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GROUPS AND SYMMETRIC SPACES

PIERRE BIELIAVSKY, PHILIPPE BONNEAU AND YOSHIAKI MAEDA

We define a class of symplectic Lie groups associated with solvable sym-
metric spaces. We give a universal strict deformation formula for every
proper action of such a group on a smooth manifold. We define a func-
tional space where performing an asymptotic expansion of the nonformal
deformed product in powers of the deformation parameter yields an as-
sociative formal star product on the symplectic Lie group at hand. The
cochains of the star product are explicitly given (without recursion) in the
two-dimensional case of the affine group ax + b. The latter differs from
the Giaquinto–Zhang construction, as shown by analyzing the invariance
groups. In a Hopf algebra context, the above formal star product is shown
to be a smash product and a compatible coproduct is constructed.

1. Introduction

The concept of universal deformation for abelian Lie group actions was introduced
by Rieffel [1993] in the operator algebraic context. Later, the notion of a univer-
sal deformation formula (UDF) within a Hopf algebraic context was defined by
Giaquinto and Zhang [1998] at the formal level. Here we study a similar notion
within the framework of (nonabelian) solvable Lie group actions. Our construction
of UDFs relies on both formal and nonformal aspects. The Lie groups considered
here are symplectic semidirect products of abelian Lie groups, natural general-
izations of the two-dimensional affine group ax + b. On each such group S, we
define a function space A ⊂ C∞(S) invariant under the left regular representation
and endowed with a one-parameter family of products {?θ }θ∈R in such a way that
each pair (A, ?θ ) is an associative (topological) algebra which the group S nat-
urally acts on by automorphisms. As observed in [Bieliavsky 2002; Bieliavsky
et al. 2003], such a data provides a UDF in the following way. Let M denote
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a smooth manifold which the group S acts on by diffeomorphisms. Denote by
α : S × C∞(M) → C∞(M) : (s, u) 7→ αs(u) the induced action at the level of
functions and set αx(u)(s) := αs(u)(x) for u ∈ C∞(M), x ∈ M and s ∈ S. Then,
the function space B :={u ∈C∞(M) such that αx(u)∈A for all x ∈ M} is naturally
endowed with a one-parameter family of associative products {?M

θ } defined by the
formula u ?M

θ v(x) := (αx(u) ?θ αx(v))(e) (e denotes the identity element in S).
The problem is of course to show that the space B is sufficiently rich, in the sense
that it contains at least the smooth compactly supported functions on M . This is
the case for the class of groups S considered here provided the action of S on M
is proper. Next, comes the question of defining an appropriate functional frame-
work allowing to pass from our nonformal setting to the formal framework of star
products [Bayen et al. 1978a; 1978b]. The above-mentioned nonformal universal
deformation formulae are of the oscillatory — or WKB — type. This means that
the product a?θ b is defined by an integral expression a?θ b =

∫
S×S

Kθ a⊗b where
the kernel Kθ has the oscillatory form Kθ = θ−maθ e(i/θ)S , where aθ and S belong
to C∞(S×S×S,R). In particular, for a and b smooth compactly supported, one
may perform a stationary phase expansion of a ?θ b in powers of θ yielding a
formal product on C∞(S)JθK. The property of associativity of this formal product
depends on functional properties of the nonformal algebras (A, ?θ ).

In Section 2, we prove that every exact symplectic semidirect product S of two
abelian groups always acts strictly transitively on an elementary solvable sym-
plectic symmetric space in the sense of [Bieliavsky 2002]. Conversely, we show
that when complex every such space gives rise to an exact symplectic semidirect
product of two abelian groups. This allows to identify in a S-equivariant manner
the manifolds underlying the group S and the corresponding symmetric space.

In Section 3, we observe that Section 2 together with the construction in [Bieli-
avsky 2002] of nonformal quantizations on elementary solvable symplectic sym-
metric spaces yield on every such semidirect product S a left-invariant nonformal
deformation quantization. As an immediate consequence, the latter gives rise to
strict deformation quantizations for the proper actions of S on smooth manifolds.

In Section 4, restricting to the case dim S = 2, we associate to our nonformal de-
formation an associative left-invariant formal star product on C∞(S)JθK for which
we give the cochains totally explicitly (without any recursion). This is essentially
done by defining a θ -independent functional space (denoted hereafter E) closed
under our one-parameter family of nonformal deformations {?θ } and by studying
the smoothness (in a suitable sense) of our algebras {(E, ?θ )}θ . For nonzero values
of θ , the space E plays an analogous role as the Schwartz space does in the case
of Weyl’s quantization. As it clearly appears, the restriction to the dimension two
is inessential.



UDFS, SYMPLECTIC LIE GROUPS AND SYMMETRIC SPACES 43

In Section 5, we show that the above mentioned formal star product can be
seen as a smash product of C∞(R)JθK and the Hopf algebra of polynomials on R.
From the latter, we deduce a compatible formal coproduct and a Hopf structure on
C∞(S)JθK.

2. Symplectic Lie algebras associated to a class of symmetric spaces

Definition 2.1. Following the terminology of [Lichnerowicz and Medina 1988],
a symplectic Lie algebra is a pair (s, ω) where s is a Lie algebra and ω ∈

∧2
(s?)

is a nondegenerate Chevalley two-cocycle with respect to the trivial representation
of s.

In this section, we associate symplectic Lie algebras to a class of (infinitesimal)
symplectic symmetric spaces.

Definition 2.2 [Bieliavsky et al. 1995; Bieliavsky 1995]. Let (g, σ ) be an invo-
lutive algebra, meaning that g is a finite dimensional real Lie algebra and σ is
an involutive automorphism of g. Let � be a skewsymmetric bilinear form on g.
Then the triple (g, σ,�) is called a symplectic triple if the following properties are
satisfied.

(i) Let g = k ⊕ p where k (resp. p) is the +1 (resp. −1) eigenspace of σ . Then
[p, p] = k and the representation of k on p, given by the adjoint action, is
faithful.

(ii) � is a Chevalley 2-cocycle for the trivial representation of g on R such that for
any X in k, i(X)�=0. Moreover, the restriction of� to p×p is nondegenerate.

Two such triples (gi , σi , �i ) (i =1, 2) are isomorphic if there exists a Lie algebra
isomorphism ψ : g1 → g2 such that ψ ◦ σ1 = σ2 ◦ψ and ψ∗�2 =�1.

Such a triple is called indecomposable if it cannot be expressed as a direct sum
of symplectic triples.

Definition 2.3. A symplectic triple t = (g, σ,�) is called holonomy isotropic, or
HI, if [k, p] is an isotropic subspace of (p, �).

Proposition 2.1 [Bieliavsky 1998]. A symplectic triple t = (g, σ,�) is holonomy
isotropic if and only if [g, g] is abelian.

Definition 2.4. Let t = (g, σ,�) be HI and consider the extension sequence

(1) 0 → [g, g] → g → a := g/[g, g] → 0.

The HI triple t is called split if this extension is split.

Lemma 2.2. Let t = (g, σ,�) be HI split. Set b = [g, g] and denote by ρ : a →

End(b) the splitting homomorphism. Then, realizing g as the semidirect product
g = b ×ρ a, one can assume that a is stable under σ .
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Proof. For a ∈ a⊂ g, write a = ak+ap according to the decomposition with respect
to σ . Then for all a, a′

∈ a, one has 0 = [a, a′
] = [ap, a′

p] + b b ∈ [k, p] since k

is abelian. This yields [ap, a′
p] = 0.

Therefore, for prp : g → p the projection parallel to k, the p-component prp(a)
is an abelian subalgebra of g supplementary to b. A dimension count then yields
the lemma. �

Lemma 2.3. Assume that t = (g, σ,�) is HI split, indecomposable and nonflat.
Set 0 → b → g → a → 0 as in Lemma 2.2. Then a and l = [k, p] are in duality.
In particular, there exists a k-invariant symplectic structure on p for which a is
Lagrangian.

Proof. Set V := l⊥ ∩ a and choose a subspace W of a in duality with l. Counting
dimensions yields a = W ⊕ V . Moreover, in the decomposition p = l ⊕ W ⊕ V ,
the matrix of � is of the form

[�] =

 0 I 0
−I 0 B

0 −B ′ A

 .
Since det[�] 6= 0, one gets det

(
−I

0
B
A

)
6= 0; hence det A 6= 0 and V is symplectic.

Now, �([k, V ], p) = �(V, l) = 0, hence [k, V ] = 0. Also [V, l] = [V, [k, p]] = 0
by Jacobi. Thus V is central, and therefore trivial by indecomposability. �

We now assume that (g1, σ 1) is the involutive Lie algebra underlying a split HI
symplectic triple which is indecomposable and nonflat. We fix �1 such that the
HI symplectic triple t1

= (g1, σ 1, �1) with 0 → b1
→ g1

→ a1
→ 0 has a1 and

l1 = [k1, p1
] dual Lagrangian subspaces. We then consider the associated exact

triple [Bieliavsky 1998], which we denote by t = (g, σ,�) (if t1 is already exact
we set t = t1). Since a1 is isotropic, the triple t is elementary solvable with

0 → b := [g, g] → g → a := a1
→ 0.

We now follow a procedure as in [Bieliavsky 2002]. The map ρ : a → End(b) is
injective (because � is nondegenerate), so we may identify a with its image : a =

ρ(a). Let 6 : End(b)→ End(b) be the automorphism induced by the conjugation
with respect to the involution σ |b ∈GL(b), i.e. 6= Ad(σ |b). The automorphism6

is involutive and preserves the canonical Levi decomposition End(b)= Z ⊕ sl(b),
where Z denotes the center of End(b). Writing the element a = ρ(a) ∈ a as
a = aZ + a0 with respect to this decomposition, one has 6(a) = aZ +6(a0) =

−a = −aZ − a0, because the endomorphisms a and σ |b anticommute. Hence
6(a0) = −2aZ − a0 and therefore aZ = 0. So, a actually lies in the semisimple
part sl(b). For any x ∈ sl(b), we denote by x = x S

+ x N , x S, x N
∈ sl(b), its

abstract Jordan–Chevalley decomposition. Observe that, for sl(b)= sl+ ⊕ sl−, the
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decomposition in (±1)-6- eigenspaces, one has a ⊂ sl−. Also, aN := {aN
}a∈a is

an abelian subalgebra in sl− commuting with a. Set aS := {aS
}a∈a.

Consider the complexification bc
:= b ⊗ C and C-linearly extend the endomor-

phisms {ρ(a)}a∈a and σ . Also consider the complex Lie algebra sl(bc)= sl(b)⊗C

and C-linearly extend to sl(bc) the involution 6.
Let

(2) bc
=:

⊕
α∈8

bα

be the weight space decomposition with respect to the action of aS . Note that for
all α, one has aN .bα ⊂ bα. Moreover, for all Xα ∈ bα and aS

∈ aS , one has

σ(aS.Xα)= α(aS)σ (Xα)= σaSσ−1σ Xα =6(aS).σ (Xα)= −aS.σ (Xα).

Therefore, −α ∈8 and σbα = b−α. Note in particular that σb0 = b0.

Lemma 2.4. If the triple t1 is assumed indecomposable and nonflat, then

b0 = 0.

Proof. Assume 0 ∈8. For all α ∈8, the subspace

Vα := bα ⊕ b−α

of bc is stable under σ . In particular, the complexified involutive Lie algebra
(gc, σ ), where gc

:= g⊗ C, can be expressed as gc
= ac

×ρ bc with

bc
=

⊕
α∈8+

bα ⊕ b0,

where the positive system of weights 8+ is chosen so that

8= {0} ∪8+
∪ (−8+)

(disjoint union). One therefore has the decomposition

Vα = kα ⊕ lα

into (±)-eigenspaces for σ . Moreover, since gc
= [gc, gc

] and [a, bα] ⊂ bα, one
has

lα = [a, kα] and kα = [a, lα],

for all α ∈ 8+
∪ {0}. This implies l0 = [aN , k0] and k0 = [aN , l0]. Hence l0 =

[aN , [aN , l0]] and an induction yields l0 = 0. �

Corollary 2.5. A nilpotent HI split symplectic symmetric space is flat.
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Proposition 2.6. Let t = (g = b ×ρ a, σ,� = δξ) be the exact triple associated
with a nonflat indecomposable split symplectic triple t1. Let8 be the set of weights
associated with the (complex) action of aS on bc. Fix a positive system 8+ and set

b+
:=

⊕
α∈8+

bα.

Then the pair (sc
:= ac

×ρ b+, �|sc) is a (complex) symplectic Lie algebra.

Proof. By the proof of Lemma 2.4, the restricted projection b+
p

→ lc mapping X
to 1

2(X − σ(X)) is a linear isomorphism. Moreover, for all X ∈ b+, a ∈ ac, one
has �(X, a)= ξ [p(c), a]. The proposition follows from the nondegeneracy of the
pairing ac

× lc → C. �

Definition 2.5. Let t be an HI split symplectic triple. Decompose t into a direct sum
of indecomposables and a flat factor. Proposition 2.6 then canonically associates
to t a (complex) symplectic Lie algebra sc(t), the complex symplectic Lie algebra
associated with t .

Definition 2.6. A symplectic Lie algebra (s, ω) is called elementary solvable if

(i) it is a split extension of abelian Lie algebras a and d:

(3) 0 −→ d −→ s −→ a −→ 0;

(ii) The cocycle ω is exact.

Conversely to Proposition 2.6, one has

Proposition 2.7. Every elementary solvable symplectic Lie algebra is associated
with a split HI symplectic symmetric space.

Proof. Denote by ρ : a → End(d) the splitting homomorphism and by ρ : a →

End(d) the opposite representation: ρ(a)(X) := −ρ(a)(X), X ∈ d. Set

b := d⊕ d

and let a act on b via ρ⊕ ρ. Define the involution σb of b by

σb(X, Y )= (Y, X), X, Y ∈ d.

Set
g := b ×ρ⊕ρ a

and define the involution σ of g as

σ := σb ⊕ (−ida).

One then observes that (g, σ ) is an involutive Lie algebra. We have k={(X, X)}X∈d

while p = {(X,−X)}X∈d.
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Let η ∈ d? be such that δη = ω and define ξ ∈ k? by

ξ(X, X) := η(X), X ∈ d.

Extending ξ to g by 0 on p, one defines a symplectic coboundary on g:

� := δξ.

The triple (g, σ,�) then defines the desired elementary solvable symplectic sym-
metric space. �

3. Strict deformation quantization for proper actions

We first recall that to an involutive Lie algebra, one associates a simply connected
symmetric space M in the usual way (see [Kobayashi and Nomizu 1969], for ex-
ample). When associated with a symplectic triple, the space M turns out to be
naturally endowed with an invariant symplectic structure. The space M is then
called a symplectic symmetric space. One then has

Theorem 3.1 [Bieliavsky 2002]. Let M be the simply connected symplectic sym-
metric space associated with an HI split symplectic triple. Assume M is strictly
geodesically convex with respect to its canonical affine connexion. There is a one-
parameter family {Kθ ∈ C∞(M × M × M,C)}θ∈R of smooth invariant three-point
kernels, and a corresponding family {Hθ ∈ C∞(M)}θ of invariant function spaces,
such that

(i) D(M) := C∞
c (M) ⊂ Hθ for all θ ;

(ii) the formula

(4) u ?θ v(x); =

∫
M×M

K (x, y, z) u(y) v(z) dy dz (u, v ∈ D(M))

extends to Hθ as an associative C-algebra product law denoted hereafter ?θ ,
and the automorphism group of M acts on the algebra (Hθ , ?θ ) by algebra
automorphisms;

(iii) for u, v ∈ D(M) and x ∈ M , one has the asymptotic expansion

(5) u ?θ v(x) ∼ uv(x) +
θ

2i
{ u , v }(x) + o(θ2),

where { , } denotes the invariant symplectic Poisson bracket on C∞(M).

We now pass to the announced nonformal UDFs. In this section, (s, �) denotes an
elementary solvable symplectic Lie algebra associated with a strictly geodesically
convex HI split symplectic symmetric space M . We denote by S the corresponding
simply connected symplectic Lie group, whose identity element we write as e.
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Now consider a proper smooth action of S on a manifold X :

S × X → X : (g, x) 7→ τg(x).

And denote by
S × C∞(X)→ C∞(X) : (g, a) 7→ αg(a)

the corresponding left action on functions on X . At last, for all a ∈ C∞(X) and
x ∈ X , set

αx(a) : S → C : g 7→ αg(a)(x) := τ ?g−1(a).

Theorem 3.2. Define the space

Bθ ; = {a ∈ C∞(X) such that αx(a) ∈ Hθ for all x ∈ X}.

Then

(i) D(X) := C∞
c (X) ⊂ Bθ for all θ , and

(ii) the formula
a ?X

θ b (x) :=
(
αx(a) ?θ αx(b)

)
(e)

defines an associative C-algebra product law on the function space Bθ .

Proof. Item (i) follows from the properness of the action and item (i) of the preced-
ing theorem. Item (ii) follows from [Bieliavsky 2002, p. 282, item (ii)]; see also
[Bieliavsky et al. 2003]. �

For more general actions, we shall remain at the formal level. We shall prove in the
next section that the asymptotic expansion (5) actually defines an invariant formal
star product on M . For simplicity, we shall treat only the case dim S = 2 but as it
will appear this is not essential.

4. Formal universal deformation formulae

We present the ax + b group as S = R2
= {(a, `)} with multiplication law

(a, `).(a′, `′) := (a + a′, e−2a′

`+ `′).

The Lie algebra s of S is then realized as s = span{H, E} with

(a, 0) =: exp(aH) and (0, `) =: exp(`E).

For X ∈ g, we denote by X̃ the corresponding left-invariant vector field on S.
We denote by S the Schwartz space on S = {(a, `)}. For u ∈ S, we denote by

F(u) the partial Fourier transform

F(u)(a, ξ) :=: û(a, ξ) :=:

∫
e−iξ` u(a, `)d`.
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We set S̃ := {(a, ξ)} and we denote by S̃ the space of Schwartz functions in these
variables. Thus, one has the isomorphism F : S → S̃. For θ ∈ R, we define the
following diffeomorphism φθ : S̃ → S̃ :

φθ (a, ξ) :=

{
(a, 1

2θ sinh(2θξ)) for θ 6= 0,

(a, ξ) for θ = 0.

Setting τθ := F−1
◦(φ−1

θ )? ◦F, we formally define the following distribution space
on S:

Eθ := τθ (S).

Lemma 4.1 [Bieliavsky 2002]. For all θ ∈ R,

S ⊂ Eθ ⊂ S′
∩ C∞(S);

where S′ denotes the space of tempered distributions in variables (a, `).

Lemma 4.2.

(φ−1
θ )?(S̃)=

{
(φ−1

1/2)
?(S̃) for θ 6= 0,

S̃ for θ = 0.

Proof. First observe that f ∈ (φ−1
θ )?S̃ if and only if for all M, N ∈ N one

has
∫
ξM∂N

ξ (φ
?
θ f ) dξ < ∞. Let us restrict ourself to the case N = 1, the gen-

eral case being entirely similar. One has ∂ξ (φ?θ f )(ξ) = cosh(2θξ)φ?θ (∂η f ) =

φ?θ
(√

1 + (2θη)2∂η f
)
. Therefore, the condition becomes∫

arcsinh(2θη)∂η f (η) dη <∞.

Since the functions arcsinh(2θη)∂η f (η) and arcsinh η ∂η f (η) have, up to a θ -
dependant multiple, the same asymptotic behavior for large |η|, the finiteness of
the above integral is equivalent to the finiteness of

∫
arcsinh η ∂η f (η) dη. �

In particular, for all θ ∈ R, one has

(φ−1
θ )?(S̃)⊂ (φ−1

1/2)
?(S̃).

The above lemma leads us to define the following spaces:

Ê := (φ−1
1/2)

?(S̃) and E := F−1(Ê).

We then observe the following obvious fact.

Lemma 4.3. Denote by B∞(S̃) the space of smooth functions w ∈ C∞(S̃) such
that for all multi-index α, Dαw ∈ C0(S̃). Then,

Ê ⊂ B∞(S̃) and ∂2
ξ (Ê)⊂ L1(S̃).
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Lemma 4.4. Let u ∈ S. Then,

(i) there exists a dense open subset � ⊂ G where, for all θ ∈ R, the tempered
distribution τθ (u) coincides with a smooth function, τ loc

θ (u) ∈ C∞(�), in the
sense that for all ψ ∈ D(�), <<τθ (u), ψ >> = <<τ

loc
θ (u), ψ >> .

(ii) The function R → C∞(�) : θ 7→ τ loc
θ (u) is smooth.

Proof. Abel’s criterion implies that for ` 6= 0, the improper integral τ loc
θ (u)(a, `) :=

1
2π

∫
eiξ`(φ−1

θ )?û(ξ) dξ converges, since, by Lemma 4.3, (φ−1
θ )?û ∈ C0(S̃). The

function τ loc
θ (u) is smooth in (θ, x) ∈ R ×� where � := {(a, `) | ` 6= 0}. Indeed,

observing that eiξ`
=

1
i`∂ξe

iξ`, one obtains, using Lemma 4.3:

τ loc
θ (u)(a, `)=

i
2π`

lim
r→∞

∫ r

−r
eiξ`∂ξ (φ

−1
θ )?û(ξ) dξ

=
i

2π`

∫
eiξ`∂ξ (φ

−1
θ )?û(ξ) dξ.

Hence, τ loc
θ (u)(a, `) =

−1
2π`2

∫
eiξ`∂2

ξ (φ
−1
θ )?û(ξ) dξ , which is an existing integral.

Now, by Lemma 4.2, one observes that setting ûθ :=φ?1/2(φ
−1
θ )?û defines a smooth

family of Schwartz functions {ûθ } ⊂ S̃ such that (φ−1
θ )?û = (φ−1

1/2)
?ûθ . Therefore,

one has
τ loc
θ (u)(a, `)=

−1
2π`2

∫
eiξ`∂2

ξ (φ
−1
1/2)

?ûθ (ξ) dξ,

whose integrand is bounded by the integrable function
∣∣∂2
ξ (φ

−1
1/2)

?ûθ0

∣∣ for θ∈[−ε,ε].
One proceeds similarly for derivatives. It follows that τ loc

θ (u) defines an element
of C∞(R,C∞(�)) [Trèves 1967, Theorem 40.1, p. 415]. Of course, <<τθ (u), ψ >> =

<<τ
loc
θ (u), ψ >> for all ψ ∈ D(�). �

Proposition 4.5 [Bieliavsky 2002]. (i) The map Tθ := F−1
◦φ?θ ◦F establishes a

linear isomorphism
Tθ : Eθ → S.

(ii) Denote by ?0
θ Weyl’s product on S. The formula

a ?θ b := τθ (Tθ a ?0
θ Tθ b); a, b ∈ Eθ

defines an associative product ?θ on Eθ .

(iii) At the level of smooth compactly supported u, v ∈ C∞
c (S) and for all x0 ∈�,

one has the oscillatory integral formula

u ?θ v(x0)=

1
4π2θ2

∫
G×G

cosh 2(a1 −a2) exp
i +�

0,1,2
`2 sinh 2(a0 −a1)

2θ
u(x1)v(x2)dx1 dx2,

where x j = (a j , ` j ), j = 0, 1, 2.
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(iv) The three-point kernel

Kθ (x0, x1, x2) :=
1

4π2θ2 cosh(2(a1 −a2)) e
i

2θ +�
0,1,2

sinh(2(a0 −a1))`2

is left-invariant with respect to the diagonal action of S on G × G × G.

Remark 4.1. The formula in (iii) holds at every point x0 ∈ G. Indeed, by left-
invariance of the kernel, one has for every choice of y ∈�: u?θ v(x0)= (L?x0 y−1u?θ
L?x0 y−1v)(y).

We set, for integral n ≥ 1,

β(2n + 1) :=
1
2
(−1)n

4n

1
2n + 1

(2n)!
(n!)2

=
(−1)n

4n

1
2n + 1

(
2n − 1
n − 1

)
,

and further β(1) :=
1
2 and β(2n) := 0 for n ≥ 0.

Definition 4.1. Let k and N be positive integers such that k ≤ N . We set

Bk
N :=

∑
k1, . . . , kN

k = k1 + · · ·+ kN
N = 1k1 + 2k2 + · · · + NkN

N !

k1!k2! · · · kN !
β(1)k1β(2)k2 · · ·β(N )kN ,

with the convention that β(2n)0 := 1 and B0
0 := 1.

Lemma 4.6. Let u ∈ C∞(S) and N ∈ N0. Then

dN

dθ N |ξ=0

(
R?
( 1

2 arcsinh ξ,0)u
)

=

N∑
k=1

Bk
N H̃ k .u,

where R denotes right multiplication on S.

Proof. We shall use Faà di Bruno’s formula [1857], which computes the higher
order derivatives of composed functions:

(6)
dn

dξ n [R(b(ξ))]

=

∑ n!

k1!k2! · · · kn!

(
b(1)(ξ)

1!

)k1 (b(2)(ξ)
2!

)k2

· · ·

(
b(n)(ξ)

n!

)kn

R(k)(b(ξ)),

with k := k1+· · ·+kn and where (k1, . . . , kn) runs over all partitions of n (solutions
of the equation n = 1k1 + 2k2 +· · ·+ nkn). We now observe the Taylor expansion

1
2 arcsinh ξ=

1
2ξ +

∑
n≥1

(−1)n

4n

1
2n+1

(2n−1
n−1

)
ξ 2n+1

=

∑
n≥0

(−1)n

2 · 4n

1
2n+1

(2n)!
(n!)2

ξ 2n+1.

Plugging b(ξ) := 1
2 arcsinh ξ and R(a) := R?(a,0)u(x) into (6) at ξ = 0 then yields

the lemma. �
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Lemma 4.7. Let γ and µ be maps from R × S to C∞(S) such that

(i) for every u ∈ S the functions γ ( . , u) and µ( . , u) belong to C∞(R,C∞(S));

(ii) for all θ the partial functions γ (θ, . ) and µ(θ, . ) are C-linear.

Assume the function
θ 7→ φ(θ, u) := µ(θ, γ (θ, u))

to be an element of C∞(R,C∞(S)) as well. Denoting by

γ (θ, u)∼
∑
m
θm0m(u), µ(θ, u)∼

∑
m
θm Mm(u), φ(θ, u)∼

∑
m
θm8m(u)

the corresponding Taylor expansions, one has

8m(u) =

∑
m=n+k

Mk(0n(u)).

Proof. Let RµN (u) be the rest at order N in the Taylor expansion of µ [Bourbaki
1967]. Then,

[θ 7→ RµN (γ (θ, u))] ∈ o(θ N ).

Indeed, RγN (u)= θ
N ρN (u) where ρN (u) is continuous in a neighborhood of θ = 0.

Therefore θ−(N+1)RµN (γ (θ, u))=
∑N+1

k θ k−N−1 RµN (0k(u))+θRµN (ρN+1(u)). The
first N + 2 terms of this sum tend to 0 with θ . In the last term, one observes that
RµN (ρN+1(u)) is continuous and hence bounded for θ ∈ [−ε, ε], which proves the
assertion and with it the lemma. �

Of course an analogous statement holds for bilinear maps.

Lemma 4.8. For every smooth compactly supported u, v ∈ C∞
c (S), the functions

of θ given by Tθ (u), u ?0
θ v and u ?θ v belong to C∞(R , C∞(S)).

Proof. For every x0 ∈ G,

Tθ (u)(x0)=
1

2π

∫
ei`0ξφ?θ û(a0, ξ) dξ.

The integrand ei`0ξφ?θ û(a0, ξ) is smooth in the variables (a0, `0, θ) as well as every
of its partial derivatives. Moreover, each of these functions is bounded by an inte-
grable function since φ?θ û is Schwartz. Therefore the function (x0, θ) 7→ Tθ (u)(x0)

is smooth.
The argument is similar for the other functions, simpler in fact since the inte-

grand is in both cases compactly supported. �

Theorem 4.9. For every smooth compactly supported u, v ∈ C∞
c (S) and for every

x ∈ G, the function [R → C : θ 7→ u?θ v(x)] is smooth. Its Taylor series at 0 defines
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an associative formal star product ?ν on C∞(S)JνK whose explicit expression is

(7) u ?ν v := uv+

∞∑
n=1

νn

n!
(−2i)n

n∑
k=0

(−1)k+1
(

n
k

)

×

(( k∑
m=0

Bm
k H̃ m Ẽn−k .v

)(n−k∑
m=0

Bm
n−k H̃ m Ẽk .u

)

− 2
( k∑

r=0

(
k
r

)
(k − r)β(k − r)

r∑
p=0

B p
r H̃ p Ẽn−k .v

)

×

(n−k∑
s=0

(
n−k

s

)
(n−k−s)β(n−k−s)

s∑
q=0

Bq
s H̃q Ẽk .u

))
.

Proof. Using left invariance one gets

u ?θ v(x0)=

∫
Kθ (0, x1, x2)R?x1

u|x0 R?x2
v|x0 dx1 dx2.

Making the change of variables ξi := sinh(2ai ), ηi :=
1

2θ
`i yields

u ?θ v(x0)=
1

4π2

∫
(1 − γ (ξ1)γ (ξ2)) e−i(ξ1η2−ξ2η1)

× r?(ξ1,2θη1)
u|x0 r?(ξ2,2θη2)

v|x0 dξ1 dξ2 dη1 dη2,

where γ (ξ) := ξ/
√

1 + ξ 2 and r?(ξ,2θη)u|x := u
(
a +

1
2 arcsinh ξ, e− arcsinh ξ`+2θη

)
.

Now observe the asymptotic expansion (θ0 6= 0)

u ?θ v(x0)=

N∑
n=0

(θ − θ0)
n

n!

1
4π2

∫
(1 − γ (ξ1)γ (ξ2)) e−i(ξ1η2−ξ2η1)

×
dn

dθn

[
r?(ξ1,2θη1)

u|x0 r?(ξ2,2θη2)
v|x0

]
|θ=θ0 dξ1 dξ2 dη1 dη2

+o((θ − θ0)
N ).

One has

dn

dθn

[
r?(ξ1,2θη1)

u|x0 r?(ξ2,2θη2)
v|x0

]
|θ=θ0

=

n∑
k=0

(
n
k

)
dk

dθ k

[
r?(ξ1,2θη1)

u|x0

]
|θ=θ0

dn−k

dθn−k

[
r?(ξ2,2θη2)

v|x0

]
|θ=θ0

= 2n
n∑

k=0

(
n
k

)
ηk

1η
n−k
2 r?(ξ1,2θ0η1)

(
Ẽk .u

)
|x0 r?(ξ2,2θ0η2)

(
Ẽn−k .v

)
|x0,
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where exp(aH) := (a, 0) and exp(`E) := (0, `). Therefore, an integration by parts
yields (for n ≥ 1)∫ (

1−γ (ξ1)γ (ξ2)
)
e−i(ξ1η2−ξ2η1)

dn

dθn

[
r?(ξ1,2θη1)

u|x0 r?(ξ2,2θη2)
v|x0

]
|θ=θ0 dξ1 dξ2 dη1 dη2

= (−2i)n
n∑

k=0

(−1)k
(

n
k

)(∫
e−i(ξ1η2−ξ2η1)

×

(
∂k
ξ2

r?(ξ2,2θ0η2)

(
Ẽn−k .v

)
|x0∂

n−k
ξ1

r?(ξ1,2θ0η1)

(
Ẽk .u

)
|x0

− ∂k
ξ2

[
γ (ξ2) r?(ξ2,2θ0η2)

(
Ẽn−k .v

)
|x0

]
∂n−k
ξ1

[
γ (ξ1) r?(ξ1,2θ0η1)

(
Ẽk .u

)
|x0

]))
.

By observing that limη→0 ∂ξr?(ξ,η)u|x = ∂ξr?(ξ,0)u|x , one gets

lim
θ→0

∫
γ (ξ1)γ (ξ2) e−i(ξ1η2−ξ2η1)

dn

dθn

[
r?(ξ1,2θη1)

u|x0 r?(ξ2,2θη2)
v|x0

]
dξ1 dξ2 dη1 dη2

= 4π2(−2i)n
n∑

k=0

(−1)k+1
(

n
k

)
∂k
ξ

[
γ (ξ) r?(ξ,0)

(
Ẽn−k .v

)
|x0

]
|ξ=0

× ∂n−k
ξ

[
γ (ξ) r?(ξ,0)

(
Ẽk .u

)
|x0

]
|ξ=0,

which, by using Lemma 4.6 and the expansion

γ (ξ)= ξ +

∑
m≥1

(−1)m

4m

m + 1
m

(
2m

m + 1

)
ξ 2m+1

=

∑
m≥0

(−1)m

4m

(2m)!
(m!)2

ξ 2m+1,

is seen to be

4π2(−2i)n
n∑

k=0

(−1)k+1
(

n
k

)(( k∑
r=0

(
k
r

)
γ (k−r)(0)

r∑
p=0

B p
r
(
H̃ p Ẽn−k .v

) ∣∣
x0

)

×

( n−k∑
s=0

(
n−k

s

)
γ (n−k−s)(0)

s∑
q=0

Bq
s (H̃

q Ẽk .u)
∣∣
x0

))
.

This leads to the announced asymptotic expansion where ν is the formal parameter
corresponding to θ .

Regarding associativity, one first observes that for all x0 ∈�, one has the coin-
cidence: u ?θ v(x0)= τ loc

θ (Tθu ?0
θ Tθv)(x0). Note that, independently, the left hand

side is smooth in θ by virtue of Lemma 4.8, while the right hand side is smooth
as well by virtue of Lemmas 4.4, 4.7 and 4.8. Lemma 4.7 therefore identifies the
above-computed Taylor coefficients with the cochains of the star product obtained
by intertwining Moyal’s star product with a formal equivalence. �
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Remark 4.2. Our construction differs radically from the (formal) universal de-
formation formula of Giaquinto and Zhang [1998]: It was shown in [Bieliavsky
et al. 2005b] that the (maximal) invariance diffeomorphism group of Giaquinto–
Zhang star product on ax + b is isomorphic to Sp(1,R)× R2, while in our case
the corresponding maximal invariance group is the automorphism group of the un-
derlying symplectic symmetric space — in the two-dimensional case, the solvable
group SO(1, 1)× R2.

5. Hopf structure

The formal star product ?ν given by formula (7) can be described as an example
of the following construction [Bieliavsky et al. 2005a].

Definition 5.1 [Bonneau and Sternheimer 2005]. Let B be a cocommutative bial-
gebra and C a B-bimodule algebra. The L-R-smash product C \ B is the algebra
constructed on the vector space C ⊗ B where the multiplication is defined by

(8) ( f ⊗ a) ? (g ⊗ b)=

∑
(a)(b)

( f ↼ b(1))(a(1)⇀ g)⊗ a(2)b(2)

for f, g ∈ C and a, b ∈ B.

On the first hand, the above construction provides deformation quantizations of
C∞(G)⊗ Pol(G∗) ⊂ C∞(T ∗G), where G = lie(G), as explained in [Bieliavsky
et al. 2005a]. For G = Rn it reproduces the Moyal star product. On the other hand
we have seen that, for u, v ∈ C∞(R2), u ?ν v = T −1

ν (Tνu ?0
ν Tνv) where ?0

ν denotes
the Moyal star product on C∞(R2). Restricting to C∞(R)⊗ Pol(R) ⊂ C∞(R2),

the formal equivalence Tν is viewed as id ⊗ Sν .

Proposition 5.1. The formal star product ?ν given by (7) coincides with the product
underlying the L-R- smash product C∞(R)JνK \ Pol(R) with x ⇀ f = f ↼ x =
1
2 S−1
ν ( d

dx (Sν f )) and we consider Pol(R) endowed with its the usual Hopf structure.

Proof. See [Bieliavsky et al. 2005a]: the main fact is that C∞(R)JνK \ Pol(R)
carries the Moyal product for x ⇀ f = f ↼ x =

1
2

d
dx ( f ). �

F. Panaite and F. Van Oystaeyen [2005] have shown that if B be a cocommutative
Hopf algebra and C a B-module algebra, the map8 :C\B −→C]B with8( f \a)=∑

(a) f ↼ a(1)]a(2) is an isomorphism of algebras, the multiplication on the smash
product C]B being given by ( f ⊗ a) ? (g ⊗ b) =

∑
(a) f (a(1) • g)⊗ a(2)b with

a • g = a(1)⇀ g ↼ J (a(2)), J the antipode of B. One therefore has

Proposition 5.2. The star product ?ν can also be seen as a classical smash product
in the sense of Sweedler [1968].

At last, it is shown in [Bieliavsky et al. 2005a] that, under conditions, if C is a
Hopf algebra then so is C \ B. Seing C∞(R)JνK as C∞(R)⊗RJνK and considering
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the natural Hopf structure on the tensor product of the Hopf algebras C∞(R) and
RJνK we show in [Bieliavsky et al. 2005a] that the needed conditions are fullfilled.
Hence:

Theorem 5.3. There exists a coproduct 1ν , a counit εν and an antipode Jν , com-
patible with ?ν , such that

(
C∞(R)JνK \Pol(R), ?ν, 1ν, εν, Jν

)
is a Hopf algebra.

Replacing R by Rn these structural results still hold on the asymptotic expansion
of the product described in formula (4).
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