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Abstract
Currently, the most successful approach to steganography in empirical

objects, such as digital media, is to embed the payload while minimizing a
suitably defined distortion function. The design of the distortion is essen-
tially the only task left to the steganographer since efficient practical codes
exist that embed near the payload–distortion bound. The practitioner’s
goal is to design the distortion to obtain a scheme with a high empirical
statistical detectability. In this paper, we propose a universal distortion
design called UNIWARD (UNIversal WAvelet Relative Distortion) that
can be applied for embedding in an arbitrary domain. The embedding
distortion is computed as a sum of relative changes of coefficients in a
directional filter bank decomposition of the cover image. The direction-
ality forces the embedding changes to such parts of the cover object that
are difficult to model in multiple directions, such as textures or noisy
regions, while avoiding smooth regions or clean edges. We demonstrate
experimentally using rich models as well as targeted attacks that stegano-
graphic methods built using UNIWARD match or outperform the current
state of the art in the spatial domain, JPEG domain, and side-informed
JPEG domain.

1 Introduction
Designing steganographic algorithms for empirical cover sources [1] is very chal-
lenging due to the fundamental lack of accurate models. The most successful
approach today avoids estimating (and preserving) the cover source distribution
because this task is infeasible for complex and highly non-stationary sources,
such as digital images. Instead, message embedding is formulated as source
coding with a fidelity constraint [29] – the sender hides her message while min-
imizing an embedding distortion. Practical embedding algorithms that operate
near the theoretical payload–distortion bound are available for a rather general
class of distortion functions [6, 4].

The key element of this general framework is the distortion, which needs
to be designed in such a way that tests on real imagery indicate a high level
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of security.1 In [5], a heuristically-defined distortion function was parametrized
and then optimized to obtain the smallest detectability in terms of a margin
between classes within a selected feature space (cover model). However, unless
the cover model is a complete statistical descriptor of the empirical source,
such optimized schemes may, paradoxically, end up being more detectable if the
Warden designs the detector “outside of the model” [2, 22], which brings us back
to the main and rather difficult problem – modeling the source.

In the JPEG domain, by far the most successful paradigm is to minimize
the rounding distortion w.r.t. the raw, uncompressed image, if available [20, 28,
32, 17, 18]. In fact, this “side-informed embedding” can be applied whenever
the sender possesses a higher-quality “precover”2 that is quantized to obtain
the cover.3 Currently, the most secure embedding method for JPEG images
that does not use any side information is the Uniform Embedding Distortion
(UED) [14] that substantially improved upon the nsF5 algorithm [12] – the
previous state of the art. Note that most embedding algorithms for the JPEG
format use only non-zero DCT coefficients, which makes them naturally content-
adaptive.

In the spatial domain, embedding costs are typically required to be low in
complex textures or “noisy” areas and high in smooth regions. For example,
HUGO [27] defines the distortion as a weighted norm between higher-order
statistics of pixel differences in cover and stego images [26], with high weights
assigned to well-populated bins and low weights to sparsely populated bins that
correspond to more complex content. An alternative model-free approach called
WOW (Wavelet Obtained Weights) [15] uses a bank of directional high-pass fil-
ters to obtain the so-called directional residuals, which assess the content around
each pixel along multiple different directions. By measuring the impact of em-
bedding on every directional residual and by suitably aggregating these impacts,
WOW forces the distortion to be high where the content is predictable in at least
one direction (smooth areas and clean edges) and low where the content is un-
predictable in every direction (as in textures). The resulting algorithm is highly
adaptive and has been shown to better resists steganalysis using rich models [10]
than HUGO [15].

The distortion function proposed in this paper bears similarity to that of
WOW but is simpler and suitable for embedding in an arbitrary domain. Since
the distortion is in the form of a sum of relative changes between the stego
and cover images represented in the wavelet domain, hence its name: UNIversal
WAvelet Relative Distortion (UNIWARD).

After introducing the basic notation and terminology in Section 2, we de-
scribe the distortion function in its most general form in Section 3 – one suitable
for embedding in both the spatial and JPEG domains and the other for side-
informed JPEG steganography. We also describe the additive approximation
of UNIWARD that will be exclusively used in this paper. In Section 4, we
introduce the common core of all experiments – the cover source, steganalysis
features, the classifier used to build the detectors, and the empirical measure

1For a given empirical cover source, the statistical detectability is typically evaluated em-
pirically using classifiers trained on cover and stego examples from the source.

2The concept of precover was used for the first time by Ker [19].
3Historically, the first side-informed embedding method was the Embedding While Dither-

ing algorithm [8], in which a message was embedded to minimize the color quantization error
when converting a true-color image to a palette image.
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of security. A study of the best settings for UNIWARD, formed by the choice
of the directional filter bank and a stabilizing constant, appear in Section 5.
Section 6 contains the results of all experiments in the spatial, JPEG, and side-
informed JPEG domains as well as the comparison with previous art. The
security is measured empirically using classifiers trained with rich media models
on a range of payloads and quality factors. The paper is concluded in Section 7.

This paper is an extended and adjusted version of an article presented at the
First ACM Information Hiding and Multimedia Security Workshop in Montpel-
lier in June 2013 [16].

2 Preliminaries
2.1 Notation
Capital and lower-case boldface symbols stand for matrices and vectors, re-
spectively. The symbols X = (Xij),Y = (Yij) ∈ In1×n2 will always be used
for a cover (and the corresponding stego) image with n1 × n2 elements at-
taining values in a finite set I. The image elements will be either 8-bit pixel
values, in which case I = {0, . . . , 255}, or quantized JPEG DCT coefficients,
I = {−1024, . . . , 1023}, arranged into an n1×n2 matrix by replacing each 8×8
pixel block with the corresponding block of quantized coefficients. For simplic-
ity and without loss on generality, we will assume that n1 and n2 are multiples
of 8.

For side-informed JPEG steganography, a precover (raw, uncompressed) im-
age will be denoted as P = (Pij) ∈ In1×n2 . When compressing P, first a block-
wise DCT transform is executed for each 8× 8 block of pixels from a fixed grid.
Then, the DCT coefficients are divided by quantization steps and rounded to
integers. Let P(b) be the bth 8 × 8 block when ordering the blocks, e.g., in
a row-by-row fashion (b = 1, . . . , n1 · n2/64). With a luminance quantization
matrix Q = {qkl}, 1 ≤ k, l ≤ 8, we denote D(b) = DCT(P(b))./Q the raw (non-
rounded) values of DCT coefficients. Here, the operation ′./′ is an elementwise
division of matrices and DCT(.) is the DCT transform used in the JPEG com-
pressor. Furthermore, we denote X(b) = [D(b)] the quantized DCT coefficients
rounded to integers. We use the symbols D and X to denote the arrays of all
raw and quantized DCT coefficients when arranging all blocks D(b) and X(b) in
the same manner as the 8× 8 pixel blocks in the uncompressed image. We will
use the symbol J−1(X) for the JPEG image represented using quantized DCT
coefficients X when decompressed to the spatial domain.4

For matrix A, AT is its transpose, and |A| = (|aij |) is the matrix of absolute
values. The indices i, j will be used solely to index pixels or DCT coefficients,
while u, v will be exclusively used to index coefficients in a wavelet decomposi-
tion.

2.2 DCT transform
We would like to point out that the JPEG format allows several different imple-
mentations of the DCT transform, DCT(.). The specific choice of the transform

4The process J−1 involves rounding to integers and clipping to the dynamic range I.
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implementation may especially impact the security of side-informed steganogra-
phy. In this paper, we work with the DCT(.) implemented as ’dct2’ in Matlab
when feeding in pixels represented as ’double’. In particular, a block of 8 × 8
DCT coefficients is computed from a precover block P(b) as

DCT(P(b))kl =
7∑

i,j=0

wkwl
4 cos πk(2i+ 1)

16 × cos πl(2j + 1)
16 P

(b)
ij , (1)

where k, l ∈ {0, . . . , 7} index the DCT mode and w0 = 1/
√

2, wk = 1 for k > 0.
To obtain an actual JPEG image from a two-dimensional array of quan-

tized coefficients X (cover) or Y (stego), we first create an (arbitrary) JPEG
image of the same dimensions n1 × n2 using Matlab’s ’imwrite’ with the same
quality factor, read its JPEG structure using Sallee’s Matlab JPEG Toolbox
(http://dde.binghamton.edu/download/jpeg_toolbox.zip) and then merely
replace the array of quantized coefficients in this structure with X and Y to
obtain the cover and stego images, respectively. This way, we guarantee that
both images were created using the same JPEG compressor and that all that we
will be detecting are the embedding changes rather than compressor artifacts.

3 Universal distortion function UNIWARD
In this section, we provide a general description of the proposed universal dis-
tortion function UNIWARD and explain how it can be used to embed in the
JPEG and the side-informed JPEG domains. The distortion depends on the
choice of a directional filter bank and one scalar parameter whose purpose is
stabilizing the numerical computations. The distortion design is finished in the
next Section 5, which investigates the effect of the filter bank and the stabilizing
constant on empirical security.

Since rich models [11, 10, 13, 30] currently used in steganalysis are capable of
detecting changes along “clean edges” that can be well fitted using locally poly-
nomial models, whenever possible the embedding algorithm should embed into
textured/noisy areas that are not easily modellable in any direction. We quan-
tify this using outputs of a directional filter bank and construct the distortion
function in this manner.

3.1 Directional filter bank
By a directional filter bank, we understand a set of three linear shift-invariant
filters represented with their kernels B = {K(1),K(2),K(3)}. They are used
to evaluate the smoothness of a given image X along the horizontal, vertical,
and diagonal direction by computing the so-called directional residuals W(k) =
K(k)?X, where ’?’ is a mirror-padded convolution so that W(k) has again n1×n2
elements. The mirror-padding prevents introducing embedding artifacts at the
image boundary.

While it is possible to use arbitrary filter banks, we will exclusively use ker-
nels built from one-dimensional low-pass (and high-pass) wavelet decomposition
filters h (and g):

K(1) = h · gT, K(2) = g · hT, K(3) = g · gT. (2)
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In this case, the filters correspond, respectively, to two-dimensional LH, HL,
and HH wavelet directional high-pass filters and the residuals coincide with the
first-level undecimated wavelet LH, HL, and HH directional decomposition of X.
We constrained ourselves to wavelet filter banks because wavelet representations
are known to provide good decorrelation and energy compactification for images
of natural scenes (see, e.g., Chapter 7 in [31]).

3.2 Distortion function (non-side-informed embedding)
We are now ready to describe the universal distortion function. We do so first
for embedding that does not use any precover. Given a pair of cover and stego
images, X, and Y, represented in the spatial (pixel) domain, we will denote
with W

(k)
uv (X) and W

(k)
uv (Y), k = 1, 2, 3, u ∈ {1, . . . , n1}, v ∈ {1, . . . , n2},

their corresponding uvth wavelet coefficient in the kth subband of the first
decomposition level. The UNIWARD distortion function is the sum of relative
changes of all wavelet coefficients w.r.t. the cover image:

D(X,Y) ,
3∑
k=1

n1∑
u=1

n2∑
v=1

|W (k)
uv (X)−W (k)

uv (Y)|
σ + |W (k)

uv (X)|
, (3)

where σ > 0 is a constant stabilizing the numerical calculations.
The ratio in (3) is smaller when a large cover wavelet coefficient is changed

(where texture and edges appear). Embedding changes are discouraged in re-
gions where |W (k)

uv (X)| is small for at least one k, which corresponds to a direc-
tion along which the content is modellable.

For JPEG images, the distortion between the two arrays of quantized DCT
coefficients, X and Y, is computed by first decompressing the JPEG files to the
spatial domain, and evaluating the distortion between the decompressed images,
J−1(X) and J−1(Y), in the same manner as in (3):

D(X,Y) , D
(
J−1(X), J−1(Y)

)
. (4)

Note that the distortion (3) is non-additive because changing pixel Xij will
affect s×s wavelet coefficients, where s×s is the size of the 2D wavelet support.
Also, changing a JPEG coefficient Xij will affect a block of 8 × 8 pixels and
therefore a block of (8+s−1)×(8+s−1) wavelet coefficients. It is thus apparent
that when changing neighboring pixels (or DCT coefficients), the embedding
changes “interact,” hence the non-additivity of D.

3.3 Distortion function (JPEG side-informed embedding)
By side-informed embedding in JPEG domain, we understand the following
general principle. Given the raw DCT coefficientDij obtained from the precover
P, the embedder has the choice of rounding Dij up or down to modulate its
parity (usually the least significant bit of the rounded value). We denote with
eij = |Dij −Xij |, eij ∈ [0, 0.5], the rounding error for the ijth coefficient when
compressing the precover P to the cover image X. Rounding “to the other side”
leads to an embedding change, Yij = Xij + sign(Dij −Xij), which corresponds
to a “rounding error” 1 − eij . Thus, every embedding change increases the
distortion w.r.t. the precover by the difference between both rounding errors:
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|Dij − Yij | − |Dij −Xij | = 1− 2eij . For the side-informed embedding in JPEG
domain, we therefore define the distortion as the difference:

D(SI)(X,Y) , D
(
P, J−1(Y)

)
−D

(
P, J−1(X)

)
=

3∑
k=1

n1∑
u=1

n2∑
v=1

[
|W (k)

uv (P)−W (k)
uv

(
J−1(Y)

)
|

σ + |W (k)
uv (P)|

−
|W (k)

uv (P)−W (k)
uv

(
J−1(X)

)
|

σ + |W (k)
uv (P)|

]
(5)

Note that the linearity of DCT and the wavelet transforms guarantee
that D(SI)(X,Y) ≥ 0. This is because rounding a DCT coefficient (to ob-
tain X) corresponds to adding a certain pattern (that depends on the modified
DCT mode) in the wavelet domain. Rounding “to the other side” (to obtain
Y) corresponds to subtracting the same pattern but with a larger amplitude.
This is why |W (k)

uv (P)−W (k)
uv (J−1(Y))|− |W (k)

uv (P)−W (k)
uv (J−1(X))| ≥ 0 for all

k, u, v.
We note at this point that (5) bears some similarity to the distortion used

in Normalized Perturbed Quantization (NPQ) [17, 18], where the authors also
proposed the distortion as a relative change of cover DCT coefficients. The
main difference is that we compute the distortion using a directional filter bank,
allowing thus directional sensitivity and potentially better content adaptability.
Furthermore, we do not eliminate DCT coefficients that are zeros in the cover.
Finally, and most importantly, in contrast to NPQ our design naturally incor-
porates the effect of the quantization step because the wavelet coefficients are
computed from the decompressed JPEG image.

3.3.1 Technical issues with zero embedding costs

When running experiments with any side-informed JPEG steganography in
which the embedding cost is zero, when eij = 1/2, we discovered a techni-
cal problem that, to the best knowledge of the authors, has not been disclosed
elsewhere. The problem is connected to the fact that when eij = 1/2 the cost of
rounding Dij “down” instead of “up” should not be zero because, after all, this
does constitute an embedding change. This does not affect security much when
the number of such DCT coefficients is small. With an increasing number of
coefficients with eij = 1/2 (we will call them 1/2-coefficients), however, 1− 2eij
is no longer a good measure of statistical detectability and one starts observing
a rather pathological behavior – with payload approaching zero, the detection
error does not saturate at 50% (random guessing) but rather at a lower value
and only reaches 50% for payloads nearly equal to zero.5 The strength with
which this phenomenon manifests depends on how many 1/2-coefficients are in
the image, which in turn depends on two factors – the implementation of the
DCT used to compute the costs and the JPEG quality factor. When using the
slow DCT (implemented using ’dct2’ in Matlab), the number 1/2-coefficients is
small and does not affect security at least for low quality factors. However, in
the fast-integer implementation of DCT (e.g., Matlab’s ’imwrite’), all Dij are
multiples of 1/8. Thus, with decreasing quantization step (increasing JPEG
quality factor), the number of 1/2-coefficients increases.

5This is because the embedding strongly prefers 1/2-coefficients.
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To avoid dealing with this issue in this paper, we used the slow DCT im-
plemented using Matlab’s ’dct2’ as explained in Section 2.2 to obtain the costs.
Even with the slow DCT, however, 1/2-coefficients do cause problems when
the quality factor is high. As one can easily verify from the formula for the
DCT (??), when k, l ∈ {0, 4}, the value of Dkl is always a rational number
because the cosines are either 1 or

√
2/2, which, together with the multiplica-

tive weights w, gives again a rational number. In particular, the DC coefficient
(mode 00) is always a multiple of 1/4, the coefficients of modes 04 and 40 are
multiples of 1/8, and the coefficients corresponding to mode 44 are multiples
of 1/16. For all other combinations of k, l ∈ {0, . . . , 7}, Dij is an irrational
number. In practice, any embedding whose costs are zero for 1/2-coefficients
will thus strongly prefer these four DCT modes, causing a highly uneven distri-
bution of embedding changes among the DCT coefficients. Because rich JPEG
models [21] utilize statistics collected for each mode separately, they are capa-
ble of detecting this statistical peculiarity even at low payloads. This problem
becomes more serious with increasing quality factor.

These above embedding artifacts can be largely suppressed by prohibiting
embedding changes in all 1/2-coefficients in modes 00, 04, 40, and 44.6 In
Figure 8, where we show the comparison of various side-informed embedding
methods for quality factor 95, we intentionally included the detection errors for
all tested schemes where this measure was not enforced to prove the validity of
the above arguments.

The solution of the problem with 1/2-coefficients, which is clearly not op-
timal, is related to the more fundamental problem, which is how exactly the
side-information in the form of an uncompressed image should be utilized for
the design of steganographic distortion functions. The authors postpone a de-
tailed study of this quite intriguing problem to a separate paper.

3.4 Additive approximation of UNIWARD
Any distortion function D(X,Y) can be used for embedding in its additive ap-
proximation [4] by using D to compute the cost ρij of changing each pixel/DCT
coefficient Xij . A significant advantage of using an additive approximation is
the simplicity of the overall design. The embedding can be implemented in a
straightforward manner by applying nowadays a standard tool in steganogra-
phy – the Syndrome-Trellis Codes (STCs) [6]. All experiments in this paper are
carried out with additive approximations of UNIWARD.

The cost of changing Xij to Yij , and leaving all other cover elements un-
changed, is:

ρij(X, Yij) , D(X,X∼ijYij), (6)

where X∼ijYij is the cover image X with only its ijth element changed: Xij →
Yij .7 Note that ρij = 0 when X = Y. The additive approximation to (3) and (5)
will be denoted as DA(X,Y) and D(SI)

A (X,Y), respectively. For example,

DA(X,Y) =
n1∑
i=1

n2∑
j=1

ρij(X, Yij)[Xij 6= Yij ], (7)

6In practice, we assign very large costs to such coefficients.
7This notation was used in [4] and is also standard in the literature on Markov random

fields [33].
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where [S] is the Iverson bracket equal to 1 when the statement S is true and 0
when S is false.

Note that, due to the absolute values in D(X,Y) (3), ρij(X, Xij + 1) =
ρij(X, Xij − 1), which permits us to use a ternary embedding operation for
the spatial and JPEG domains.8 Practical embedding algorithms can be con-
structed using the ternary multi-layered version of STCs (Section IV in [6]).

On the other hand, for the side-informed JPEG steganography, D(SI)
A (X,Y)

is inherently limited to a binary embedding operation because Dij is either
rounded up or down.

The embedding methods that use the additive approximation of UNIWARD
for the spatial, JPEG, and side-informed JPEG domain will be called S-UNIWARD,
J-UNIWARD, and SI-UNIWARD, respectively.

3.5 Relationship of UNIWARD to WOW
The distortion function of WOW bears some similarity to UNIWARD in the
sense that the embedding costs are also computed from three directional resid-
uals. The WOW embedding costs are, however, computed a different way that
makes it rather difficult to use it for embedding in other domains, such as the
JPEG domain.9

To obtain a cost of changing pixel Xij → Yij , WOW first computes the
embedding distortion in the wavelet domain weighted by the wavelet coeffcients
of the cover. This is implemented as a convolution ξ(k)

ij = |W (k)
uv (X)|?|W (k)

uv (X)−
W

(k)
uv (X∼ijYij)| (see Eq. (2) in [15]). These so-called “embedding suitabilities”

ξ
(k)
ij are then aggregated over all three subbands using the reciprocal Hölder
norm, ρ(WOW)

ij =
∑3
k=1 1/ξ(k)

ij to give WOW the proper content-adaptivity in
the spatial domain.

In principle, this approach could be used for embedding in the JPEG (or
some other) domain in a similar way as in UNIWARD. However, notice that
the suitabilities ξ(k)

ij increase with increasing JPEG quantization step (increasing
spatial frequency), giving the high-frequency DCT coefficients smaller costs,
ρ

(WOW)
ij , and thus a higher embedding probability than for the low-frequency

coefficients. This creates both visible and statistically detectable artifacts. In
contrast, the embedding costs in UNIWARD are higher for high-frequency DCT
coefficients, desirably discouraging embedding changes in coefficients which are
largely zeros.

4 Common core of all experiments
Before we move to the experimental part of this paper, which appears in Sec-
tions 5 and 6, we introduce the common core of all experiments: the cover source,
steganalysis features, the classifier used to build the steganography detectors,
and an empirical measure of security.

8One might (seemingly rightfully) argue that the cost should depend on the polarity of the
change. On the other hand, since the embedding changes with UNIWARD are restricted to
textures, the equal costs are in fact plausible.

9This is one of the reasons why UNIWARD was conceived.

8



4.1 Cover source
All experiments are conducted on the BOSSbase database ver. 1.01 [7] con-
taining 10,000 512 × 512 8-bit grayscale images coming from eight different
cameras. This database is very convenient for our purposes because it contains
uncompressed images that serve as precovers for side-informed JPEG embed-
ding. Also, the images can be compressed to any desirable quality factor for the
JPEG domain.

The steganographic security is evaluated empirically using binary classifiers
trained on a given cover source and its stego version embedded with a fixed
payload. Even though this setup is artificial and does not correspond to real-
life applications, it allows assessment of security w.r.t. the payload size, which
is the goal of academic investigations of this type.10

4.2 Steganalysis features
Spatial-domain steganography methods will be analyzed using the Spatial Rich
Model (SRM) [10] consisting of 39 symmetrized sub-models quantized with three
different quantization factors with a total dimension of 34, 671.11 JPEG-domain
methods (including the side-informed algorithms) will be steganalyzed using the
union of a downscaled version of the SRM with a single quantization step q = 1
(SRMQ1) with dimension 12, 753 and the JPEG Rich Model (JRM) [21] with
dimension 22,510, giving the total feature dimension of 35,263.

4.3 Machine learning
All classifiers will be implemented using the ensemble [23] with Fisher linear
discriminant as the base learner. The security is quantified using the ensemble’s
“out-of-bag” (OOB) error EOOB, which is an unbiased estimate of the minimal
total testing error under equal priors, PE = minPFA

1
2 (PFA + PMD) [23]. The

statistical detectability is usually displayed graphically by plotting EOOB as
a function of the relative payload. With the feature dimensionality and the
database size, the statistical scatter of EOOB over multiple ensemble runs with
different seeds was typically so small that drawing error bars around the data
points in the graphs would not show two visually discernible horizontal lines,
which is why we omit this information in our graphs. As will be seen later,
the differences in detectability between the proposed methods and prior art are
so large that there should be no doubt about the statistical significance of the
improvement. The code for extractors of all rich models as well as the ensemble
is available at http://dde.binghamton.edu/download.

5 Determining the parameters of UNIWARD
In this section, we study how the wavelet basis and the stabilizing constant σ in
the distortion function UNIWARD affect the empirical security. We first focus
on the parameter σ and then on the filter bank.

10Building a universal detector of steganography is not the goal of this paper.
11In Section 5, we will describe and work with another small feature set whose sole purpose

will be to probe the security of the selection channel and to determine the proper value of the
stabilizing constant σ.
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Table 1: UNIWARD used the Daubechies wavelet directional filter bank built
from one-dimensional low-pass and high-pass filters, h and g.

h = Daubechies 8 wavelet decomp. low-pass

−0.5
0

0.5

1

g = Daubechies 8 wavelet decomp. high-pass

−0.5
0

0.5

1

The original role of σ in UNIWARD [16] was to stabilize the numerical
computations when evaluating the relative change of wavelet coefficients (3).
As the following experiment shows, however, σ also strongly affects the content-
adaptivity of the embedding algorithm. In Figure 1, we show the embedding
change probabilities for payload α = 0.4 bpp (bits per pixel) for six values of
the parameter σ. For this experiment, we selected the 8-tap Daubechies wavelet
filter bank B whose 1D filters are shown in Table 1.12 Note that a small value
of σ makes the embedding change probabilities undesirably sensitive to content.
They exhibit unusual interleaved streaks of high and low values. This is clearly
undesirable since the content (shown in the upper left corner of Figure 1) does
not change as abruptly. On the other hand, a large σ makes the embedding
change probabilities “too smooth,” permitting thus UNIWARD to embed in
regions with less complex content. Intuitively, we need to choose some middle
ground for σ to avoid introducing a weakness into the embedding algorithm.

Because the SRM consists of statistics collected from the noise residuals
of all pixels in the image, it “does not see” the artifacts in the embedding
probabilities – the interleaved bands of high and low values. Notice that the
position of the bands is tied to the content and does not correspond to any fixed
(content-independent) checkerboard pattern. Thus, we decided to introduce a
new type of steganalysis features designed specifically to utilize the artifacts
in the embedding probabilities to probe the security of this unusual selection
channel for small values of σ.

5.1 Content-selective residuals
The idea behind the attack on the selection channel is to compute the statistics
of noise residuals separately for pixels with a small embedding probability and
then for pixels with a large embedding probability. The former will serve as
a reference for the latter, giving strength to this attack. While it is true that
the embedding probabilities estimated from the stego image will generally not
exactly match those computed from the corresponding cover image,13 they will
be close and “good enough” for the attack to work.

We will use the first order noise residuals (differences among neighboring
12This filter bank was previously shown to provide the highest level of security for WOW [15]

from among several tested filter banks. We thus selected the same bank here as a good initial
candidate for the experiments.

13Also because the embedded payload α is unknown to the steganalyst.
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Cover image σ = 10 · eps ≈ 2× 10−15 σ = 10−6

CSR 0.0203 CSR 0.2080
SRM 0.2004 SRM 0.2002

σ = 10−3 σ = 1 σ = 10
CSR 0.0411 CSR 0.4518 CSR 0.4432
SRM 0.2013 SRM 0.1983 SRM 0.1127

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6

Figure 1: The effect of the stabilizing constant σ on the character of the embed-
ding change probabilities for a 128 × 128 cover image shown in the upper left
corner. The numerical values are the EOOB obtained using the content-selective
residual (CSR) and the spatial rich model (SRM) on BOSSbase 1.01 for relative
payload α = 0.4 bpp.
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pixels):

Rij = Xi,j −Xi,j+1, i ∈ {1, . . . , n1}, j ∈ {1, . . . , n2 − 1}. (8)

To curb the residuals’ range and allow a compact statistical representation,
Rij will be truncated to the range [−T, T ], Rij ← truncT (Rij), where T is a
positive integer, and

truncT (x) =


x when − T ≤ x ≤ T
−T when x < −T
T when T < x.

(9)

Since this residual involves two adjacent pixels, we will divide all horizon-
tally adjacent pixels in the image into four classes and compute the histogram
for each class separately. Let pij(X, α) denote the embedding change proba-
bility computed from image X when embedding payload of α bpp. Given two
thresholds 0 < ts < tL < 1, we define the following four sets of residuals:

Rss = {Rij |pij(X, α) < ts ∧ pi,j+1(X, α) < ts} (10)
RsL = {Rij |pij(X, α) < ts ∧ pi,j+1(X, α) > tL} (11)
RLs = {Rij |pij(X, α) > tL ∧ pi,j+1(X, α) < ts} (12)
RLL = {Rij |pij(X, α) > tL ∧ pi,j+1(X, α) > tL}. (13)

The so-called Content-Selective Residual (CSR) features will be formed by
the histograms of residuals in each set. Because the marginal distribution of each
residual is symmetrical about zero, one can merge the histograms of residuals
from RsL and RLs. The feature vector is thus the concatenation of 3× (2T +1)
histogram bins, l = −T, . . . , T :

hs(l) =
∣∣{Rij |Rij = l ∧ Rij ∈ Rss}

∣∣ (14)
hL(l) =

∣∣{Rij |Rij = l ∧ Rij ∈ RLL}
∣∣ (15)

hsL(l) =
∣∣{Rij |Rij = l ∧ Rij ∈ RsL ∪RLs}

∣∣. (16)

The set Rss holds the residual values computed from pixels with a small
embedding change probability, while the other sets hold residuals that are likely
affected by embedding – their tails will become thicker.

All that remains is to specify the values of the parameters ts, tL, and α.
Since the steganalyst will generally not know the payload embedded in the
stego image,14 we need to choose a fixed value of α that gives an overall good
performance over a wide range of payloads. In our experiments, a medium value
of α = 0.4 generally provided a good estimate of the interleaved bands in the
embedding change probabilities. Finally, we conducted a grid search on images
from BOSSbase to determine ts and tL. The found optimum was rather flat
and located around ts = 0.05, tL = 0.06. The threshold T for truncT (x) was
kept fixed at T = 10.

For the value of σ as originally proposed in the workshop version of this
paper [16], σ = 10 · eps ≈ 2× 10−15 (’eps’ defined as in Matlab), the detection
error of the 3 × (2 × 10 + 1) = 63-dimensional CSR feature vector turned out

14A study on building steganalyzers when the payload is not known appears in [25].
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Figure 2: Detection error EOOB obtained using the CSR features as a function
of relative payload for σ = 10 · eps.

to be a reliable detection statistic. Figure 2 shows the detection error EOOB as
a function of the relative payload. This confirms our intuition that too small
a value of σ introduces strong banding artifacts, the stego scheme becomes
overly sensitive to content, and an approximate knowledge of the faulty selection
channel can be used to successfully attack S-UNIWARD.

As can be seen from Figure 1, the artifacts in the embedding change proba-
bilities become gradually suppressed when increasing the value of the stabilizing
constant σ. To determine the proper value of σ, we steganalyzed S-UNIWARD
with both the CSR and SRM feature sets (and their union) on payload α = 0.4
bpp as a function of σ (see Figure 3).15The detection error using both the SRM
and the CSR is basically constant until σ becomes close to 2−14 when a further
increase of σ makes the CSR features ineffective for steganalysis. From σ = 1
the SRM starts detecting the embedding more accurately as the adaptivity of
the scheme becames lower. Also, at this value of σ, adding the CSR does not
lower the detection error of the SRM. Based on this analysis, we decided to set
the stabilizing constant of S-UNIWARD to σ = 1 and kept it at this value for
the rest of the experiments in the spatial domain reported in this paper.

The attack based on content-selective residuals could be expanded to other
residuals than pixel differences, and one could use higher-order statistics instead
of histograms [3].16 While the detection error for the original S-UNIWARD
setting σ = 10 · eps can, indeed, be made smaller this way, expanding the CSR
feature set has virtually no effect on the security of S-UNIWARD for σ = 1 and
the optimality of this value.

We note that constructing a similar targeted attack against JPEG imple-
15When steganalyzing with the union of CSR and SRM using the ensemble classifier, we

made sure that all 63 CSR features were included in each random feature subspace to avoid
“diluting” their strength in this type of classifier.

16Note for reviewers: A preprint of this article is available upon request.
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Figure 3: Detection error of S-UNIWARD with payload 0.4 bpp implemented
with various values of σ for the CSR and SRM features and their union.

mentations of UNIWARD is likely not feasible because the distortion caused by
a change in a DCT coefficient affects a block of 8× 8 pixels and, consequently,
23×23 wavelet coefficients. The distortion “averages out” and no banding arte-
facts show up in the embedding probability map. Steganalysis of J-UNIWARD
with JSRM shown in Figure 4 indicates that the optimal σ for J-UNIWARD is
2−6, which we selected for all experiments with J-UNIWARD and SI-UNIWARD
in this paper.

5.2 Effect of the filter bank
As a final experiment of this section aimed at finding the best settings of UNI-
WARD, we studied the influence of the directional filter bank. We did so for
a fixed payload α = 0.4 bpp and two values of σ when steganalyzing using the
CSR and SRM features. Table 1 shows the results for five different wavelet
bases17 with varying parameters (support size s). The best results have been
achieved with the 8-tap Daubechies wavelet, whose 1D low and high-pass filters
are displayed in Table 1.

6 Experiments
In this section, we test the steganography using UNIWARD implemented with
the 8-tap Daubechies directional filter bank and σ = 1 for S-UNIWARD and
σ = 2−6 for J- and SI-UNIWARD. We report the results on a range of relative
payloads 0.05, 0.1, 0.2, . . ., 0.5 bits per pixel (bpp), while JPEG-domain (and

17http://wavelets.pybytes.com/wavelet/db8/
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Figure 4: Detection error EOOB obtained using the merger of JRM and SRMQ1
(JSRM) features as a function σ for J-UNIWARD with payload α = 0.4 bpnzAC
and JPEG quality factor 75.

Table 2: Detection error EOOB obtained using CSR and the SRM features when
using different filter banks in UNIWARD for σ = 10 · eps and σ = 1.

CSR SRM
σ = 10 · eps σ = 1 σ = 10 · eps σ = 1

Haar 0.0649 0.3302 0.0339 0.0707
Daubechies 2 0.0278 0.4299 0.1313 0.1744
Daubechies 4 0.0106 0.4279 0.1763 0.1966
Daubechies 8 0.0203 0.4518 0.2001 0.1981
Daubechies 20 0.1934 0.4646 0.2046 0.1868

Symlet 8 0.0235 0.4410 0.1635 0.1919
Coiflet 1 0.0458 0.4426 0.0796 0.1444

Biorthogonal 44 0.0264 0.4388 0.0859 0.1683
Biorthogonal 68 0.0376 0.4459 0.1259 0.1820
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Figure 5: Detection error EOOB using SRM as a function of relative payload for
S-UNIWARD and five other spatial-domain steganographic schemes.

side-informed JPEG) methods will be tested on the same payloads expressed in
bits per non-zero cover AC DCT coefficient (bpnzAC).

6.1 Spatial domain
In the spatial domain, we compare the proposed method with HUGO [27],
HUGO implemented using the Gibbs construction with bounding distortion
(HUGO BD) [4], WOW [15], LSB Matching (LSBM), and the Edge Adaptive
(EA) algorithm [24]. With the exception of the EA algorithm, in which the costs
and the embedding algorithm are inseparable, the results of all other algorithms
are reported for embedding simulators that operate at the theoretical payload–
distortion bound. The only algorithm that we implemented using STCs (with
constraint height h = 12) to assess the coding loss is the proposed S-UNIWARD
method.

For HUGO, we used the embedding simulator [7] with default settings γ = 1,
σ = 1, and the switch --T with T = 255 to remove the weakness reported in [22].
HUGO BD starts with a distortion measure implemented as a weighted norm
in the SPAM feature space, which is non-additive and not locally supported
either. The bounding distortion is a method (see Section VII in [4]) to give
the distortion the form needed for the Gibbs construction to work – the local
supportedness. HUGO BD was implemented using the Gibbs construction with
two sweeps as described in the original publication with the same parameter
settings as for HUGO. The non-adaptive LSBM was simulated at the ternary
bound corresponding to uniform costs, ρij = 1 for all i, j.

Figure 5 shows the EOOB error for all stego methods as a function of the
relative payload expressed in bpp. While the security of the S-UNIWARD and
WOW is practically the same due to the similarity of their distortion functions,
the improvement over both versions of HUGO is quite apparent. HUGO BD
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Figure 6: Embedding probability for payload 0.4 bpp using HUGO (top right),
WOW (bottom left), and S-UNIWARD (bottom right) for a 128×128 grayscale
cover image (top left).

performs better than HUGO especially for large payloads, where its detectability
becomes comparable to that of S-UNIWARD. As expected, the non-adaptive
LSBM performs poorly across all payloads, while EA appears only marginally
better than LSBM.

In Figure 6, we contrast the probability of embedding changes for HUGO,
WOW, and S-UNIWARD. The selected cover image has numerous horizontal
and vertical edges and also some textured areas. Note that while HUGO em-
beds with high probability into the pillar edges as well as the horizontal lines
above the pillars, S-UNIWARD directional costs force the changes solely into
the textured areas. The placement of embedding changes for WOW and S-
UNIWARD is quite similar, which is correspondingly reflected in their similar
empirical security.

6.2 JPEG domain (non-side informed)
For the JPEG domain without side-information, we compare J-UNIWARD with
nsF5 [12] and the recently proposed UED algorithm [14]. Since the costs used in
UED are independent of the embedding change direction, we decided to include
for comparison the UED implemented using ternary codes rather than binary,
which indeed produced a more secure embedding algorithm.18 All methods were
again simulated at their corresponding payload–distortion bounds. The costs
for nsF5 were uniform over all non-zero DCTs with zeros as the wet elements [9].
Figure 7 shows the results for JPEG quality factors 75, 85, and 95. As in the

18The authors of UED were apparently unaware of this possibility to further boost the
security of their algorithm.
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spatial domain, J-UNIWARD clearly outperformed both nsF5 and both versions
of UED by a sizeable margin across all three quality factors. Furthermore, when
using STCs with constraint height h = 12, the coding loss appears rather small.

6.3 JPEG domain (side-informed)
Working with the same three quality factors, we compare SI-UNIWARD with
four other methods – the block entropy-weighted method of [32] (EBS), the
NPQ [17], BCHopt [28], and the fourth method, which can be viewed as a
modification (or simplification) of [28] or as [32] in which the normalization by
block entropy has been removed. Following is a list of cost assignments for
these four embedding methods; ρ(kl)

ij is the cost of changing DCT coefficient ij
corresponding to DCT mode kl.

1. ρ(kl)
ij =

(
qkl(0.5−|eij |)
H(X(b))

)2

2. ρ(kl)
ij = q

λ1
kl

(1−2|eij |)
(µ+|Xij |)λ2

3. ρ(kl)
ij as defined in [28]

4. ρ(kl)
ij = (qkl(1− 2|eij |))2

In Method 1 (EBS), H(X(b)) is the block entropy defined as
H(X(b)) = −

∑
i h

(b)
i log h(b)

i , where h(b)
i is the normalized histogram of all non-

zero DCT coefficients in block X(b). Per the experiments in [17], we set µ = 0 as
NPQ embeds only in non-zero AC DCT coefficients, and λ1 = λ2 = 1/2 as this
setting seemed to produce the most secure NPQ scheme for most payloads when
tested with various feature sets. The cost ρij for Methods 1–4 is equal to zero
when eij = 1/2. Methods 1 and 4 embed into all DCT coefficients, including
the DC term and coefficients that would otherwise round to zero (Xij = 0).
We remind from Section 3.3.1 that methods 1, 2, and 4 avoid embedding into
1/2-coefficients from DCT modes 00, 04, 40, and 44. Since the cost assignment
in Method 3 (BCHopt) is inherently connected to its coding scheme, we kept
this algorithm it unchanged in our tests.

Figure 8 shows that SI-UNIWARD achieves the best security among the
tested methods for all payloads and all JPEG quality factors. The coding loss
is also quite negligible. Curiously, the weighting by block entropy in the EBS
method paid off only for quality factor 95. For factors 85 and 75, the weighting
actually increases the statistical detectability using our feature vector (c.f., the
“Square” and “EBS” curves). The dashed curves for quality factor 95 in Figure 8
are included to show the negative effect when 1/2-coefficients from DCT modes
00, 04, 40, and 44 are used for embedding (see the discussion in Section 3.3.1).
In this case, the detection error levels off at approximately 25− 30% for small–
medium payloads because most embedding changes are executed at the above
four DCT modes. Note that NPQ and BCHopt do not exhibit the pathological
error saturation as strongly because they do not embed into the DC term (mode
00).
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Figure 7: Testing error EOOB for J-UNIWARD, nsF5, and binary (ternary)
UED on BOSSbase 1.01 with the union of SRMQ1 and JRM and ensemble
classifier for quality factors 75, 85, and 95.
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Figure 8: Detection error EOOB for SI-UNIWARD and four other methods with
the union of SRMQ1 and JRM and the ensemble classifier for JPEG quality
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to the case when all the embedding methods use all coefficients, including the
DCT modes 00 04 40 44 independently of the value of the rounding error eij .
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7 Conclusion
Perfect security seems unachievable for empirical cover sources, examples of
which are digital images. Currently, the best the steganographer can do for such
sources is to minimize the detectability when embedding a required payload. A
standard way to approach this problem is to embed while minimizing a carefully
crafted distortion function, which is tied to empirical statistical detectability.
This converts the problem of secure steganography to one that has been largely
resolved in terms of known bounds and general near-optimal practical coding
constructions.

The contribution of this paper is a clean and universal design of the distor-
tion function called UNIWARD, which is independent of the embedding domain.
The distortion is always computed in the wavelet domain as a sum of relative
changes of wavelet coefficients in the highest frequency undecimated subbands.
The directionality of wavelet basis functions permits the sender to assess the
neighborhood of each pixel for the presence of discontinuities in multiple direc-
tions (textures and “noisy” regions) and thus avoid making embedding changes
in those parts of the image that can be modeled along at least one direction
(clean edges and smooth regions). This model-free heuristic approach has been
implemented in the spatial, JPEG, and side-informed JPEG domains. In all
three domains, the proposed steganographic schemes matched or outperformed
current state-of-the-art steganographic methods. A quite significant improve-
ment was especially obtained for the JPEG and side-informed JPEG domains.
As demonstrated by experiments, the innovative concept to assess the costs of
changing a JPEG coefficient in an alternative domain seems to be quite promis-
ing.

Although all proposed methods were implemented and tested with an addi-
tive approximation of UNIWARD, this distortion function is naturally defined
in its non-additive version, meaning that changes made to neighboring pixels
(DCT coefficients) interact in the sense that the total imposed distortion is not
a sum of distortions of individual changes. This potentially allows UNIWARD
to embed while taking into account the interaction among the changed image
elements. We plan to explore this direction as part of our future effort.

Last but not least, we have discovered a new phenomenon that hampers
the performance of side-informed JPEG steganography that computes embed-
ding costs based solely on the quantization error of DCT coefficients. When
unquantized DCT coefficients that lie exactly in the middle of the quantization
intervals are assigned zero costs, any embedding that minimizes distortion starts
introducing embedding artifacts that are quite detectable using the JPEG rich
model. While the makeshift solution proposed in this article is by no means
optimal, it raises an important open question, which is how to best utilize the
side information in the form of an uncompressed image when embedding data
into the JPEG compressed form. The authors postpone detailed investigation
of this phenomenon into their future effort.

The work on this paper was supported by Air Force Office of Scientific
Research under the research grant number FA9950-12-1-0124. The U.S. Gov-
ernment is authorized to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright notation there on. The views and con-
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