at each
sensor, an auxiliary random variable a; with which each sensor
can randomize its message function. Specifically, sensor k gen-
erates a binary local message my (2, ax) based on not only its
observation zj, but also the outcome of the auxiliary random
variable aj. The DDS can be briefly described as follows (also
see Fig. 3).

* First, the auxiliary random variable a;, at each sensor is
specified to have the following distribution:
Plar=i)=2""% i=1,2,3,... (8)

Notice that all sensors in the network use identical but

independent auxiliary random variables.
 Second, let W = U + d; then, xy, € [—-W, W] under both

hypotheses. Suppose that W is known to local sensors,
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and ay, is the local auxiliary random variable outcome, and
the notation b(z;¢) denotes the ith bit of a real number z.
Then, the local message function is given by

W + xp,
2W

my = b(yxk;ar), whereyy = €01. 9
In other words, the message my, is simply the ayth bit of
the real number ¥, which is either O or 1.

* Finally, upon receiving the 1-bit binary messages {m,
ma, ...,mr} = {b(y1;01),b(y2;a2),...,b(yx;aK)},
the fusion center performs the hypothesis testing ac-
cording to the following rule:

1 & 1 & o ¢
. _ . <
k=1 k=1 H1

We now analyze the detection performance of DDS (8)—(10).

Theorem 3.4: Consider the decentralized detection problem
(1) where each sensor is restricted to send a 1-bit message to
the fusion center. If the noises {n1, ns, ..., nx } are bounded in
[-U, U], with the knowledge of W = U+d, the DDS defined by
the local message functions my, (g, ax) (8) and (9), and the final
fusion rule (10) has a detection error that decays exponentially
at a rate

2

R(K) >

Z oW for all K > 0.

Proof: Tt is easy to see that {b(yi;a1),b(y2;a2)
,.--sb(yK;ax)} are conditionally independent. In addi-
tion, it follows from the distribution of ay, in (8) that b(yx; ax)
is an unbiased quantization of y, i.e.,

oo

Ea, (b(yrsar)) = > b(yrs6)27" = .

i=1
Therefore, we obtain

E(b(ye; ax)) = En(9r) = —577

(11)
where the expectation of b(yy; ar,) is taken with respect to both
the noise n, and the auxiliary random variable a;,. Furthermore,
we can use (11) to compute the conditional expectations

. _ "V-I—E x| Ho) _
R Lot i A
The detection error probability is given by
P.(K) = P(mg > 1/2|Ho)P(Ho)
+P(mg <1/2|H1)P(H1). (13)

Applying Proposition 3.2 with p = 1/2 — d/2W,q = 1/2 +
d/2W,and s = 1/2, we obtain

P(mx 2 1/2|Ho) < exp(=K¢p(1/2))
and

P(mr < 1/2|H1) < exp(—K¢,(1/2)).
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Fig. 4. Error exponents of DDS in bounded noise case.

Since ¢,(1/2) = ¢,(1/2) = —1/21n(4pq), it follows from

(13) that

P.(K) < exp(=K¢,(1/2))P(Ho) + exp(=K,(1/2))P(H1)
= exp(—K¢,(1/2)).

Thus, we have

11 1. 1 d?

The proof is complete. O

The error exponent bounds in Theorems 3.3 and 3.4 differ by
afactor of W2 /U? = (U +d)?/U?, where d is the amplitude of
the deterministic signal, and U is the noise range. This suggests
that to ensure the same universal performance, the DDS only
needs a multiplicative constant factor of (U +d)? /U? more sen-
sors than that needed by the CDS to achieve the same detection
performance, providing that local sensors have the knowledge
the observation range W in DDS. In other words, comparing
these two universal detectors, the low bandwidth constraint (one
bit per sample per node) only results in a constant factor increase
in the sensor network size.

C. Simulations

In the simulations, we choose d = 1. For simplicity, the
noises are selected to be spatially i.i.d. in the range [—2, 2] with
pdf 0.56(z + 2) 4+ 0.56(z — 2). For each K (the total number
of sensors), we obtain the probability of detection error by re-
peating the experiments 10 times. Fig. 4 shows the detection
performance of the universal DDS in (8)—(10) with 1-bit mes-
sage functions, while Fig. 5 shows the detection performance of
the CDS in (5) with real-valued observations. The two theoret-
ical upper bounds of detection errors are exp(—(Kd?)/(2U?))
and exp(—(Kd?)/(2W?)), respectively, where W = U + d is
the range of the sensor observations.

In Figs. 4 and 5, we can see that the DDS achieves the same
error probability as the CDS with about twice as many sen-
sors. This agrees well with the theoretical upper bounds for
the respective error exponents, which are related by a factor of
W?2/U? = 9/4 = 2.25. The experimental error probability
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curves are parallel to the theoretical error probability curves,
suggesting that the two are related by a bounded multiplicative
factor.

IV. UNIVERSAL DECENTRALIZED DETECTION IN THE
UNBOUNDED NOISE CASE

In this section, the DDS is extended to the case when sensor
noises have infinite range. In the extended scheme, the un-
bounded observations are first truncated to an appropriate finite
range; then, the DDS developed in the previous sections is
applied to these truncated observations.

Throughout this section, we assume that sensor noises have
finite variances upper bounded by o2. In other words, if we let

N, = {f(a:) : /_Zf(:v)da: —1, /OO 2f(@)dz = 0

—00

/w @ f(a)de = o?,  f(x) > 0}

—00

then fr(z) € N, forall1 < k < K.

A. Universal DDS

For any W > 0 and sensor observation xj,, we say xy, is the
truncation of zj, to the range [—W, W] if

W, ifx,>W
xZ:{xk, if —W<zp<W
W, ifa, < —W.

First, we have the following lemma.

Lemma 4.1: For any random variable x with finite second-
moment 2o, if 2* is the truncation of z to the range [—W, W],
where W > 0, then

« Qs
E() ~ E@) < 3o
Proof: Let g(x) denote the pdf of random variable z. Then

[E(z) — E(z")|
[ee] -w
= / (z — W)g(z) dz + / (z +W)g(z) dx
w —oo

= /Oo(a: - W)g(x)dx — /_W(—iv - W)g(z) dx

w —oo

< max{Ty (W), To(W)}
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where we let

It is easy to see that

Oy = /OO 22 f(x)dx > /ooazzf(:v) dx

— 00

Therefore, we obtain

(W) = [ o= W)y < 12

w AW
Similarly, we have T3 (W) < Q5 /4W . Combining these bounds
on 11 (W) and To(W) with (14) proves the lemma. d

By the assumption that fy(z) € N, forall 1 < k < K, it
follows that the second moment of any sensor observation x, is
at most o 4+ d? under either Hg or H;. Let us take

o+ d?

and truncate z, to [-W, W] to get 2} . By Lemma 4.1, we obtain

|E(a | Ho) — Eai | Ho)| < & < =5
|[E(zk [H1) = E(zr [ Ha)| <

Also, it follows from (1) that E(zy, |
d. Hence, we have

0) = —d,E(zx | H1) =

d
E(af | Ho) < —5, E(}|H) > (16)

N

Itiseasy toseethat {z7,z3, ..., 27 } are conditionally indepen-
dent and bounded in [-W, W]. This motivates us to construct a
DDS as follows (see Fig. 6).

* After collecting an observation x, each sensor first trun-
cates zy, to the range [, W] to obtain x}, where W is
specified in (15).

e Then, similar to the DDS described in Section III for the
case when observations are bounded, = is quantized to a
1-bit probabilistic message

W + xj,
2W

where ay, is defined in (8), and the fusion center performs
hypothesis testing according to the following rule:

my, = b(yy; ax), where y; = efo,1] a7n

1 & 1 & T 4
mg = m,:?Zb(yhak);E.
k=1 k=1 H4
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Fig. 6. Universal decentralized detection in unbounded noise case.

Let us now analyze the detection performance of the above 1-bit
DDS.

Theorem 4.2: Consider the decentralized detection problem
(1), where each sensor is restricted to send a 1-bit message to
the fusion center,, and the sensor noise variances are bounded by
o2. Then, the universal DDS specified above achieves an error
probability that decays exponentially at a rate

RK)> S (14 r
=3t 2 +1

where 7 = d?/o? is the SNR.
Proof: Similar to the derivation of (12), with (15)-(17),
we have

(18)

W +E(z}|Ho) 1 d?
E(b(y; = T TR o T
( (yk7 ak) |H0) oW =9 2(d2 + 0-2)
W +E(zi|Hi) _ 1 d?
E(b(vy;, ar = = > 4+ ——
( (ykvak> |H1) oW =9 + 2(d2 + 0-2)
Applying Proposition 3.2 with
1 d? 1 T
P a@+o2) T2 20+1)
_1 N d? _1 n T
=T+ " 27 20 +1)
and s = 1/2 and using an argument similar to the proof of

Theorem 3.4, we obtain that the detection error probability

P.(K) =P(mg > 1/2|Ho)P(Ho)
+ P(mK < 1/2|H1)P(H1)
< exp(—K¢p(1/2)).

Thus, we have

R(K) = ¢,(1/2)

1 r?

—In(1 .

2" < oy 1)

It follows that R > (1/2)In(1 + (r%)/(2r + 1)) when we let
K — oo. ]

B. Simulation

Again, we let d = 1. We choose sensor noises as Gaussian
random variables with standard deviation 0 = 1. By (15), the
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truncation range W = (0% + d?)/2d = 1. The detection error
upper bound for the DDS is P.(K) < exp(—K R(K)), where
R(K) is specified in (18). From Fig. 7, we see that the simula-
tion performance is better than the theoretical prediction. This
is because the theoretical upper bound is universal for any noise
with zero mean and variance bounded by o2, while the simula-
tion is for Gaussian noise only.

The best achievable error exponent in the case of Gaussian
noise is d> /202, which is the Chernoff distance between the two
noise pdfs under Hy and H;. Fig. 8 plots this Chernoff error
bound curve exp(—Kd?/20?) as well as the simulation results
for the CDS (5) with v = 0. The two simulation curves in Figs. 7
and 8 suggest that, with about twice as many sensors, the DDS
can achieve comparable performance as the optimal likelihood
ratio test.

V. CONCLUSION

In this paper, we have considered the problem of universal
decentralized detection of a deterministic signal in a bandwidth-
constrained sensor network, where each sensor is restricted to
send a 1-bit message to the fusion center. We have proposed a
universal DDS whose performance is compared to a classical
centralized detector for bounded sensor noises. We have also
extended this DDS to the unbounded noise case and analyzed
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the two universal DDSs using the theory of large deviations.
Simulation results agree well with the theoretical bounds on the
corresponding error exponents.

The proposed universal DDSs have several attractive proper-
ties: 1) isotropic: All sensors in the network use the same local
message decision rule, 2) bandwidth efficient: Each sensor only
needs to send a 1-bit message to the fusion center, 3) universal:
They work universally for any sensor noises with either bounded
noise range or finite noise variance, and 4) good performance:
The probability error of this universal detector decays exponen-
tially at a provably nondiminishing rate, which is lower bounded
either in terms of the noise range when nose is bounded or the
SNR for noise with unbounded range. These properties make
these DDSs attractive candidates for implementation in band-
width-constrained sensor networks.
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