
Universal Differential Equations for Scienti�c
Machine Learning
Christopher Rackauckas ( crackauc@mit.edu)

Massachusetts Institute of Technology https://orcid.org/0000-0001-5850-0663
Yingbo Ma

Julia Computing
Julius Martensen

University of Bremen https://orcid.org/0000-0003-4143-3040
Collin Warner

Massachusetts Institute of Technology
Kirill Zubov

Saint Petersburg State University https://orcid.org/0000-0003-0441-449X
Rohit Supekar

Massachusetts Institute of Technology
Dominic Skinner

Massachusetts Institute of Technology https://orcid.org/0000-0002-2698-041X
Ali Ramadhan

Massachusetts Institute of Technology
Alan Edelman

Massachusetts Institute of Technology

Article

Keywords: machine learning, generalized approaches, modeling methodology

Posted Date: August 31st, 2020

DOI: https://doi.org/10.21203/rs.3.rs-55125/v1

License:   This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

https://doi.org/10.21203/rs.3.rs-55125/v1
mailto:crackauc@mit.edu
https://orcid.org/0000-0001-5850-0663
https://orcid.org/0000-0003-4143-3040
https://orcid.org/0000-0003-0441-449X
https://orcid.org/0000-0002-2698-041X
https://doi.org/10.21203/rs.3.rs-55125/v1
https://creativecommons.org/licenses/by/4.0/

Universal Differential Equations for Scientific

Machine Learning

Christopher Rackauckasa,b, Yingbo Mac, Julius Martensend, Collin

Warnera, Kirill Zubove, Rohit Supekara, Dominic Skinnera, Ali

Ramadhana, and Alan Edelmana

aMassachusetts Institute of Technology
bUniversity of Maryland, Baltimore

cJulia Computing
dUniversity of Bremen

eSaint Petersburg State University

August 26, 2020

Abstract1

In the context of science, the well-known adage “a picture is worth a2

thousand words” might well be “a model is worth a thousand datasets.”3

Scientific models, such as Newtonian physics or biological gene regula-4

tory networks, are human-driven simplifications of complex phenomena5

that serve as surrogates for the countless experiments that validated the6

models. Recently, machine learning has been able to overcome the in-7

accuracies of approximate modeling by directly learning the entire set of8

nonlinear interactions from data. However, without any predetermined9

structure from the scientific basis behind the problem, machine learning10

approaches are flexible but data-expensive, requiring large databases of11

homogeneous labeled training data. A central challenge is reconciling data12

that is at odds with simplified models without requiring “big data”.13

In this work demonstrate how a mathematical object, which we de-14

note universal differential equations (UDEs), can be utilized as a theo-15

retical underpinning to a diverse array of problems in scientific machine16

learning to yield efficient algorithms and generalized approaches. The17

UDE model augments scientific models with machine-learnable structures18

for scientifically-based learning. We show how UDEs can be utilized to19

discover previously unknown governing equations, accurately extrapolate20

beyond the original data, and accelerate model simulation, all in a time21

and data-efficient manner. This advance is coupled with open-source soft-22

ware that allows for training UDEs which incorporate physical constraints,23

delayed interactions, implicitly-defined events, and intrinsic stochasticity24

in the model. Our examples show how a diverse set of computationally-25

difficult modeling issues across scientific disciplines, from automatically26

1

discovering biological mechanisms to accelerating the training of physics-27

informed neural networks and large-eddy simulations, can all be trans-28

formed into UDE training problems that are efficiently solved by a single29

software methodology.30

Recent advances in machine learning have been dominated by deep learning31

which utilizes readily available “big data” to solve previously difficult problems32

such as image recognition [1, 2, 3] and natural language processing [4, 5, 6].33

While some areas of science have begun to generate the large amounts of data34

required to train deep learning models, notably bioinformatics [7, 8, 9, 10, 11],35

in many areas the expense of scientific experiments has prohibited the effective-36

ness of these ground breaking techniques. In these domains, such as aerospace37

engineering, quantitative systems pharmacology, and macroeconomics, mecha-38

nistic models which synthesize the knowledge of the scientific literature are still39

predominantly deployed due to the inaccuracy of deep learning techniques with40

small training datasets. While these mechanistic models are constrained to be41

predictive by utilizing prior structural knowledge conglomerated throughout the42

scientific literature, the data-driven approach of machine learning can be more43

flexible and allows one to drop the simplifying assumptions required to derive44

theoretical models. The purpose of this work is to bridge the gap by merging45

the best of both methodologies while mitigating the deficiencies.46

It has recently been shown to be advantageous to merge differential equa-47

tions with machine learning. Physics-Informed Neural Networks (PINNs) utilize48

partial differential equations in the cost functions of neural networks to incor-49

porate prior scientific knowledge [12]. While this has been shown to be a form50

of data-efficient machine learning for some scientific applications, the resulting51

model does not have the interpretability of mechanistic models. On the other52

end of the spectrum, machine learning practitioners have begun to make use53

of scientific structures as a modeling basis for machine learning. For exam-54

ple, neural ordinary differential equations are initial value problems of the form55

[13, 14, 15, 16]:56

u′ = NNθ(u, t), (1)

defined by a neural network NNθ where θ are the weights. As an example, a57

neural network with two hidden layers can be written as58

NNθ(u, t) = W3σ2(W2σ1(W1[u; t] + b1) + b2) + b3, (2)

where θ = (W1,W2,W3, b1, b2, b3) where Wi are matrices and bi are vectors of59

weights, and (σ1, σ2) are the choices of activation functions. Because the embed-60

ded function is a universal approximator (UA), it follows that NNθ can learn to61

approximate any sufficiently regular differential equation. However, the result-62

ing model is defined without direct incorporation of known mechanisms. The63

Universal Approximation Theorem (UAT) demonstrates that sufficiently large64

neural networks can approximate any nonlinear function with a finite set of65

parameters [17, 18, 19]. Our approach extends the previous data-driven neural66

ODE approaches to directly utilize mechanistic modeling simultaneously with67

UAs in order to allow for arbitrary data-driven model extensions. The objects68

2

of this semi-mechanistic approach, which we denote as Universal Differential69

Equations (UDEs) for universal approximators in differential equations, are dif-70

ferential equation models where part of the differential equation contains an71

embedded UA, such as a neural network, Chebyshev expansion, or a random72

forest.73

As a motivating example, the universal ordinary differential equation (UODE):74

u′ = f(u, t, Uθ(u, t)), (3)

denotes a known mechanistic model form f with missing terms defined by some75

UA Uθ. While the utility of this object has been seen before in optimal control76

[20] and model augmentation [21], here we demonstrate that this object can be77

used to solve a greatly expanded scope of problems and is thus able to be the78

basis of much research in scientific machine learning, from accelerating models79

to being a stepping stone in symbolic algorithms. We demonstrate general-80

izations to incorporate process noise, delayed interactions, and physics-based81

constraints are given by embedding UAs into stochastic, delay, and differential-82

algebraic equations respectively. As a fundamental object underlying so many83

algorithms, it then becomes essential to be able to efficiently train UDEs in84

any context in which they arise. In Section 1 we describe our methodology and85

software implementation for efficiently training UDEs of any of these forms in a86

way that covers stiffness, nonlinear algebraic constraints, stochasticity, delays,87

parallelism, and more. We then demonstrate that the following abilities within88

the UDE framework:89

• In Section 2.1 we recover governing equations from much lesser data than90

prior methods and demonstrate the ability to accurately extrapolate from91

a short time series.92

• In Section 2.2 we demonstrate the ability to utilize arbitrary conservation93

laws as prior knowledge in the discovery of dynamical systems.94

• In Section 2.3 we discover the differential operator and nonlinear reaction95

term of a biological partial differential equation (PDE) from spatiotempo-96

ral data, demonstrating the interpretability of trained UDEs.97

• In Section 3 We derive an adaptive method for automated solving of a 100-98

dimensional nonlinear Hamilton-Jacobi-Bellman PDE, the first adaptive99

method for this class of problems that the authors are aware of.100

• In Section 4.1 we automate the discovery of fast, accurate, and physically-101

consistent surrogates to accelerate a large-eddy simulation commonly used102

in the voxels of a climate simulation.103

• In Section 4.2 we approximate closure relations in viscoelastic fluids to104

accelerate the simulation of a system of 6 differential-algebraic equations105

by 2x, showing that this methodology is also applicable to small-scale106

problems.107

3

• In Section 4.3 we demonstrate that discrete physics-informed neural net-108

works fall into a subclass of universal ODEs and extend previous methods109

directly through this formalism.110

1 Efficient Training of Universal Differential Equa-111

tions via Differentiable Programming112

Training a UDE amounts to minimizing a cost function C(θ) defined on the113

current solution uθ(t), the current solution to the differential equation with114

respect to the choice of parameters θ. One choice is the Euclidean distance115

C(θ) =
∑

i ‖uθ(ti)− di‖ at discrete data points (ti, di). When optimized with116

local derivative-based methods, such as stochastic gradient decent, ADAM [22],117

or L-BFGS [23], this requires the calculation of dC
dθ

which by the chain rule118

amounts to calculating du
dθ
. Thus the problem of efficiently training a UDE119

reduces to calculating gradients of the differential equation solution with respect120

to parameters.121

In certain special cases there exist efficient methods for calculating these122

gradients called adjoints [24, 25, 26, 27, 28]. The asymptotic computational123

cost of these methods does not grow multiplicatively with the number of state124

variables and parameters like numerical or forward sensitivity approaches, and125

thus it has been shown empirically that adjoint methods are more efficient on126

large parameter models [29, 30]. However, given the number of different families127

of UDE models we wish to train, we generalize to a differentiable programming128

framework with reverse-mode accumulation in order to allow for deriving on-129

the-fly approximations for the wide range of possible differential equation types.130

Given a function f(x) = y, the pullback at x is the function:131

Bx
f (y) = yT f ′(x), (4)

where f ′(x) is the Jacobian J . We note that Bx
f (1) = (∇f)

T
for a function f132

producing a scalar output, meaning the pullback of a cost function computes133

the gradient. A general computer program can be written as the composition134

of discrete steps:135

f = fL ◦ fL−1 ◦ . . . ◦ f1, (5)

and thus the vector-Jacobian product can be decomposed:136

vTJ = (. . . ((vTJL)JL−1) . . .)J1, (6)

which allows for recursively decomposing a the pullback to a primitively known137

set of Bx
fi :138

Bx
f (A) = Bx

f1

(

. . .
(

BxL−2

fL−1

(

BxL−1

fL (A)
))

. . .
)

, (7)

4

where xi =
(

f i ◦ f i−1 ◦ . . . ◦ f1
)

(x). Implementations of code generation for the139

backwards pass of an arbitrary program in a dynamic programming language can140

vary. For example, building a list of function compositions (a tape) is provided141

by libraries such as Tracker.jl [31] and PyTorch [32], while other libraries perform142

direct generation of backward pass source code such as Zygote.jl [33], TAF [34],143

and Tapenade [35].144

The open-source differential equation solvers of DifferentialEquations.jl [36]145

were developed in a manner such that all steps of the programs have a well-146

defined pullback when using a Julia-based backwards pass generation system.147

Our software allows for automatic differentiation to be utilized over differen-148

tial equation solves without any modification to the user code. This enables149

the simulation software already written with DifferentialEquations.jl, including150

large software infrastructures such as the MIT-CalTech CLiMA climate mod-151

eling system [37] and the QuantumOptics.jl simulation framework [38], to be152

compatible with all of the techniques mentioned in the rest of the paper. Thus153

while we detail our results in isolation from these larger simulation frameworks,154

the UDE methodology can be readily used in full-scale simulation packages155

which are already built on top of the Julia SciML ecosystem.156

The full set of adjoint options, which includes continuous adjoint methods157

and pure reverse-mode AD approaches, is described in Supplement S1. Meth-158

ods via solving ODEs in reverse [16] are the common adjoint utilized in neural159

ODE software such as torchdiffeq and are O(1) in memory, but are known to160

be unstable under certain conditions such as on stiff equations [39]. Check-161

pointed interpolation adjoints [27] and continuous quadrature approaches are162

available which do not require stable reversibility of the ODEs while retain-163

ing a relatively low-memory implementation via checkpointing (in particular164

Section 2.2 and 4.1 are noted as a cases which are not stable under the re-165

versed adjoint but stable under the checkpointing adjoint approach). These166

adjoint methods fall under the continuous optimize-then-discretize approach.167

Through the differentiable programming integration, discrete adjoint sensitivity168

analysis [40, 41] is implemented through both tape-based reverse-mode [42] and169

source-to-source translation [33], with computational trade-offs between the two170

approaches. The former can be faster on scalarized heterogeneous differential171

equations while the latter is more optimized for homogeneous vectorized func-172

tions calls like are demonstrated in neural networks and discretizations of partial173

differential equations. Full discretize-then-optimize is implemented using this174

package by utilizing the step-wise integrator interface in conjunction with these175

discrete adjoints of the steps. Continuous and discrete forward mode sensitivity176

analysis approaches are also provided and optimized for equations with smaller177

numbers of parameters.178

Previous research has shown that the discrete adjoint approach is more stable179

than continuous adjoints in some cases [43, 39, 44, 45, 46, 47] while continuous180

adjoints have been demonstrated to be more stable in others [48, 45] and can181

reduce spurious oscillations [49, 50, 51]. This trade-off between discrete and182

continuous adjoint approaches has been demonstrated on some equations as a183

trade-off between stability and computational efficiency [52, 53, 54, 55, 56, 57,184

5

58, 59, 60]. Care has to be taken as the stability of an adjoint approach can185

be dependent on the chosen discretization method [61, 62, 63, 64, 65], and our186

software contribution helps researchers switch between all of these optimization187

approaches in combination with hundreds of differential equation solver methods188

with a single line of code change.189

As described in Supplement S1.1, these adjoints utilize reverse-mode auto-190

matic differentiation for vector transposed Jacobian products within the adjoint191

definitions to reduce the computational complexity while supporting advanced192

features like constraint and conservation equations. In addition, the module193

DiffEqFlux.jl handles compatibility with the Flux.jl neural network library so194

that these vector Jacobian products are automatically replaced with efficient195

pullback implementations for embedded deep neural networks (also known as196

backpropogation) wherever neural networks are encountered in the right hand197

side of any differential equation definitions. This allows for common deep archi-198

tectures, such as convolutional neural networks and recurrent neural networks,199

to be efficiently used as the basis for a UDE without any Jacobians being cal-200

culated in the full adjoint and without requiring any intervention from users.201

Using this approach, the solvers are capable of building efficient gradient202

calculations for training ML-embedded UDEs of the classes:203

• Universal Ordinary Differential Equations (UODEs)204

• Universal Stochastic Differential Equations (USDEs), or universal differ-205

ential equations with continuous process noise206

• Universal Delay Differential Equations (UDDEs), or universal differential207

equations with delayed interactions208

• Universal Differential-Algebraic Equations (UDAEs), or universal differ-209

ential equations with constraint equations and conservation laws210

• Universal Boundary Value Problems (UBVPs), or universal differential211

equations with final time point constraints212

• Universal Partial Differential Equations (UPDEs)213

• Universal Hybrid (Event-Driven) Differential Equations214

as well as the combinations, such as stochastic delay differential equations, jump215

diffusions, and stochastic partial differential equations. A combination of over216

300 solver methods cover the efficient training of stiff and non-stiff versions217

of each of these equations, with support for adaptivity, high-order, automatic218

stiffness detection, sparse differentiation with automatic sparsity detection and219

coloring [66], Newton-Krylov implicit handling, GPU compatibility, and multi-220

node parallelism via MPI compatibility. Thus together, semi-mechanistic UDEs221

of any form can embed machine learning models and be trained using this open-222

source library with the most effective differential equation solvers for that class223

of equations.224

6

Feature Stiff DAEs SDEs DDEs Stabilized DtO GPU Dist MT Sparse

SciML X X X X X X X X X X

torchdiffeq 0 0 0 0 0 X X 0 0 0

torchsde 0 0 X 0 0 0 X 0 0 0

tfdiffeq 0 0 0 0 0 0 X 0 0 0

Table 1: Feature comparison of ML-augmented differential equation libraries.
First first column corresponds to support for stiff ODEs, then DAEs, SDEs,
DDEs, stabilized non-reversing adjoints, discretize-then-optimize methods, dis-
tributed computing, and multithreading. Sparse refers to automated sparsity
handling in Jacobian calculations of implicit methods.

1.1 Features and Performance225

We assessed the viability of alternative differential equation libraries for univer-226

sal differential equation workflows by comparing the features and performance227

of the given libraries. Table 1 demonstrates that the Julia SciML ecosystem is228

the only differential equation solver library with deep learning integration that229

supports stiff ODEs, DAEs, DDEs, stabilized adjoints, distributed and multi-230

threaded computation. We note the importance of the stabilized adjoints in231

Section 4.1 as many PDE discretizations with upwinding exhibit unconditional232

instability when reversed, and thus this is a crucial feature when training em-233

bedded neural networks in many PDE applications. Table 2 demonstrates that234

the SciML ecosystem exhibits more than an order of magnitude performance235

when solving ODEs against torchdiffeq of up to systems of 1 million equations.236

Because the adjoint calculation itself is a differential equation, this also corre-237

sponds to increased training times on scientific models. To reinforce this result,238

Supplement S2 demonstrates a 100x performance difference over torchdiffeq239

when training the spiral neural ODE from [16, 43]. We note that the author240

of the tfdiffeq library has previous concluded “speed is almost the same as the241

PyTorch (torchdiffeq) codebase (±2%)”. Additionally, Supplement S2 demon-242

strates a 1,600x performance advantage for the SciML ecosystem over torchsde243

using the geometric Brownian motion example from the torchsde documentation244

[67]. Given the computational burden, the mix of stiffness, and non-reversibility245

of the examples which follow in this paper, these results demonstrate that the246

SciML ecosystem is the first deep learning integrated differential equation soft-247

ware ecosystem that can train all of the equations necessary for the results of248

this paper. Note that this does not infer that our solvers will demonstrate249

more than an order of magnitude performance difference on all equations, for250

example very non-stiff ODEs dominated by large dense matrix multiplications251

like in image classification neural ODEs, but it does demonstrate that on the252

equations generally derived from scientific models (ODEs derived from PDE dis-253

cretizations, heterogeneous differential equation systems, and neural networks254

in sufficiently small systems) that an order of magnitude or more performance255

difference can exist.256

7

of ODEs 3 28 768 3,072 12,288 49,152 196,608 786,432

SciML 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x

SciML DP5 1.0x 1.9x 2.9x 2.9x 2.9x 2.9x 3.4x 2.6x

torchdiffeq dopri5 5,850x 1700x 420x 280x 120x 31x 41x 38x

torchdiffeq adams 7,600x 1100x 710x 490x 170x 44x 47x 43x

Table 2: Relative time to solve for ML-augmented differential equation libraries
(smaller is better). Standard non-stiff solver benchmarks from representative
scientific systems were taken from [68] as described in Supplement S2. SciML
stands for the optimal method choice out of the 300+ from the SciML, which
for the first is DP5, for the second is VCABM, and for the rest is ROCK4.

2 Knowledge-Enhanced Model Reconstruction257

of Biological Models258

Automatic reconstruction of models from observable data has been extensively259

studied. Many methods produce non-symbolic representations by learning func-260

tional representations [69, 70] or through dynamic mode decomposition (DMD,261

eDMD) [71, 72, 73, 74]. Symbolic reconstruction of equations has utilized sym-262

bolic regressions which require a prechosen basis [75, 76], or evolutionary meth-263

ods to grow a basis [77, 78]. However, a common thread throughout much of264

the literature is that added domain knowledge constrains the problem to allow265

for more data-efficient reconstruction [79, 80]. Here we detail how a UA embed-266

ded workflow can augment existing symbolic regression frameworks to allow for267

reconstruction from partially known models in a more data-efficient manner.268

2.1 Automated Identification of Nonlinear Interactions with269

Universal Ordinary Differential Equations270

The SInDy algorithm [81, 82, 83] finds a sparse basis Ξ over a given candidate271

library Θ minimizing the objective function
∥

∥

∥
Ẋ−ΘΞ

∥

∥

∥

2

+λ ‖Ξ‖
1
using data for272

Ẋ generated by interpolating the trajectory data X. Here we describe a UDE273

approach to extend SInDy in a way that embeds prior structural knowledge.274

As a motivating example, take the Lotka-Volterra system:275

ẋ = αx− βxy,

ẏ = γxy − δy.
(8)

Assume that a scientist has a short time series from this system but knows the276

birth rate of the prey x and the death rate of the predator y. With only this277

information, a scientist can propose the knowledge-based UODE as:278

ẋ = αx+ U1(x, y),

ẏ = −δy + U2(x, y),
(9)

8

0.5 1.0 1.5 2.0 2.5 3.0
10

- 3.5

10
- 3.0

10
- 2.5

10
- 2.0

Timeseries of UODE Error

t

x(t)
y(t)

0.3 0.6 0.9 1.2 1.5 0 1 2 3 4
0.3

0.6

0.9

1.2

1.5

Neural Network Fit of U2(t)

x y

0 5 10 15 20
0

2

4

6

8

Extrapolated Fit From Short Training Data

t

x data
y data
True x(t)
True y(t)
Estimated x(t)
Estimated y(t)

Training
Data

Neural Network
True Missing Term

A B

C

Figure 1: Automated Lotka-Volterra equation discovery with UODE-enhanced
SInDy. (A) The error in the trained UODE against x(t) and y(t) in green
and yellow respectively. (B) The measured values of the missing term U2(x, y)
throughout the time series, with the neural network approximate in green and
the true value γxy in yellow. (C) The extrapolation of the knowledge-enhanced
SInDy fit series. The green and yellow dots show the data that was used to fit
the UODE, and the dots show the true solution of the Lotka-Volterra Equations
8 beyond the training data. The blue and purple lines show the extrapolated
solution how the UODE-enhanced SInDy recovered equations.

which is a system of ordinary differential equations that incorporates the known279

structure but leaves room for learning unknown interactions between the the280

predator and prey populations. Learning the unknown interactions corresponds281

training the UA U : R2 → R
2 in this UODE.282

While the SInDy method normally approximates derivatives using a spline283

over the data points or similar numerical techniques, here we have Uθ(x, y) as an284

estimator of the derivative for only the missing terms of the model and we can285

perform a sparse regression on samples from the trained Uθ(x, y) to reconstruct286

only the unknown interaction equations. As described in Supplement S3.1, we287

trained Uθ(x, y) as a neural network against the simulated data for t ∈ [0, 3] and288

utilized a sparse regression techniques [81, 84, 85] on the neural network out-289

puts to reconstruct the missing dynamical equations. Using a 10-dimensional290

polynomial basis extended with trigonometric functions, the sparse regression291

yields 0 for all terms except for the missing quadratic terms, directly learning292

the original equations in an interpretable form. Even though the original data293

9

did not contain a full period of the cyclic solution, the resulting fit is then able294

to accurately extrapolate from the short time series data as shown in Figure 1.295

Supplement S3.1 further demonstrates the robustness of the discovery approach296

to noise in the data. Likewise, when attempting to learn full ODE with the297

original SInDy approach on the same trained data with the analytical deriva-298

tive values, we were unable to recover the exact original equations from the299

sparse regression, indicating that the knowledge-enhanced approach increases300

the robustness equation discovery.301

We note that collaborators using the preprint of this manuscript have suc-302

cessfully demonstrated the ability to construct UODE models which improve303

the prediction of Li-ion battery performance [86] and for automated discovery304

of droplet physics directly from imaging data, effectively replicating the theo-305

retical results of a one and a half year study with a UODE discovery process306

which trains in less than an hour [87].307

2.2 Incorporating Prior Knowledge of Conservation Equa-308

tions309

The extra features of the SciML ecosystem can be utilized to encode more infor-
mation into the model. For example, when attempting to discover a biological
chemical reaction network or a chemical combustion network, one may only have
prior knowledge of the conservation laws between the constituent substrates. As
a demonstration, in the Robertson equation

dy1

dt
= −0.04y1 + 104y2y3 (10)

dy2

dt
= 0.04y1 − 104y2y3 − 3 ∗ 107y22 (11)

1 = y1 + y2 + y3 (12)

one might only have prior knowledge of the conservation equation 1 = y1+y2+
y3. In this case, a universal DAE of the form:

d[y1, y2]

dt
= Uθ(y1, y2, y3) (13)

1 = y1 + y2 + y3 (14)

can be utilized to encode this prior knowledge. This can then be trained by310

utilizing a singular mass matrix in the form Mu′ = f(u, p, t). Supplement311

S1’s derivation of the adjoint method describes a new initialization scheme for312

index-1 DAEs in mass matrix form which directly solves a linear system for new313

consistent algebraic variables in the adjoint pass without requiring the approx-314

imate nonlinear iterations of [88], thus further demonstrating the efficiency and315

accuracy of the SciML software’s methods for UDE workflows. Supplement S3.2316

demonstrates the ability to learn this system utilizing the SciML tools through317

this universal DAE approach.318

10

2.3 Reconstruction of Spatial Dynamics with Universal319

Partial Differential Equations320

To demonstrate discovery of spatiotemporal equations directly from data, we321

consider data generated from the one-dimensional Fisher-KPP322

(Kolmogorov–Petrovsky–Piskunov) PDE [89]:323

∂ρ

∂t
= rρ(1− ρ) +D

∂2ρ

∂x2
, (15)

with x ∈ [0, 1], t ∈ [0, T], and periodic boundary condition ρ(0, t) = ρ(1, t). Here324

ρ represents population density of a species, r is the local growth rate and D325

is the diffusion coefficient. Such reaction-diffusion equations appear in diverse326

physical, chemical and biological problems [90]. To learn the generated data,327

we define the UPDE:328

ρt = NNθ(ρ) + D̂CNN(ρ), (16)

where NNθ is a neural network representing the local growth term. The deriva-329

tive operator is approximated as a convolutional neural network CNN, a learn-330

able arbitrary representation of a stencil while treating the coefficient D̂ as an331

unknown. We encode in the loss function extra constraints to ensure the learned332

equation is physically realizable, i.e. the derivative stencil must be conservative333

(the coefficients sum to zero), as described in Supplement S4. Figure 2 shows334

the result of training the UPDE against the simulated data, which recovers the335

canonical [1,−2, 1] stencil of the one-dimensional Laplacian and the diffusion336

constant while simultaneously finding a neural representation of the unknown337

quadratic growth term. We note that the differentiable programming integration338

in conjunction with the Flux.jl deep learning framework allows for the adjoints339

to automatically utilize efficient backpropogation of the embedded convolutional340

neural networks and automatically utilizes the fast kernels provided by cudnn341

when trained using GPUs.342

3 Computationally-Efficient Solving of343

High-Dimensional Partial Differential344

Equations345

It is impractical to solve high dimensional PDEs with mesh-based techniques346

since the number of mesh points scales exponentially with the number of dimen-347

sions. Given this difficulty, mesh-free methods based on universal approximators348

such as neural networks have been constructed to allow for direct solving of high349

dimensional PDEs [91, 92]. Recently, methods based on transforming partial350

differential equations into alternative forms, such as backwards stochastic differ-351

ential equations (BSDEs), which are then approximated by neural networks have352

been shown to be highly efficient on important equations such as the nonlinear353

Black-Scholes and Hamilton-Jacobi-Bellman (HJB) equations [93, 94, 95, 96].354

11

0.0 0.5 1.0

x

0

1

2

3

4

5

t

Data

0.0 0.5 1.0

x

0

1

2

3

4

5

t

Prediction

0

1
ρ

0 1500 3000

Epochs

− 0.4

− 0.3

− 0.2

− 0.1

0.0

0.1

CNN Weights

0.0 0.5 1.0

ρ

0.0

0.1

0.2

0.3
Growth Term

(w
1
/ w

3
) - 1

w
1
+ w

2
 + w

3

NNθ(ρ)
rρ(1-ρ)

A B

C D

Figure 2: Recovery of the UPDE for the Fisher-KPP equation. (A) Training
data and (B) prediction of the UPDE for ρ(x, t). (C) Curves for the weights
of the CNN filter [w1, w2, w3] indicate the recovery of the [1,−2, 1] stencil for
the 1-dimensional Laplacian. (D) Comparison of the learned (blue) and the
true growth term (orange) showcases the learned parabolic form of the missing
nonlinear equation.

12

Here we will showcase how one of these methods, a deep BSDE method for semi-355

linear parabolic equations [94], can be reinterpreted as a universal stochastic dif-356

ferential equation (USDE) to generalize the method and allow for enhancements357

like adaptivity, higher order integration for increased efficiency, and handling of358

stiff driving equations through the SciML software.359

Consider the class of semilinear parabolic PDEs with a finite time span360

t ∈ [0, T] and d-dimensional space x ∈ R
d that have the form:361

∂u

∂t
(t, x) +

1

2
Tr

(

σσT (t, x) (Hessx u) (t, x)
)

+∇u(t, x) · µ(t, x)
+ f

(

t, x, u(t, x), σT (t, x)∇u(t, x)
)

= 0,

(17)

with a terminal condition u(T, x) = g(x). Supplement S5 describes how this362

PDE can be solved by approximating by approximating the FBSDE:363

dXt = µ(t,Xt)dt+ σ(t,Xt)dWt,

dUt = f(t,Xt, Ut, U
1
θ1
(t,Xt))dt+

[

U1
θ1
(t,Xt)

]T
dWt,

(18)

where U1
θ1

and U2
θ2

are UAs and the loss function is given by the requiring that364

the terminating condition g(XT) = u(XT ,WT) is satisfied.365

3.1 Adaptive Solution of High-Dimensional Hamilton-Jacobi-366

Bellman Equations367

A fixed time step Euler-Maryumana discretization of this USDE gives rise to368

the deep BSDE method [94]. However, this form as a USDE generalizes the369

approach in a way that makes all of the methodologies of our USDE training370

library readily available, such as higher order methods, adaptivity, and implicit371

methods for stiff SDEs. As a motivating example, consider the classical linear-372

quadratic Gaussian (LQG) control problem in 100 dimensions:373

dXt = 2
√
λctdt+

√
2dWt, (19)

with t ∈ [0, T], X0 = x, and with a cost function C(ct) = E

[

∫ T

0
‖ct‖2dt+ g(Xt)

]

374

where Xt is the state we wish to control, λ is the strength of the control, and375

ct is the control process. Minimizing the control corresponds to solving the376

100-dimensional HJB equation:377

∂u

∂t
+∇2u− λ‖∇u‖2 = 0 (20)

We solve the PDE by training the USDE using an adaptive Euler-Maruyama378

method [97] as described in Supplement S5. Supplementary Figure 2 showcases379

that this methodology accurately solves the equations, effectively extending re-380

cent algorithmic advancements to adaptive forms simply be reinterpreting the381

13

equation as a USDE. While classical methods would require an amount of mem-382

ory that is exponential in the number of dimensions making classical adaptively383

approaches infeasible, this approach is the first the authors are aware of to384

generalize the high order, adaptive, highly stable software tooling to the high-385

dimensional PDE setting.386

4 Accelerated Scientific Simulation with Auto-387

matically Constructed Closure Relations388

4.1 Automated Discovery of Large-Eddy Model Parame-389

terizations390

As an example of directly accelerating existing scientific workflows, we focus391

on the Boussinesq equations [98]. The Boussinesq equations are a system of392

3+1-dimensional partial differential equations acquired through simplifying as-393

sumptions on the incompressible Navier-Stokes equations, represented by the394

system:395

∇ · u = 0,

∂u

∂t
+ (u · ∇)u = −∇p+ ν∇2

u+ bẑ,

∂T

∂t
+ u · ∇T = κ∇2T,

(21)

where u = (u, v, w) is the fluid velocity, p is the kinematic pressure, ν is the396

kinematic viscosity, κ is the thermal diffusivity, T is the temperature, and b is397

the fluid buoyancy. We assume that density and temperature are related by a398

linear equation of state so that the buoyancy b is only a function b = αgT where399

α is the thermal expansion coefficient and g is the acceleration due to gravity.400

This system is commonly used in climate modeling, especially as the vox-401

els for modeling the ocean [99, 100, 101, 98] in a multi-scale model that ap-402

proximates these equations by averaging out the horizontal dynamics T (z, t) =403
∫∫

T (x, y, z, t) dx dy in individual boxes. The resulting approximation is a lo-404

cal advection-diffusion equation describing the evolution of the horizontally-405

averaged temperature T :406

∂T

∂t
+

∂wT

∂z
= κ

∂2T

∂z2
. (22)

This one-dimensional approximating system is not closed since wT is unknown.407

Common practice closes the system by manually determining an approximating408

wT from ad-hoc models, physical reasoning, and scaling laws. However, we can409

utilize a UDE-automated approach to learn such an approximation from data.410

Let411

wT = Uθ

(

P, T ,
∂T

∂z

)

(23)

14

where P are the physical parameters of the Boussinesq equation at different412

regimes of the ocean, such as the amount of surface heating or the strength413

of the surface winds [102]. We can accurately capture the non-locality of the414

convection in this term by making the UDE a high-dimensional neural network.415

Using data from horizontal average temperatures T with known physical param-416

eters P , we can directly reconstruct a nonlinear P -dependent parameterization417

by training a universal diffusion-advection partial differential equation. Sup-418

plementary Figure 3 demonstrates the accuracy of the approach using a deep419

UPDE with high order stabilized-explicit Runge-Kutta (ROCK) methods where420

the fitting is described in Supplement S6. To contrast the trained UPDE, we di-421

rectly simulated the 3D Boussinesq equations under similar physical conditions422

and demonstrated that the neural parameterization results in around a 15,000x423

acceleration. This demonstrates that physical-dependent parameterizations for424

acceleration can be directly learned from data utilizing the previous knowl-425

edge of the averaging approximation and mixed with a data-driven discovery426

approach.427

4.2 Data-Driven Nonlinear Closure Relations for Model428

Reduction in Non-Newtonian Viscoelastic Fluids429

All continuum materials satisfy conservation equations for mass and momentum.430

The difference between an elastic solid and a viscous fluid comes down to the431

constitutive law relating the stresses and strains. In a one-dimensional system,432

an elastic solid satisfies σ = Gγ, with stress σ, strain γ, and elastic modulus433

G, whereas a viscous fluid satisfies σ = ηγ̇, with viscosity η and strain rate γ̇.434

Non-Newtonian fluids have more complex constitutive laws, for instance when435

stress depends on the history of deformation,436

σ(t) =

∫ t

−∞

G(t− s)F (γ̇(s)) ds, (24)

alternatively expressed in the instantaneous form [103]:437

σ(t) = φ1(t),

dφ1

dt
= G(0)F (γ̇) + φ2,

dφ2

dt
=

dG(0)

dt
F (γ̇) + φ3,

...

(25)

where the history is stored in φi. To become computationally feasible, the438

expansion is truncated, often in an ad-hoc manner, e.g. φn = φn+1 = · · · = 0,439

for some n. Only with a simple choice of G(t) does an exact closure condition440

exist, e.g. the Oldroyd-B model. For a fully nonlinear approximation, we train441

a UODE according to the details in Supplement S7 to learn a closure relation:442

15

σ(t) = U0(γ̇, φ1, . . . , φN), (26)

dφi

dt
= Ui(γ̇, φ1, . . . , φN), for i = 1 to N (27)

from the numerical solution of the FENE-P equations, a fully non-linear consti-443

tutive law requiring a truncation condition [104]. Figure 3 compares the neural444

network approach to a linear, Oldroyd-B like, model for σ and showcases that445

the nonlinear approximation improves the accuracy by more than 50x. We446

note that the neural network approximation accelerates the solution by 2x over447

the original 6-state DAE, demonstrating that the universal differential equation448

approach to model acceleration is not just applicable to large-scale dynamical449

systems like PDEs but also can be effectively employed to accelerate small scale450

systems.451

4.3 Efficient Discrete Physics-Informed Neural Networks452

as Universal ODEs453

To further demonstrate the breadth of computational problems covered by the
UODE framework, we note that the discrete physics-informed neural networks
can be cast into the framework of UODEs. A physics-informed neural network
is the representation of a PDE’s solution via a neural network, allowing machine
learning training techniques to solve the equation [12]. These works note that
the continuous PDE can be discretized in a single dimension to give rise to the
discrete physics-informed neural network, simplified as:

un+ci = un −∆t

q
∑

j=1

aijN [un+cj] (28)

un+1 = un −∆t

q
∑

j=1

bjN [un+cj] (29)

These results have demonstrated that the discrete form can enhance the com-454

putational efficiency of training physics-informed neural networks. However, we455

note that this directly corresponds to training the universal ODE u′ = N (u) us-456

ing an explicit or implicit Runge-Kutta method in the SciML ecosystem. This457

directly gives rise to the further work on multistep discrete physics-informed458

neural networks [70, 80] by training the UODE via a multistep method, but459

also immediately gives the generalization to Runge-Kutta-Chebyshev, Rosen-460

brock, exponential integrator, and more formalizations which all are available461

via the SciML tools.462

5 Discussion463

While many attribute the success of deep learning to its blackbox nature, the464

key advances in deep learning applications have come by developing new archi-465

tectures which directly model the structures that are attempting to be learned.466

16

10
0

10
1

10
2

10
3

10
0

10
1

10
2

10
3

10
4

Training steps

E
rr

o
r

Training error, Neural net

Testing error, Neural net

Training error, linear model

Testing error, linear model

0 1 2 3 4 5 6 7

- 5.0

- 2.5

0.0

2.5

5.0

t

s
tr

e
s
s

Linear model

NN solution

True solution

B

A

Figure 3: Convergence of neural closure relations for a non-Newtonian Fluid.
(A) Error between the approximated σ using the linear approximation Equation
7 and the neural network closure relation Equation 26 against the full FENE-
P solution. The error is measured for the strain rates γ̇ = 12 cosωt for ω =
1, 1.2, . . . , 2 and tested with the strain rate γ̇ = 12 cos 1.5t. (B) Predictions of
stress for testing strain rate for the linear approximation and UODE solution
against the exact FENE-P stress.

17

For example, deep convolutional neural networks for image processing directly467

utilized the local spatial structure of images by modeling convolution stencil op-468

erations. Similarly, recurrent neural networks encode a forward time progression469

into a deep learning model and have excelled in natural language processing and470

time series prediction. Here we present a software that allows for combining ex-471

isting scientific simulation libraries with neural networks to train and augment472

known models with data-driven components. Our results show that by build-473

ing these hybrid mechanistic models with machine learning, we can arrive at474

similar efficiency advancements by utilizing all known prior knowledge of the475

underlying problem’s structure. While we demonstrate the utility of UDEs in476

equation discovery, we have also demonstrated that these methods are capable477

of solving many other problems, and many methods of recent interest, such as478

discrete physics-informed neural networks, fall into the class of UDE methods479

and can thus be analyzed and efficiently computed as part of this formalization.480

Our software implementation is the first deep learning integrated differen-481

tial equation library to include the full spectrum of adjoint sensitivity analysis482

methods that is required to both efficiently and accurately handle the range483

of training problems that can arise from universal differential equations. We484

have demonstrated orders of magnitude performance advantages over previous485

machine learning enhanced adjoint sensitivity ODE software in a variety of sci-486

entific models and demonstrated generalizations to stiff equations, DAEs, SDEs,487

and more. While the results of this paper span many scientific disciplines and488

incorporate many different modeling approaches, together all of the examples489

shown in this manuscript can be implemented using the SciML software ecosys-490

tem in just hundreds of lines of code each, with none of the examples taking491

more than half an hour to train on a standard laptop. This both demonstrates492

the efficiency of the software and its methodologies, along with the potential to493

scale to much larger applications.494

The code for reproducing the computational experiments can be found at:495

https://github.com/ChrisRackauckas/universal_differential_equations496

6 Acknowledgements497

We thank Jesse Bettencourt, Mike Innes, and Lyndon White for being instru-498

mental in the early development of the DiffEqFlux.jl library, Tim Besard and499

Valentin Churavy for the help with the GPU tooling, and David Widmann and500

Kanav Gupta for their fundamental work across DifferentialEquations.jl. Spe-501

cial thanks to Viral Shah and Steven Johnson who have been helpful in the502

refinement of these ideas. We thank Charlie Strauss, Steven Johnson, Nathan503

Urban, and Adam Gerlach for enlightening discussions and remarks on our504

manuscript and software. We thank Stuart Rogers for his careful read and cor-505

rections. We thank David Duvenaud for extended discussions on this work. We506

thank the author of the torchsde library, Xuechen Li, for optimizing the SDE507

benchmark code.508

18

References509

[1] Boukaye Boubacar Traore, Bernard Kamsu-Foguem, and Fana Tangara.510

Deep convolution neural network for image recognition. Ecological infor-511

matics, 48:257–268, 2018.512

[2] M. T. Islam, B. M. N. Karim Siddique, S. Rahman, and T. Jabid. Image513

recognition with deep learning. In 2018 International Conference on Intel-514

ligent Informatics and Biomedical Sciences (ICIIBMS), volume 3, pages515

106–110, Oct 2018.516

[3] Chaofan Chen, Oscar Li, Daniel Tao, Alina Barnett, Cynthia Rudin, and517

Jonathan K Su. This looks like that: deep learning for interpretable image518

recognition. In Advances in Neural Information Processing Systems, pages519

8928–8939, 2019.520

[4] Tom Young, Devamanyu Hazarika, Soujanya Poria, and Erik Cambria.521

Recent trends in deep learning based natural language processing. ieee522

Computational intelligenCe magazine, 13(3):55–75, 2018.523

[5] Daniel W Otter, Julian R Medina, and Jugal K Kalita. A survey of the524

usages of deep learning in natural language processing. arXiv preprint525

arXiv:1807.10854, 2018.526

[6] Y Tsuruoka. Deep learning and natural language processing. Brain and527

nerve= Shinkei kenkyu no shinpo, 71(1):45, 2019.528

[7] Yu Li, Chao Huang, Lizhong Ding, Zhongxiao Li, Yijie Pan, and Xin Gao.529

Deep learning in bioinformatics: Introduction, application, and perspec-530

tive in the big data era. Methods, 2019.531

[8] Binhua Tang, Zixiang Pan, Kang Yin, and Asif Khateeb. Recent advances532

of deep learning in bioinformatics and computational biology. Frontiers533

in Genetics, 10, 2019.534

[9] James Zou, Mikael Huss, Abubakar Abid, Pejman Mohammadi, Ali Torka-535

mani, and Amalio Telenti. A primer on deep learning in genomics. Nature536

genetics, 51(1):12–18, 2019.537

[10] Christof Angermueller, Tanel Pärnamaa, Leopold Parts, and Oliver Stegle.538

Deep learning for computational biology. Molecular systems biology, 12(7),539

2016.540

[11] Davide Bacciu, Paulo JG Lisboa, José D Mart́ın, Ruxandra Stoean, and541

Alfredo Vellido. Bioinformatics and medicine in the era of deep learning.542

arXiv preprint arXiv:1802.09791, 2018.543

[12] Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-544

informed neural networks: A deep learning framework for solving forward545

and inverse problems involving nonlinear partial differential equations.546

Journal of Computational Physics, 378:686–707, 2019.547

19

[13] Mauricio Alvarez, David Luengo, and Neil D Lawrence. Latent force548

models. In Artificial Intelligence and Statistics, pages 9–16, 2009.549

[14] Yueqin Hu, Steve Boker, Michael Neale, and Kelly L Klump. Coupled550

latent differential equation with moderators: Simulation and application.551

Psychological Methods, 19(1):56, 2014.552

[15] Mauricio Alvarez, Jan R Peters, Neil D Lawrence, and Bernhard553

Schölkopf. Switched latent force models for movement segmentation. In554

Advances in neural information processing systems, pages 55–63, 2010.555

[16] Tian Qi Chen, Yulia Rubanova, Jesse Bettencourt, and David K Du-556

venaud. Neural ordinary differential equations. In Advances in neural557

information processing systems, pages 6571–6583, 2018.558

[17] Hongzhou Lin and Stefanie Jegelka. Resnet with one-neuron hidden layers559

is a universal approximator. In Advances in Neural Information Processing560

Systems, pages 6169–6178, 2018.561

[18] David A Winkler and Tu C Le. Performance of deep and shallow neural562

networks, the universal approximation theorem, activity cliffs, and qsar.563

Molecular informatics, 36(1-2):1600118, 2017.564

[19] Alexander N Gorban and Donald C Wunsch. The general approximation565

theorem. In 1998 IEEE International Joint Conference on Neural Net-566

works Proceedings. IEEE World Congress on Computational Intelligence567

(Cat. No. 98CH36227), volume 2, pages 1271–1274. IEEE, 1998.568

[20] M.R. Arahal and E.F. Camacho. Neural network adaptive control of non-569

linear plants. IFAC Proceedings Volumes, 28(13):239 – 244, 1995. 5th570

IFAC Symposium on Adaptive Systems in Control and Signal Processing571

1995, Budapest, Hungary, 14-16 June, 1995.572

[21] Wannes De Groote, Edward Kikken, Erik Hostens, Sofie Van Hoecke, and573

Guillaume Crevecoeur. Neural network augmented physics models for574

systems with partially unknown dynamics: Application to slider-crank575

mechanism. arXiv preprint arXiv:1910.12212, 2019.576

[22] Diederik P Kingma and Jimmy Ba. Adam A method for stochastic opti-577

mization. arXiv preprint arXiv:1412.6980, 2014.578

[23] Dong C Liu and Jorge Nocedal. On the limited memory bfgs method579

for large scale optimization. Mathematical programming, 45(1-3):503–528,580

1989.581

[24] Ronald M Errico. What is an adjoint model? Bulletin of the American582

Meteorological Society, 78(11):2577–2592, 1997.583

[25] Grégoire Allaire. A review of adjoint methods for sensitivity analysis, un-584

certainty quantification and optimization in numerical codes. Ingenieurs585

de l’Automobile, 836:33–36, July 2015.586

20

[26] Gilbert Strang. Computational science and engineering, volume 791.587

Wellesley-Cambridge Press Wellesley, 2007.588

[27] Alan C Hindmarsh, Peter N Brown, Keith E Grant, Steven L Lee, Radu589

Serban, Dan E Shumaker, and Carol S Woodward. SUNDIALS: Suite of590

nonlinear and differential/algebraic equation solvers. ACM Transactions591

on Mathematical Software (TOMS), 31(3):363–396, 2005.592

[28] Steven G Johnson. Notes on adjoint methods for 18.335.593

[29] Biswa Sengupta, Karl J Friston, and William D Penny. Efficient gradient594

computation for dynamical models. NeuroImage, 98:521–527, 2014.595

[30] Christopher Rackauckas, Yingbo Ma, Vaibhav Dixit, Xingjian Guo, Mike596

Innes, Jarrett Revels, Joakim Nyberg, and Vijay Ivaturi. A comparison597

of automatic differentiation and continuous sensitivity analysis for deriva-598

tives of differential equation solutions. arXiv preprint arXiv:1812.01892,599

2018.600

[31] Michael Innes, Elliot Saba, Keno Fischer, Dhairya Gandhi, Marco Con-601

cetto Rudilosso, Neethu Mariya Joy, Tejan Karmali, Avik Pal, and Viral602

Shah. Fashionable modelling with flux. CoRR, abs/1811.01457, 2018.603

[32] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury,604

Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca605

Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito,606

Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,607

Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style,608

high-performance deep learning library. In H. Wallach, H. Larochelle,609

A. Beygelzimer, F. d’Alché Buc, E. Fox, and R. Garnett, editors, Advances610

in Neural Information Processing Systems 32, pages 8024–8035. Curran611

Associates, Inc., 2019.612

[33] Mike Innes, Alan Edelman, Keno Fischer, Chris Rackauckus, Elliot Saba,613

Viral B Shah, and Will Tebbutt. Zygote: A differentiable programming614

system to bridge machine learning and scientific computing. arXiv preprint615

arXiv:1907.07587, 2019.616

[34] Ralf Giering, Thomas Kaminski, and Thomas Slawig. Generating efficient617

derivative code with taf: adjoint and tangent linear euler flow around an618

airfoil. Future generation computer systems, 21(8):1345–1355, 2005.619

[35] Laurent Hascoet and Valérie Pascual. The tapenade automatic differen-620

tiation tool: Principles, model, and specification. ACM Transactions on621

Mathematical Software (TOMS), 39(3):20, 2013.622

[36] Christopher Rackauckas and Qing Nie. Differentialequations.jl – a per-623

formant and feature-rich ecosystem for solving differential equations in624

julia. The Journal of Open Research Software, 5(1), 2017. Exported from625

https://app.dimensions.ai on 2019/05/05.626

21

[37] Tapio Schneider, Shiwei Lan, Andrew Stuart, and Joao Teixeira. Earth627

system modeling 2.0: A blueprint for models that learn from observations628

and targeted high-resolution simulations. Geophysical Research Letters,629

44(24):12–396, 2017.630

[38] Sebastian Krämer, David Plankensteiner, Laurin Ostermann, and Helmut631

Ritsch. Quantumoptics.jl: A julia framework for simulating open quantum632

systems. Computer Physics Communications, 227:109 – 116, 2018.633

[39] Amir Gholami, Kurt Keutzer, and George Biros. Anode: Uncondition-634

ally accurate memory-efficient gradients for neural odes. arXiv preprint635

arXiv:1902.10298, 2019.636

[40] Hong Zhang, Shrirang Abhyankar, Emil Constantinescu, and Mihai An-637

itescu. Discrete adjoint sensitivity analysis of hybrid dynamical systems638

with switching. IEEE Transactions on Circuits and Systems I: Regular639

Papers, 64(5):1247–1259, 2017.640

[41] Thomas Lauß, Stefan Oberpeilsteiner, Wolfgang Steiner, and Karin Nach-641

bagauer. The discrete adjoint method for parameter identification in642

multibody system dynamics. Multibody system dynamics, 42(4):397–410,643

2018.644

[42] J. Revels, M. Lubin, and T. Papamarkou. Forward-mode automatic dif-645

ferentiation in julia. arXiv:1607.07892 [cs.MS], 2016.646

[43] Derek Onken and Lars Ruthotto. Discretize-optimize vs. optimize-647

discretize for time-series regression and continuous normalizing flows.648

arXiv preprint arXiv:2005.13420, 2020.649

[44] Feby Abraham, Marek Behr, and Matthias Heinkenschloss. The effect of650

stabilization in finite element methods for the optimal boundary control651

of the oseen equations. Finite Elements in Analysis and Design, 41(3):229652

– 251, 2004.653

[45] John T Betts and Stephen L Campbell. Discretize then optimize. Math-654

ematics for industry: challenges and frontiers, pages 140–157, 2005.655

[46] Geng Liu, Martin Geier, Zhenyu Liu, Manfred Krafczyk, and Tao Chen.656

Discrete adjoint sensitivity analysis for fluid flow topology optimization657

based on the generalized lattice boltzmann method. Computers & Math-658

ematics with Applications, 68(10):1374 – 1392, 2014.659

[47] Alfonso Callejo, Valentin Sonneville, and Olivier A Bauchau. Discrete660

adjoint method for the sensitivity analysis of flexible multibody systems.661

Journal of Computational and Nonlinear Dynamics, 14(2), 2019.662

[48] S Scott Collis and Matthias Heinkenschloss. Analysis of the streamline663

upwind/petrov galerkin method applied to the solution of optimal control664

problems. 2002.665

22

[49] Jun Liu and Zhu Wang. Non-commutative discretize-then-optimize algo-666

rithms for elliptic pde-constrained optimal control problems. Journal of667

Computational and Applied Mathematics, 362:596–613, 2019.668

[50] E Huntley. A note on the application of the matrix riccati equation to the669

optimal control of distributed parameter systems. IEEE Transactions on670

Automatic Control, 24(3):487–489, 1979.671

[51] Ziv Sirkes and Eli Tziperman. Finite difference of adjoint or adjoint of672

finite difference? Monthly weather review, 125(12):3373–3378, 1997.673

[52] Guojun Hu and Tomasz Kozlowski. Assessment of continuous and dis-674

crete adjoint method for sensitivity analysis in two-phase flow simulations.675

arXiv preprint arXiv:1805.08083, 2018.676

[53] JOHANNES Kepler. Sensitivity analysis: The direct and adjoint method.677

[54] F Van Keulen, RT Haftka, and NH Kim. Review of options for structural678

design sensitivity analysis. part 1: Linear systems. Computer methods in679

applied mechanics and engineering, 194(30-33):3213–3243, 2005.680

[55] M Kouhi, G Houzeaux, F Cucchietti, M Vázquez, and F Rodriguez. Im-681

plementation of discrete adjoint method for parameter sensitivity analysis682

in chemically reacting flows.683

[56] Siva Nadarajah and Antony Jameson. A comparison of the continuous684

and discrete adjoint approach to automatic aerodynamic optimization. In685

38th Aerospace Sciences Meeting and Exhibit, page 667.686

[57] Tianyi Gou and Adrian Sandu. Continuous versus discrete advection ad-687

joints in chemical data assimilation with cmaq. Atmospheric environment,688

45(28):4868–4881, 2011.689

[58] Nicolas R Gauger, Michael Giles, Max Gunzburger, and Uwe Nau-690

mann. Adjoint methods in computational science, engineering, and fi-691

nance (dagstuhl seminar 14371). In Dagstuhl Reports, volume 4. Schloss692

Dagstuhl-Leibniz-Zentrum fuer Informatik, 2015.693

[59] G. Hu and T. Kozlowski. Development and assessment of adjoint sen-694

sitivity analysis method for transient two-phase flow simulations. pages695

2246–2259, January 2019. 18th International Topical Meeting on Nuclear696

Reactor Thermal Hydraulics, NURETH 2019 ; Conference date: 18-08-697

2019 Through 23-08-2019.698

[60] Dacian N. Daescu, Adrian Sandu, and Gregory R. Carmichael. Direct699

and adjoint sensitivity analysis of chemical kinetic systems with kpp:700

Ii—numerical validation and applications. Atmospheric Environment,701

37(36):5097 – 5114, 2003.702

23

[61] A Schwartz and E Polak. Runge-kutta discretization of optimal control703

problems. IFAC Proceedings Volumes, 29(8):123–128, 1996.704

[62] Kimia Ghobadi, Nedialko S Nedialkov, and Tamas Terlaky. On the dis-705

cretize then optimize approach. Preprint for Industrial and Systems En-706

gineering, 2009.707

[63] Alain Sei and William W Symes. A note on consistency and adjointness708

for numerical schemes. 1995.709

[64] William W Hager. Runge-kutta methods in optimal control and the trans-710

formed adjoint system. Numerische Mathematik, 87(2):247–282, 2000.711

[65] Adrian Sandu, Dacian N Daescu, Gregory R Carmichael, and Tianfeng712

Chai. Adjoint sensitivity analysis of regional air quality models. Journal713

of Computational Physics, 204(1):222–252, 2005.714

[66] Shashi Gowda, Yingbo Ma, Valentin Churavy, Alan Edelman, and715

Christopher Rackauckas. Sparsity programming: Automated sparsity-716

aware optimizations in differentiable programming. 2019.717

[67] Xuechen Li, Ting-Kam Leonard Wong, Ricky T. Q. Chen, and David718

Duvenaud. Scalable gradients for stochastic differential equations. Inter-719

national Conference on Artificial Intelligence and Statistics, 2020.720

[68] E. Hairer, S. P. Nørsett, and G. Wanner. Solving Ordinary Differen-721

tial Equations I (2nd Revised. Ed.): Nonstiff Problems. Springer-Verlag,722

Berlin, Heidelberg, 1993.723

[69] Zichao Long, Yiping Lu, Xianzhong Ma, and Bin Dong. Pde-net: Learning724

pdes from data. arXiv preprint arXiv:1710.09668, 2017.725

[70] Maziar Raissi, Paris Perdikaris, and George Em Karniadakis. Multistep726

neural networks for data-driven discovery of nonlinear dynamical systems.727

arXiv preprint arXiv:1801.01236, 2018.728

[71] Peter J Schmid. Dynamic mode decomposition of numerical and experi-729

mental data. Journal of fluid mechanics, 656:5–28, 2010.730

[72] Matthew O Williams, Ioannis G Kevrekidis, and Clarence W Rowley.731

A data–driven approximation of the koopman operator: Extending dy-732

namic mode decomposition. Journal of Nonlinear Science, 25(6):1307–733

1346, 2015.734

[73] Qianxiao Li, Felix Dietrich, Erik M Bollt, and Ioannis G Kevrekidis. Ex-735

tended dynamic mode decomposition with dictionary learning: A data-736

driven adaptive spectral decomposition of the koopman operator. Chaos:737

An Interdisciplinary Journal of Nonlinear Science, 27(10):103111, 2017.738

24

[74] Naoya Takeishi, Yoshinobu Kawahara, and Takehisa Yairi. Learning koop-739

man invariant subspaces for dynamic mode decomposition. In Advances740

in Neural Information Processing Systems, pages 1130–1140, 2017.741

[75] Hayden Schaeffer. Learning partial differential equations via data discov-742

ery and sparse optimization. Proceedings of the Royal Society A: Mathe-743

matical, Physical and Engineering Sciences, 473(2197):20160446, 2017.744

[76] Markus Quade, Markus Abel, Kamran Shafi, Robert K Niven, and745

Bernd R Noack. Prediction of dynamical systems by symbolic regression.746

Physical Review E, 94(1):012214, 2016.747

[77] Hongqing Cao, Lishan Kang, Yuping Chen, and Jingxian Yu. Evolution-748

ary modeling of systems of ordinary differential equations with genetic749

programming. Genetic Programming and Evolvable Machines, 1(4):309–750

337, 2000.751

[78] Khalid Raza and Rafat Parveen. Evolutionary algorithms in genetic reg-752

ulatory networks model. CoRR, abs/1205.1986, 2012.753

[79] Hayden Schaeffer, Giang Tran, and Rachel Ward. Extracting sparse high-754

dimensional dynamics from limited data. SIAM Journal on Applied Math-755

ematics, 78(6):3279–3295, 2018.756

[80] Ramakrishna Tipireddy, Paris Perdikaris, Panos Stinis, and Alexandre M.757

Tartakovsky. A comparative study of physics-informed neural network758

models for learning unknown dynamics and constitutive relations. CoRR,759

abs/1904.04058, 2019.760

[81] Steven L Brunton, Joshua L Proctor, and J Nathan Kutz. Discovering gov-761

erning equations from data by sparse identification of nonlinear dynamical762

systems. Proceedings of the National Academy of Sciences, 113(15):3932–763

3937, 2016.764

[82] Niall M Mangan, Steven L Brunton, Joshua L Proctor, and J Nathan765

Kutz. Inferring biological networks by sparse identification of nonlinear766

dynamics. IEEE Transactions on Molecular, Biological and Multi-Scale767

Communications, 2(1):52–63, 2016.768

[83] Niall M Mangan, J Nathan Kutz, Steven L Brunton, and Joshua L Proc-769

tor. Model selection for dynamical systems via sparse regression and in-770

formation criteria. Proceedings of the Royal Society A: Mathematical,771

Physical and Engineering Sciences, 473(2204):20170009, 2017.772

[84] Peng Zheng, Travis Askham, Steven L. Brunton, J. Nathan Kutz, and773

Aleksandr Y. Aravkin. A unified framework for sparse relaxed regularized774

regression: SR3. 7:1404–1423. Conference Name: IEEE Access.775

25

[85] Kathleen Champion, Peng Zheng, Aleksandr Y. Aravkin, Steven L. Brun-776

ton, and J. Nathan Kutz. A unified sparse optimization framework to777

learn parsimonious physics-informed models from data.778

[86] Alexander Bills, Shashank Sripad, William Leif Fredericks, Matthew779

Guttenberg, Devin Charles, Evan Frank, and Venkatasubramanian780

Viswanathan. Universal Battery Performance and Degradation Model781

for Electric Aircraft. 7 2020.782

[87] Raj Dandekar and Lydia Bourouiba. Splash upon impact on a deep pool.783

In preparation.784

[88] Yang Cao, Shengtai Li, Linda Petzold, and Radu Serban. Adjoint sen-785

sitivity analysis for differential-algebraic equations: The adjoint dae sys-786

tem and its numerical solution. SIAM journal on scientific computing,787

24(3):1076–1089, 2003.788

[89] R. A. Fisher. The wave of advance of advantageous genes. Annals of789

Eugenics, 7(4):355–369, 1937.790

[90] P. Grindrod. The Theory and Applications of Reaction-diffusion Equa-791

tions: Patterns and Waves. Oxford applied mathematics and computing792

science series. Clarendon Press, 1996.793

[91] Justin Sirignano and Konstantinos Spiliopoulos. Dgm: A deep learning794

algorithm for solving partial differential equations. Journal of Computa-795

tional Physics, 375:1339–1364, Dec 2018.796

[92] Isaac E Lagaris, Aristidis Likas, and Dimitrios I Fotiadis. Artificial neural797

networks for solving ordinary and partial differential equations. IEEE798

transactions on neural networks, 9(5):987–1000, 1998.799

[93] E Weinan, Jiequn Han, and Arnulf Jentzen. Deep learning-based numer-800

ical methods for high-dimensional parabolic partial differential equations801

and backward stochastic differential equations. Communications in Math-802

ematics and Statistics, 5(4):349–380, 2017.803

[94] Jiequn Han, Arnulf Jentzen, and Weinan E. Solving high-dimensional par-804

tial differential equations using deep learning. Proceedings of the National805

Academy of Sciences, 115(34):8505–8510, 2018.806

[95] Yaohua Zang, Gang Bao, Xiaojing Ye, and Haomin Zhou. Weak adver-807

sarial networks for high-dimensional partial differential equations. arXiv808

preprint arXiv:1907.08272, 2019.809

[96] Côme Huré, Huyên Pham, and Xavier Warin. Some machine learn-810

ing schemes for high-dimensional nonlinear pdes. arXiv preprint811

arXiv:1902.01599, 2019.812

26

[97] H Lamba. An adaptive timestepping algorithm for stochastic differential813

equations. Journal of computational and applied mathematics, 161(2):417–814

430, 2003.815

[98] Benoit Cushman-Roisin and Jean-Marie Beckers. Chapter 4 - equations816

governing geophysical flows. In Benoit Cushman-Roisin and Jean-Marie817

Beckers, editors, Introduction to Geophysical Fluid Dynamics, volume 101818

of International Geophysics, pages 99 – 129. Academic Press, 2011.819

[99] Zhihua Zhang and John C. Moore. Chapter 11 - atmospheric dynamics.820

In Zhihua Zhang and John C. Moore, editors, Mathematical and Physical821

Fundamentals of Climate Change, pages 347 – 405. Elsevier, Boston, 2015.822

[100] Section 1.3 - governing equations. In Lakshmi H. Kantha and Carol Anne823

Clayson, editors, Numerical Models of Oceans and Oceanic Processes, vol-824

ume 66 of International Geophysics, pages 28–46. Academic Press, 2000.825

[101] Stephen M Griffies and Alistair J Adcroft. Formulating the equations of826

ocean models. 2008.827

[102] Stephen M. Griffies, Michael Levy, Alistair J. Adcroft, Gokhan Danaba-828

soglu, Robert W. Hallberg, Doug Jacobsen, William Large, , and Todd829

Ringler. Theory and Numerics of the Community Ocean Vertical Mixing830

(CVMix) Project. Technical report, 2015. Draft from March 9, 2015. 98831

+ v pages.832

[103] F.A. Morrison and A.P.C.E.F.A. Morrison. Understanding Rheology. Ray-833

mond F. Boyer Library Collection. Oxford University Press, 2001.834

[104] P.J. Oliveira. Alternative derivation of differential constitutive equa-835

tions of the oldroyd-b type. Journal of Non-Newtonian Fluid Mechanics,836

160(1):40 – 46, 2009. Complex flows of complex fluids.837

27

Figures

Figure 1

Automated Lotka-Volterra equation discovery with UODE-enhanced SInDy. (A) The error in the trained
UODE against x(t) and y(t) in green and yellow respectively. (B) The measured values of the missing term
U2(x; y) throughout the time series, with the neural network approximate in green and the true value xy in
yellow. (C) The extrapolation of the knowledge-enhanced SInDy �t series. The green and yellow dots
show the data that was used to �t the UODE, and the dots show the true solution of the Lotka-Volterra
Equations 8 beyond the training data. The blue and purple lines show the extrapolated solution how the
UODE-enhanced SInDy recovered equations.

Figure 2

Recovery of the UPDE for the Fisher-KPP equation. (A) Training data and (B) prediction of the UPDE for
ρ(x, t). (C) Curves for the weights of the CNN �lter [w1,w2,w3] indicate the recovery of the [1,−2,1] stencil
for the 1-dimensional Laplacian. (D) Comparison of the learned (blue) and the true growth term (orange)
showcases the learned parabolic form of the missing nonlinear equation.

Figure 3

Convergence of neural closure relations for a non-Newtonian Fluid. (A) Error between the approximated σ
using the linear approximation Equation 7 and the neural network closure relation Equation 26 against
the full FENE- P solution. The error is measured for the strain rates ฀γ = 12cos ωt for ω = 1,1.2,...,2 and
tested with the strain rate ฀γ = 12 cos 1.5t. (B) Predictions of stress for testing strain rate for the linear
approximation and UODE solution against the exact FENE-P stress.

Supplementary Files

This is a list of supplementary �les associated with this preprint. Click to download.

UniversalDifferentialEquationsSupplement.pdf

https://assets.researchsquare.com/files/rs-55125/v1/UniversalDifferentialEquationsSupplement.pdf

