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Abstract

Code-switching is a phenomenon of mixing

grammatical structures of two or more lan-

guages under varied social constraints. The

code-switching data differ so radically from

the benchmark corpora used in NLP com-

munity that the application of standard tech-

nologies to these data degrades their perfor-

mance sharply. Unlike standard corpora, these

data often need to go through additional pro-

cesses such as language identification, nor-

malization and/or back-transliteration for their

efficient processing. In this paper, we in-

vestigate these indispensable processes and

other problems associated with syntactic pars-

ing of code-switching data and propose meth-

ods to mitigate their effects. In particular, we

study dependency parsing of code-switching

data of Hindi and English multilingual speak-

ers from Twitter. We present a treebank

of Hindi-English code-switching tweets under

Universal Dependencies scheme and propose

a neural stacking model for parsing that effi-

ciently leverages part-of-speech tag and syn-

tactic tree annotations in the code-switching

treebank and the preexisting Hindi and En-

glish treebanks. We also present normaliza-

tion and back-transliteration models with a

decoding process tailored for code-switching

data. Results show that our neural stacking

parser is 1.5% LAS points better than the aug-

mented parsing model and our decoding pro-

cess improves results by 3.8% LAS points

over the first-best normalization and/or back-

transliteration.

1 Introduction

Code-switching1 (henceforth CS) is the juxtaposi-

tion, within the same speech utterance, of gram-

matical units such as words, phrases, and clauses

1Code-mixing is another term in the linguistics literature
used interchangeably with code-switching. Both terms are of-
ten used to refer to the same or similar phenomenon of mixed
language use.

belonging to two or more different languages

(Gumperz, 1982). The phenomenon is prevalent in

multilingual societies where speakers share more

than one language and is often prompted by mul-

tiple social factors (Myers-Scotton, 1995). More-

over, code-switching is mostly prominent in col-

loquial language use in daily conversations, both

online and offline.

Most of the benchmark corpora used in NLP for

training and evaluation are based on edited mono-

lingual texts which strictly adhere to the norms of

a language related, for example, to orthography,

morphology, and syntax. Social media data in gen-

eral and CS data, in particular, deviate from these

norms implicitly set forth by the choice of corpora

used in the community. This is the reason why the

current technologies often perform miserably on

social media data, be it monolingual or mixed lan-

guage data (Solorio and Liu, 2008b; Vyas et al.,

2014; Çetinoğlu et al., 2016; Gimpel et al., 2011;

Owoputi et al., 2013; Kong et al., 2014). CS data

offers additional challenges over the monolingual

social media data as the phenomenon of code-

switching transforms the data in many ways, for

example, by creating new lexical forms and syn-

tactic structures by mixing morphology and syn-

tax of two languages making it much more diverse

than any monolingual corpora (Çetinoğlu et al.,

2016). As the current computational models fail

to cater to the complexities of CS data, there is of-

ten a need for dedicated techniques tailored to its

specific characteristics.

Given the peculiar nature of CS data, it has been

widely studied in linguistics literature (Poplack,

1980; Gumperz, 1982; Myers-Scotton, 1995), and

more recently, there has been a surge in studies

concerning CS data in NLP as well (Solorio and

Liu, 2008a,a; Vyas et al., 2014; Sharma et al.,

2016; Rudra et al., 2016; Joshi et al., 2016; Bhat

et al., 2017; Chandu et al., 2017; Rijhwani et al.,
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2017; Guzmán et al., 2017, and others). Be-

sides the individual computational works, a series

of shared-tasks and workshops on preprocessing

and shallow syntactic analysis of CS data have

also been conducted at multiple venues such as

Empirical Methods in NLP (EMNLP 2014 and

2016), International Conference on NLP (ICON

2015 and 2016) and Forum for Information Re-

trieval Evaluation (FIRE 2015 and 2016). Most

of these works have attempted to address pre-

liminary tasks such as language identification,

normalization and/or back-transliteration as these

data often need to go through these additional

processes for their efficient processing. In this

paper, we investigate these indispensable pro-

cesses and other problems associated with syn-

tactic parsing of code-switching data and pro-

pose methods to mitigate their effects. In par-

ticular, we study dependency parsing of Hindi-

English code-switching data of multilingual In-

dian speakers from Twitter. Hindi-English code-

switching presents an interesting scenario for the

parsing community. Mixing among typologically

diverse languages will intensify structural varia-

tions which will make parsing more challenging.

For example, there will be many sentences con-

taining: (1) both SOV and SVO word orders2,

(2) both head-initial and head-final genitives, (3)

both prepositional and postpositional phrases, etc.

More importantly, none among the Hindi and En-

glish treebanks would provide any training in-

stance for these mixed structures within individual

sentences. In this paper, we present the first code-

switching treebank that provides syntactic anno-

tations required for parsing mixed-grammar syn-

tactic structures. Moreover, we present a parsing

pipeline designed explicitly for Hindi-English CS

data. The pipeline comprises of several modules

such as a language identification system, a back-

transliteration system, and a dependency parser.

The gist of these modules and our overall research

contributions are listed as follows:

• back-transliteration and normalization mod-

els based on encoder-decoder frameworks

with sentence decoding tailored for code-

switching data;

• a dependency treebank of Hindi-English

code-switching tweets under Universal De-

pendencies scheme; and

2Order of Subject, Object and Verb in transitive sentences.

• a neural parsing model which learns POS tag-

ging and parsing jointly and also incorporates

knowledge from the monolingual treebanks

using neural stacking.

2 Preliminary Tasks

As preliminary steps before parsing of CS data, we

need to identify the language of tokens and nor-

malize and/or back-transliterate them to enhance

the parsing performance. These steps are indis-

pensable for processing CS data and without them

the performance drops drastically as we will see

in Results Section. We need normalization of

non-standard word forms and back-transliteration

of Romanized Hindi words for addressing out-of-

vocabulary problem, and lexical and syntactic am-

biguity introduced due to contracted word forms.

As we will train separate normalization and back-

transliteration models for Hindi and English, we

need language identification for selecting which

model to use for inference for each word form sep-

arately. Moreover, we also need language infor-

mation for decoding best word sequences.

2.1 Language Identification

For language identification task, we train a mul-

tilayer perceptron (MLP) stacked on top of a re-

current bidirectional LSTM (Bi-LSTM) network

as shown in Figure 1.
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Figure 1: Language identification network

We represent each token by a concatenated vec-

tor of its English embedding, back-transliterated

Hindi embedding, character Bi-LSTM embedding

and flag embedding (English dictionary flag and

word length flag with length bins of 0-3, 4-6, 7-10,

and 10-all). These concatenated vectors are passed

to a Bi-LSTM network to generate a sequence of
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hidden representations which encode the contex-

tual information spread across the sentence. Fi-

nally, output layer uses the feed-forward neural

network with a softmax function for a probabil-

ity distribution over the language tags. We train

the network on our CS training set concatenated

with the data set provided in ICON 20153 shared

task (728 Facebook comments) on language iden-

tification and evaluate it on the datasets from Bhat

et al. (2017). We achieved the state-of-the-art per-

formance on both development and test sets (Bhat

et al., 2017). The results are shown in Table 1.

Label Precision Recall F1-Score count

hi 97.76 98.09 97.92 1465

en 96.87 98.83 97.84 1283

ne 94.33 79.17 86.08 168

acro 92.00 76.67 83.64 30

univ 99.71 1.00 99.86 349

average 97.39 97.42 97.36 3295

(Bhat et al., 2017) - 96.10 - -

Table 1: Language Identification results on CS test set.

2.2 Normalization and Back-transliteration

We learn two separate but similar character-level

models for normalization-cum-transliteration of

noisy Romanized Hindi words and normaliza-

tion of noisy English words. We treat both nor-

malization and back-transliteration problems as

a general sequence to sequence learning prob-

lem. In general, our goal is to learn a mapping

for non-standard English and Romanized Hindi

word forms to standard forms in their respective

scripts. In case of Hindi, we address the problem

of normalization and back-transliteration of Ro-

manized Hindi words using a single model. We

use the attention-based encoder-decoder model

of Luong (Luong et al., 2015) with global at-

tention for learning. For Hindi, we train the

model on the transliteration pairs (87,520) from

the Libindic transliteration project4 and Brahmi-

Net (Kunchukuttan et al., 2015) which are fur-

ther augmented with noisy transliteration pairs

(1,75,668) for normalization. Similarly, for nor-

malization of noisy English words, we train the

model on noisy word forms (4,29,715) syntheti-

cally generated from the English vocabulary. We

use simple rules such as dropping non-initial vow-

els and replacing consonants based on their phono-

logical proximity to generate synthetic data for

3http://ltrc.iiit.ac.in/icon2015/
4https://github.com/libindic/indic-trans

normalization. Figure 2 shows some of the noisy

forms generated from standard word forms using

simple and finite rules which include vowel elision

(please → pls), interchanging similar conso-

nants and vowels (cousin → couzin), replac-

ing consonant or vowel clusters with a single let-

ter (Twitter → Twiter), etc. From here on-

wards, we will refer to both normalization and

back-transliteration as normalization.
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Figure 2: Synthetic normalization pairs generated

for a sample of English words using hand crafted

rules.

At inference time, our normalization models

will predict the most likely word form for each in-

put word. However, the single-best output from

the model may not always be the best option con-

sidering an overall sentential context. Contracted

word forms in social media content are quite of-

ten ambiguous and can represent different stan-

dard word forms. For example, noisy form ‘pt’

can expand to different standard word forms such

as ‘put’, ‘pit’, ‘pat’, ‘pot’ and ‘pet’. The

choice of word selection will solely depend on

the sentential context. To select contextually rel-

evant forms, we use exact search over n-best nor-

malizations from the respective models extracted

using beam-search decoding. The best word se-

quence is selected using the Viterbi decoding over

bn word sequences scored by a trigram language

model. b is the size of beam-width and n is the

sentence length. The language models are trained

on the monolingual data of Hindi and English us-

ing KenLM toolkit (Heafield et al., 2013). For

each word, we extract five best normalizations

(b=5). Decoding the best word sequence is a non-

trivial problem for CS data due to lack of normal-

ized and back-transliterated CS data for training a

language model. One obvious solution is to apply

decoding on individual language fragments in a

CS sentence (Dutta et al., 2015). One major prob-
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Figure 3: The figure shows a 3-step decoding process for the sentence “Yar cn anyone tel me k twitr account bnd

ksy krty hn plz” (Friend can anyone tell me how to close twitter account please).

lem with this approach is that the language models

used for scoring are trained on complete sentences

but are applied on sentence fragments. Scoring in-

dividual CS fragments might often lead to wrong

word selection due to incomplete context, particu-

larly at fragment peripheries. We solve this prob-

lem by using a 3-step decoding process that works

on two separate versions of a CS sentence, one

in Hindi, and one in English. In the first step,

we replace first-best back-transliterated forms of

Hindi words by their translation equivalents us-

ing a Hindi-English bilingual lexicon.5 An exact

search is used over the top ‘5’ normalizations of

English words, the translation equivalents of Hindi

words and the actual word itself. In the second

step, we decode best word sequence over Hindi

version of the sentence by replacing best English

word forms decoded from the first step by their

translation equivalents. An exact search is used

over the top ‘5’ normalizations of Hindi words, the

dictionary equivalents of decoded English words

and the original words. In the final step, English

and Hindi words are selected from their respective

decoded sequences using the predicted language

tags from the language identification system. Note

that the bilingual mappings are only used to aid

the decoding process by making the CS sentences

lexically monolingual so that the monolingual lan-

guage models could be used for scoring. They are

not used in the final decoded output. The overall

decoding process is shown in Figure 3.

Both of our normalization and back-

transliteration systems are evaluated on the

5An off-the-shelf MT system would have been appropri-
ate for this task, however, we would first need to adapt it to
CS data which in itself is a non-trivial task.

evaluation set of Bhat et al. (2017). Results

of our systems are reported in Table 3 with a

comparison of accuracies based on the nature

of decoding used. The results clearly show the

significance of our 3-step decoding over first-best

and fragment-wise decoding.

Data-set
Hindi English

Tokens FB FW 3-step Tokens FB FW 3-step

Dev 1549 82.82 87.28 90.01 34 82.35 88.23 88.23

Test 1465 83.54 88.19 90.64 28 71.42 75.21 81.71

Table 2: Normalization accuracy based on the number

of noisy tokens in the evaluation set. FB = First Best,

and FW = Fragment Wise

3 Universal Dependencies for

Hindi-English

Recently Bhat et al. (2017) provided a CS dataset

for the evaluation of their parsing models which

they trained on the Hindi and English Univer-

sal Dependency (UD) treebanks. We extend this

dataset by annotating 1,448 more sentences. Fol-

lowing Bhat et al. (2017) we first sampled CS

data from a large set of tweets of Indian lan-

guage users that we crawled from Twitter using

Tweepy6–a Twitter API wrapper. We then used

a language identification system trained on ICON

dataset (see Section 2) to filter Hindi-English CS

tweets from the crawled Twitter data. Only those

tweets were selected that satisfied a minimum ra-

tio of 30:70(%) code-switching. From this dataset,

we manually selected 1,448 tweets for annotation.

The selected tweets are thoroughly checked for

code-switching ratio. For POS tagging and depen-

dency annotation, we used Version 2 of Universal

dependency guidelines (De Marneffe et al., 2014),

6http://www.tweepy.org/
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while language tags are assigned based on the tag

set defined in (Solorio et al., 2014; Jamatia et al.,

2015). The dataset was annotated by two expert

annotators who have been associated with anno-

tation projects involving syntactic annotations for

around 10 years. Nonetheless, we also ensured the

quality of the manual annotations by carrying an

inter-annotator agreement analysis. We randomly

selected a dataset of 150 tweets which were anno-

tated by both annotators for both POS tagging and

dependency structures. The inter-annotator agree-

ment has a 96.20% accuracy for POS tagging and

a 95.94% UAS and a 92.65% LAS for dependency

parsing.

We use our dataset for training while the devel-

opment and evaluation sets from Bhat et al. (2017)

are used for tuning and evaluation of our models.

Since the annotations in these datasets follow ver-

sion 1.4 of the UD guidelines, we converted them

to version 2 by using carefully designed rules. The

statistics about the data are given in Table 3.

Data-set Sentences Tokens Hi En Ne Univ Acro

Train 1,448 20,203 8,363 8,270 698 2,730 142

Dev 225 3,411 1,549 1,300 151 379 32

Test 225 3,295 1,465 1,283 168 349 30

Table 3: Data Statistics. Dev set is used for tuning

model parameters, while Test set is used for evaluation.

4 Dependency Parsing

We adapt Kiperwasser and Goldberg (2016)

transition-based parser as our base model and in-

corporate POS tag and monolingual parse tree in-

formation into the model using neural stacking, as

shown in Figures 4 and 6.

4.1 Parsing Algorithm

Our parsing models are based on an arc-eager

transition system (Nivre, 2003). The arc-eager

system defines a set of configurations for a sen-

tence w1,...,wn, where each configuration C =

(S, B, A) consists of a stack S, a buffer B, and

a set of dependency arcs A. For each sentence, the

parser starts with an initial configuration where S

= [ROOT], B = [w1,...,wn] and A = ∅ and ter-

minates with a configuration C if the buffer is

empty and the stack contains the ROOT. The parse

trees derived from transition sequences are given

by A. To derive the parse tree, the arc-eager sys-

tem defines four types of transitions (t): Shift,

Left-Arc, Right-Arc, and Reduce.

We use the training by exploration method of

Goldberg and Nivre (2012) for decoding a tran-

sition sequence which helps in mitigating error

propagation at evaluation time. We also use

pseudo-projective transformations of Nivre and

Nilsson (2005) to handle a higher percentage of

non-projective arcs in the CS data (∼2%). We use

the most informative scheme of head+path to

store the transformation information.
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Figure 4: POS tagging and parsing network based

on stack-propagation model proposed in (Zhang and

Weiss, 2016).

4.2 Base Models

Our base model is a stack of a tagger network and

a parser network inspired by stack-propagation

model of Zhang and Weiss (2016). The param-

eters of the tagger network are shared and act

as a regularization on the parsing model. The

model is trained by minimizing a joint negative

log-likelihood loss for both tasks. Unlike Zhang

and Weiss (2016), we compute the gradients of the

log-loss function simultaneously for each train-

ing instance. While the parser network is updated

given the parsing loss only, the tagger network is

updated with respect to both tagging and parsing

losses. Both tagger and parser networks comprise

of an input layer, a feature layer, and an output

layer as shown in Figure 4. Following Zhang and

Weiss (2016), we refer to this model as stack-prop.
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Tagger network: The input layer of the tagger

encodes each input word in a sentence by concate-

nating a pre-trained word embedding with its char-

acter embedding given by a character Bi-LSTM.

In the feature layer, the concatenated word and

character representations are passed through two

stacked Bi-LSTMs to generate a sequence of hid-

den representations which encode the contextual

information spread across the sentence. The first

Bi-LSTM is shared with the parser network while

the other is specific to the tagger. Finally, output

layer uses the feed-forward neural network with

a softmax function for a probability distribution

over the Universal POS tags. We only use the for-

ward and backward hidden representations of the

focus word for classification.

Parser Network: Similar to the tagger network,

the input layer encodes the input sentence using

word and character embeddings which are then

passed to the shared Bi-LSTM. The hidden rep-

resentations from the shared Bi-LSTM are then

concatenated with the dense representations from

the feed-forward network of the tagger and passed

through the Bi-LSTM specific to the parser. This

ensures that the tagging network is penalized for

the parsing error caused by error propagation by

back-propagating the gradients to the shared tag-

ger parameters (Zhang and Weiss, 2016). Finally,

we use a non-linear feed-forward network to pre-

dict the labeled transitions for the parser config-

urations. From each parser configuration, we ex-

tract the top node in the stack and the first node

in the buffer and use their hidden representations

from the parser specific Bi-LSTM for classifica-

tion.

dis rat ki barish alwayz scares me .

This night of rain always scares me .

Mixed grammar Mixed grammar

Hindi grammar English grammar

Figure 5: Code-switching tweet showing grammatical

fragments from Hindi and English.

4.3 Stacking Models

It seems reasonable that limited CS data would

complement large monolingual data in parsing CS

data and a parsing model which leverages both

data would significantly improve parsing perfor-

mance. While a parsing model trained on our

limited CS data might not be enough to accu-

rately parse the individual grammatical fragments

of Hindi and English, the preexisting Hindi and

English treebanks are large enough to provide suf-

ficient annotations to capture their structure. Sim-

ilarly, parsing model(s) trained on the Hindi and

English data may not be able to properly connect

the divergent fragments of the two languages as

the model lacks evidence for such mixed struc-

tures in the monolingual data. This will happen

quite often as Hindi and English are typologicalls

very diverse (see Figure 5).
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Figure 6: Neural Stacking-based parsing architecture

for incorporating monolingual syntactic knowledge.

As we discussed above, we adapted feature-

level neural stacking (Zhang and Weiss, 2016;

Chen et al., 2016) for joint learning of POS tag-

ging and parsing. Similarly, we also adapt this

stacking approach for incorporating the monolin-

gual syntactic knowledge into the base CS model.

Recently, Wang et al. (2017) used neural stacking

for injecting syntactic knowledge of English into a

graph-based Singlish parser which lead to signif-

icant improvements in parsing performance. Un-

like Wang et al. (2017), our base stacked models

will allow us to transfer the POS tagging knowl-

edge as well along the parse tree knowledge.

As shown in Figure 6, we transfer both POS

tagging and parsing information from the source
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model trained on augmented Hindi and English

data. For tagging, we augment the input layer of

the CS tagger with the MLP layer of the source

tagger. For transferring parsing knowledge, hid-

den representations from the parser specific Bi-

LSTM of the source parser are augmented with

the input layer of the CS parser which already in-

cludes the hidden layer of the CS tagger, word and

character embeddings. In addition, we also add the

MLP layer of the source parser to the MLP layer

of the CS parser. The MLP layers of the source

parser are generated using raw features from CS

parser configurations. Apart from the addition

of these learned representations from the source

model, the overall CS model remains similar to the

base model shown in Figure 4. The tagging and

parsing losses are back-propagated by traversing

back the forward paths to all trainable parameters

in the entire network for training and the whole

network is used collectively for inference.

5 Experiments

We train all of our POS tagging and parsing mod-

els on training sets of the Hindi and English UD-

v2 treebanks and our Hindi-English CS treebank.

For tuning and evaluation, we use the develop-

ment and evaluation sets from Bhat et al. (2017).

We conduct multiple experiments in gold and pre-

dicted settings to measure the effectiveness of the

sub-modules of our parsing pipeline. In predicted

settings, we use the POS taggers separately trained

on the Hindi, English and CS training sets. All

of our models use word embeddings from trans-

formed Hindi and English embedding spaces to

address the problem of lexical differences preva-

lent in CS sentences.

5.1 Hyperparameters

Word Representations For language identifica-

tion, POS tagging and parsing models, we include

the lexical features in the input layer of our neu-

ral networks using 64-dimension pre-trained word

embeddings, while we use randomly initialized

embeddings within a range of [−0.1, +0.1] for

non-lexical units such as POS tags and dictionary

flags. We use 32-dimensional character embed-

dings for all the three models and 32-dimensional

POS tag embeddings for pipelined parsing mod-

els. The distributed representation of Hindi and

English vocabulary are learned separately from

the Hindi and English monolingual corpora. The

English monolingual data contains around 280M

sentences, while the Hindi data is comparatively

smaller and contains around 40M sentences. The

word representations are learned using Skip-gram

model with negative sampling which is imple-

mented in word2vec toolkit (Mikolov et al.,

2013). We use the projection algorithm of Artetxe

et al. (2016) to transform the Hindi and En-

glish monolingual embeddings into same semantic

space using a bilingual lexicon (∼63,000 entries).

The bilingual lexicon is extracted from ILCI and

Bojar Hindi-English parallel corpora (Jha, 2010;

Bojar et al., 2014). For normalization models,

we use 32-dimensional character embeddings uni-

formly initialized within a range of [−0.1,+0.1].

Hidden dimensions The POS tagger specific

Bi-LSTMs have 128 cells while the parser spe-

cific Bi-LSTMs have 256 cells. The Bi-LSTM

in the language identification model has 64 cells.

The character Bi-LSTMs have 32 cells for all three

models. The hidden layer of MLP has 64 nodes for

the language identification network, 128 nodes for

the POS tagger and 256 nodes for the parser. We

use hyperbolic tangent as an activation function in

all tasks. In the normalization models, we use sin-

gle layered Bi-LSTMs with 512 cells for both en-

coding and decoding of character sequences.

Learning For language identification, POS tag-

ging and parsing networks, we use momentum

SGD for learning with a minibatch size of 1. The

LSTM weights are initialized with random or-

thonormal matrices as described in (Saxe et al.,

2013). We set the dropout rate to 30% for POS tag-

ger and parser Bi-LSTM and MLP hidden states

while for language identification network we set

the dropout to 50%. All three models are trained

for up to 100 epochs, with early stopping based on

the development set.

In case of normalization, we train our encoder-

decoder models for 25 epochs using vanilla SGD.

We start with a learning rate of 1.0 and after 8

epochs reduce it to half for every epoch. We use a

mini-batch size of 128, and the normalized gradi-

ent is rescaled whenever its norm exceeds 5. We

use a dropout rate of 30% for the Bi-LSTM.

Language identification, POS tagging and

parsing code is implemented in DyNet (Neubig

et al., 2017) and for normalization without

decoding, we use Open-NMT toolkit for neural

machine translation (Klein et al., 2017). All
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the code is available at https://github.

com/irshadbhat/nsdp-cs and the data

is available at https://github.com/

CodeMixedUniversalDependencies/

UD_Hindi_English.

6 Results

In Table 4, we present the results of our main

model that uses neural stacking for learning POS

tagging and parsing and also for knowledge trans-

fer from the Bilingual model. Transferring POS

tagging and syntactic knowledge using neural

stacking gives 1.5% LAS7 improvement over a

naive approach of data augmentation. The Bilin-

gual model which is trained on the union of Hindi

and English data sets is least accurate of all our

parsing models. However, it achieves better or

near state-of-the-art results on the Hindi and En-

glish evaluation sets (see Table 5). As compared

to the best system in CoNLL 2017 Shared Task

on Universal Dependencies (Zeman et al., 2017;

Dozat et al., 2017), our results for English are

around 3% better in LAS, while for Hindi only

0.5% LAS points worse. The CS model trained

only on the CS training data is slightly more accu-

rate than the Bilingual model. Augmenting the CS

data to Hindi-English data complements their syn-

tactic structures relevant for parsing mixed gram-

mar structures which are otherwise missing in the

individual datasets. The average improvements of

around ∼5% LAS clearly show their complemen-

tary nature.

Model
Gold (LID+TRN) Auto (LID+TRN)

UAS LAS UAS LAS

Bilingual 75.26 65.41 73.29 63.18

CS 76.69 66.90 75.84 64.94

Augmented 80.39 71.27 78.95 69.51

Neural Stacking 81.50 72.44 80.23 71.03

(Bhat et al., 2017) 74.16 64.11 66.18 54.40

Table 4: Accuracy of different parsing models on the

evaluation set. POS tags are jointly predicted with

parsing. LID = Language tag, TRN = Translitera-

tion/normalization.

Table 6 summarizes the POS tagging results on

the CS evaluation set. The tagger trained on the CS

training data is 2.5% better than the Bilingual tag-

ger. Adding CS training data to Hindi and English

train sets further improves the accuracy by 1%.

However, our stack-prop tagger achieves the high-

7The improvements discussed in the running text are for
the models that are evaluated in auto settings.

est accuracy of 90.53% by leveraging POS infor-

mation from Bilingual tagger using neural stack-

ing.

Pipeline
Stack-prop

Data-set Gold POS Auto POS

UAS LAS POS UAS LAS POS UAS LAS

Hindi 95.66 93.08 97.52 94.08 90.69 97.65 94.36 91.02

English 89.95 87.96 95.75 87.71 84.59 95.80 88.30 85.30

Table 5: POS and parsing results for Hindi and En-

glish monolingual test sets using pipeline and stack-

prop models.

Model
Gold (LID+TRN) Auto (LID+TRN)

Pipeline SP Pipeline SP

Bilingual 88.36 88.12 86.71 86.27

CS 90.32 90.38 89.12 89.19

Augmented 91.20 91.50 90.02 90.20

Neural Stacking 91.76 91.90 90.36 90.53

(Bhat et al., 2017) 86.00 85.30

Table 6: POS tagging accuracies of different models on

CS evaluation set. SP = stack-prop.

Pipeline vs Stack-prop Table 7 summarizes the

parsing results of our pipeline models which use

predicted POS tags as input features. As compared

to our stack-prop models (Table 4), pipeline mod-

els are less accurate (average 1% LAS improve-

ment across models) which clearly emphasizes the

significance of back-propagating the parsing loss

to tagging parameters as well.

Model
Gold (LID+TRN+POS) Auto (LID+TRN+POS)

UAS LAS UAS LAS

Bilingual 82.29 73.79 72.09 61.18

CS 82.73 73.38 75.20 64.64

Augmented 85.66 77.75 77.98 69.16

Neural Stacking 86.87 78.57 78.90 69.45

Table 7: Accuracy of different parsing mod-

els on the test set using predicted language tags,

normalized/back-transliterated words and predicted

POS tags. POS tags are predicted separately be-

fore parsing. In Neural Stacking model, only parsing

knowledge from the Bilingual model is transferred.

Significance of normalization We also con-

ducted experiments to evaluate the impact of nor-

malization on both POS tagging and parsing. The

results are shown in Table 8. As expected, tagging

and parsing models that use normalization with-

out decoding achieve an average of 1% improve-

ment over the models that do not use normaliza-

tion at all. However, our 3-step decoding leads to

higher gains in tagging as well as parsing accura-

cies. We achieved around 2.8% improvements in

tagging and around 4.6% in parsing over the mod-

els that use first-best word forms from the normal-

ization models. More importantly, there is a mod-
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erate drop in accuracy (1.4% LAS points) caused

due to normalization errors (see results in Table 4

for gold vs auto normalization).

System POS UAS LAS

No Normalization 86.98 76.25 66.02

First Best 87.74 78.26 67.22

3-step Decoding 90.53 80.23 71.03

Table 8: Impact of normalization and back-

transliteration on POS tagging and parsing models.

Monolingual vs Cross-lingual Embeddings

We also conducted experiments with monolingual

and cross-lingual embeddings to evaluate the need

for transforming the monolingual embeddings into

a same semantic space for processing of CS data.

Results are shown in Table 9. Cross-lingual em-

beddings have brought around ∼0.5% improve-

ments in both tagging and parsing. Cross-lingual

embeddings are essential for removing lexical dif-

ferences which is one of the problems encountered

in CS data. Addressing the lexical differences will

help in better learning by exposing syntactic simi-

larities between languages.

Embedding POS UAS LAS

Monolingual 90.07 79.46 70.53

Crosslingual 90.53 80.23 71.03

Table 9: Impact of monolingual and cross-lingual em-

beddings on stacking model performance.

7 Conclusion

In this paper, we have presented a dependency

parser designed explicitly for Hindi-English CS

data. The parser uses neural stacking architecture

of Zhang and Weiss (2016) and Chen et al. (2016)

for learning POS tagging and parsing and for

knowledge transfer from Bilingual models trained

on Hindi and English UD treebanks. We have also

presented normalization and back-transliteration

models with a decoding process tailored for CS

data. Our neural stacking parser is 1.5% LAS

points better than the augmented parsing model

and 3.8% LAS points better than the one which

uses first-best normalizations.
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A Supplemental Material

A.1 Example Annotations from our CS

Treebank

i thought mosam different hoga bas fog hy

ROOT

nsubj nsubj

ccomp

cop advmod

advcl

cop

Thand bhi odd even formula follow Kr rhi h ;-)

ROOT
nsubj

advmod

amod

compound

obj

compound aux

aux

discourse

Tum kitne fake account banaogy

ROOT
nsubj

det

amod obj

Ram Kapoor reminds me of boondi ke laddu

ROOT

nsubj

flat obj

case

nmod

case

obl

Has someone told Gabbar cal kya hai ?

ROOT

aux

nsubj iobj nmod

ccomp

cop

punct

Enjoying Dilli ki sardi after a long time .

ROOT

nmod

case

obj case

det

amod

obl

punct

Biggboss dekhne wali awaam can unfollow me .

ROOT

obj

amod

mark

nsubj

aux iobj

punct

Kaafi depressing situation hai yar

ROOT

advmod amod cop

vocative

Some people are double standards ki dukaan

ROOT

det

nsubj

cop

amod

nmod

case

There is no seperate emoji for khushi ke aansu .

ROOT

expl

cop

advmod

amod

case

nmod

case

obl

punct
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