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We provide experimental evidence of universal dynamics far from equilibrium during the relaxation
of an isolated one-dimensional Bose gas. Following a rapid cooling quench, the system exhibits
universal scaling in time and space, associated with the approach of a non-thermal fixed point.
The time evolution within the scaling period is described by a single universal function and scaling
exponent, independent of the specifics of the initial state. Our results provide a quantum simulation
in a regime, where to date no theoretical predictions are available. This constitutes a crucial step in
the verification of universality far from equilibrium. If successful, this may lead to a comprehensive
classification of systems based on their universal properties far from equilibrium, relevant for a large
variety of systems at different scales.

Understanding isolated quantum systems far from
equilibrium and the question about the subsequent ther-
malisation process concerns one of the most pressing open
problems in quantum many-body physics [1, 2]. There
is strong theoretical evidence that sufficiently far from
equilibrium a wide variety of systems exhibit universal
scaling during their evolution, independent of the details
of their initial state and microscopic properties [3–14].
However, experimental evidence is still missing. Here,
we report universal scaling in time and space following a
strong cooling quench transferring a 3D ultra-cold Bose
gas into a one-dimensional quasicondensate. In the scal-
ing regime, the time evolution of the system is found
to be described by a time independent universal func-
tion and a single scaling exponent in the infrared. The
non-equilibrium evolution features the transport of an
emergent conserved quantity in the scaling region, finally
leading to the build-up of a quantum degenerate quasi-
condensate. Our results establish universal scaling dy-
namics in an isolated quantum many-body system, pro-
viding conceptually new access to time evolution far from
equilibrium relevant for a large variety of systems [5, 12].
Relaxation and thermalisation are characterised by

loss of information about the details of the initial state.
The unitary quantum evolution of isolated systems, how-
ever, preempts any such loss of information on a funda-
mental level. To resolve this contradiction, it is generally
assumed that the complexity of the involved many-body
states and their dynamics leads to an insensitivity to de-
tails about the initial state for any realistic observable
[1, 2]. Consequently, at late times, the system can be
characterised by few conserved quantities only.
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An enhanced loss of details about the underlying mi-
croscopic physics is known to occur, e.g., for critical scal-
ing near phase transitions [15, 16], for the phenomenon
of ageing [17] or for coarsening [18]. Characterising these
(close to equilibrium) systems through their universal
scaling properties has lead to tremendous advances in
the understanding of complex quantum many-body sys-
tems [15, 19]. Little is known if and how the effective
information loss during the time evolution starting from
a general far-from-equilibrium state can be connected to
universality, even away from any phase transition.

It has recently been proposed that isolated systems far
from equilibrium exhibit scaling in time and space as-
sociated to non-thermal fixed points [3–5, 12]. There is
growing theoretical evidence for non-thermal universal-
ity classes encompassing both relativistic as well as non-
relativistic systems [5, 12]. These non-equilibrium at-
tractor solutions require, in contrast to equilibrium crit-
ical phenomena, no fine-tuning of parameters. Unlike
the phenomenon of prethermalisation to quasi-stationary
states [20, 21], which are approximately time-translation
invariant, the non-thermal scaling solutions describe a
time-dependent evolution.

In the present work, we experimentally study the dy-
namics following a strong cooling quench and identify a
time window during which the system shows universal
behavior far from equilibrium.

We start our experiment with a thermal gas of
ultra-cold 87Rb in an extremely elongated quasi one-
dimensional (1D) harmonic trap (transverse confinement
ω⊥ = 2× 104 s−1, longitudinal confinement ω‖ = 30 s−1)
just above the critical temperature. In the final cooling
step, the trap depth is lowered fast compared to the longi-
tudinal thermalisation time scale (see Fig. 1a). This leads
to a rapid removal of high-energy atoms, predominantly
in the radially excited states, and hence constitutes an
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FIG. 1. Experimental scheme and overview of results. a, schematics of the experimental cooling quench. During the
quench the trap depth is linearly ramped to its final value within a time τq ≈ 7ms. The final value lies below the first radially
excited state (indicated by the dashed lines). The trap depth is subsequently held at its final position for ≈ 0.5ms and then
within ≈ 1ms raised again leading to a far-from-equilibrium one-dimensional Bose gas. b, time evolution of the density ρ(z, t)
(upper panel) and of the single-particle momentum distribution n(k, t) (lower panel). Each distribution is normalised to the
time-dependent atom number N(t). c, initial (upper panel) and final (lower panel) momentum distributions. The data for high
momenta is binned over 7 adjacent k values to lower the noise level. Error bars are marking the standard error of the mean.
The solid blue and red lines are theoretical fits of the random-soliton model and of a thermal quasicondensate, respectively (see
appendix Fig. 5). The vertical dashed line corresponds to the momentum of the first radially excited state.

almost instantaneous cooling quench of the system. At
the end of the cooling ramp the trap depth lies below
the first radially excited energy level and only longitudi-
nal excitations remain. After a short holding period of
1 ms, allowing the atoms with large transverse energy to
leave, we rapidly increase the trap depth. In this way
we prepare an isolated far-from-equilibrium 1D system.
The gas is then left to evolve in this deep potential for
variable times t up to ≈ 1 s, during which the universal
scaling dynamics takes place.

We probe the system’s evolution through two sets of
measurements (see Methods for details): The in-situ den-
sity distribution ρ(z, t) is measured by standard absorp-
tion imaging [22] after a short time of flight of ttof =
1.5ms, whereby the expansion is predominantly along
the tightly confined radial directions. The momentum
distribution n(k, t) of the trapped gas is measured after
a long time of flight of ttof = 46ms through single-atom
resolved fluorescent imaging in a thin light sheet [23]. For
each hold time t the distributions are averaged over many
independent measurements (see Methods).

A typical time evolution of these profiles is shown in
Fig. 1b. The far-from-equilibrium state at early times
exhibits strongly broadened density and momentum dis-

tributions. In the beginning the momentum distribution
n(k) follows a characteristic exponential decay n(k) ∼
exp(−kξs) for large values of k. At late times the sys-
tem is well described by a thermal quasicondensate (see
Fig. 1c and Methods and SI for details), revealing its re-
laxation to thermal equilibrium (see appendix Fig. 5).
The momentum distribution is then only determined by
the Lorentzian function, its width given by the thermal
coherence length λT = 2~2ρ(z)/mkBT . During the evo-
lution a clear peak emerges at low momenta, signaling the
quasicondensation of the system in momentum space. In
the following we analyse the thermalisation process, pro-
viding the link between the far-from-equilibrium state at
early times and the final equilibrium state observed.

For the initial state of the far-from-equilibrium evo-
lution we find n(k) in good agreement with a theo-
retical model of randomly distributed solitonic defects
(RDM) [10] (see Fig. 1c). At low momenta the RDM
has a Lorentzian shape n(k) ∼ [1 + (k/ns)

2]−1, its
width defined by the defect density ns. At high mo-
menta n(k) exhibits a characteristic exponential decay
n(k) ∼ exp(−kξs), determined by the width ξs of the
localised density suppression associated with a solitonic
defect.
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FIG. 2. Universal scaling dynamics. a, Time evolution of the measured momentum distributions. For better visibility,
the data is binned over 3 adjacent points in momentum space, with the time encoded in colors (from blue to red). The gray
line indicates the reference distribution at t0 = 4.7ms, its width depicts the 95% confidence interval at t0. The vertical dashed
line limits the scaling region in the UV. b, Momentum distribution rescaled according to Eq. (1). Depicted as a rescaled

function (t/t0)
−αn(k̃, t) of the rescaled variables k̃ = (t/t0)

βk the data for all times collapse to a single curve, representing the
distribution at the reference time t0. The exponents α = 0.09 ± 0.05 and β = 0.10 ± 0.04 are determined via the maximum
likelihood function.

Since we probe the system immediately after the al-
most instantaneous quench, these defects are not equili-
brated (see appendix Fig. 5), showing a reduced defect
width ξs = 0.07µm ≈ ξh/3, with the peak healing length
ξh = ~/

√
2mg1Dn0 determining the equilibrium width of

a soliton, and a very high density ns = 1.4µm−1. While
the nucleation of solitons is predicted by the Kibble-
Zurek mechanism [24], the almost instantaneous quench
here creates an initial state with a strong overpopulation
of high energy modes. This very far-from-equilibrium
state sets the initial conditions for the subsequent ther-
malisation process and facilitates the observation of the
emerging universal dynamics during the relaxation of the
system.
The time evolution of the normalised momentum dis-

tribution n(k, t)/N(t) is shown in Fig. 2a for the first 75
ms following the quench. The distribution function shifts
with time towards lower momentum scales while the oc-
cupancy is growing in the infrared. In general, n(k, t)
depends on k and t separately.
However, it has been suggested [12] that overpopulated

fields far from equilibrium can give rise to universal be-
haviour signaled by the infrared scaling property of the
distribution functions

n(k, t) = (t/t0)
α fS([t/t0]

βk) , (1)

where t0 denotes an arbitrary reference time within the
period where n(k, t) shows the scaling behavior.
Fig. 2b shows that indeed one can find scaling expo-

nents α and β such that, in the infrared, the rescaled
distributions (t/t0)

−αn(k̃, t) as a function of the rescaled

momenta k̃ = (t/t0)
βk collapse to a single curve fS(k̃) =

n(k̃, t0). This indicates that below a characteristic mo-
mentum scale kS the distribution function n(k, t) depends
on space and time only through scaling of a single uni-
versal function fS(k̃). The scaling exponents are found
to be α = 0.09±0.05 and β = 0.1±0.04, which indicates
α ≃ β (see Methods for details on the error estimation).

We demonstrate the predicted insensitivity of the uni-
versal properties to details of the initial state by compar-
ing the evolution for different initial conditions prior and
posterior to the cooling quench. We find excellent agree-
ment for the scaling exponents, obtained independently
through a scaling analysis for each of the three measure-
ments (see appendix Figs. 6–9). This shows the gen-
erality and robustness of these nonequilibrium attractor
solutions, as, in contrast to equilibrium critical phenom-
ena where the temperature has to be adjusted to observe
scaling, no fine-tuning of parameters is required.

The universal character allows us to directly relate the
predictions for each measurement, resulting in the com-
bined likelihood function presented in Fig. 3a. We con-
sider, for the analysis, the approximately uncorrelated
exponents β and ∆αβ = α−β. In agreement with each in-
dividual measurement, we find the clearly non-vanishing
exponent β = 0.1 ± 0.03 and within errors a vanishing
exponent ∆αβ = −0.01± 0.02, and thus α = 0.09± 0.03.
The expected independence of the scaling exponents α,
β on the reference time t0 is shown in Fig. 3b.

We further demonstrate that the shape of the scal-
ing function fS(k̃) is universal. As shown in Fig. 4a the
data for three different initial conditions follow a single
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FIG. 3. Scaling exponents. a, The combined two-
dimensional likelihood function, averaged over all times t and
reference times t0 within the scaling period, for three differ-
ent initial conditions reveals a clear peak which yields the
non-vanishing scaling exponents α ≈ β = 0.1 ± 0.03 with
a deviation between the two exponents of ∆αβ = α − β =
−0.01 ± 0.02. The error is estimated using a Gaussian fit to
the marginal likelihood functions (see sides). b, Dependence
of the scaling exponents on the reference time t0. The ex-
ponents are, to a good approximation, independent of t0 and
agree well with the mean predictions. The errors denote the
standard deviation obtained by a Gaussian fit to the marginal
likelihood functions at each reference time separately.

universal function fS(k̃) for all times during which the
system shows scaling dynamics. For the scaling func-
tion we consider the form fS ∼ [1 + (k̃/k0)

ζ ]−1 [12, 25],
where the exponent ζ = 2.39± 0.18 is obtained through
a single maximum likelihood fit to all experimental re-
alisations simultaneously. For a fixed exponent the non-
universal scales, i.e. the norm and momentum scale k0
rescaling the dimensionless momentum k̃/k0, are deter-
mined through a least-square fit for each experimental
realisation (see Methods). The shape of the momentum
distribution within the scaling period exhibits marked
differences to the thermal distribution (cf. Fig. 1c and
appendix Fig. 5), clearly indicating a non-thermal scal-
ing phenomenon.
The extent of the scaling region in time is visible from

the scaling behavior of the spatially averaged observables
N̄ and M̄2 (see Methods). These describe the fraction of
particles and the mean energy per particle in the time
dependent scaling region |k| ≤ (t/t0)

−βkS in momen-
tum space, respectively. Based on the scaling Ansatz
Eq. (1) we find N̄ ∼ (t/t0)

∆αβ and hence, as ∆αβ ≈ 0,
the emergence of a conserved quantity. This is confirmed
in Fig. 4b where N̄ is approximately constant in the scal-
ing period, while it shows a clear time dependence before
and afterwards.

The values for the scaling exponents α and β deter-
mine the direction and speed with which the particles
are being transported. Since these values are positive, a
given momentum k in this regime scales as k/k0 ∼ t−β

such that the transport is directed towards the infrared.
This transport of particle number leads finally to the
observed build-up of the quasicondensate and the ap-
proach to thermal equilibrium at late times. We further
note that the mean energy shows a power-law behavior
M̄2 ∼ (t/t0)

−2β and is in accordance with the determined
scaling exponent β. Therefore, while the particle num-
ber in the scaling region is conserved, energy is trans-
ported outside this region to higher momenta. Based on
the scaling properties of these global observables we can
readily identify the scaling period to include the times
t ≈ 0.7 . . . 75ms.

The far-from-equilibrium universal scaling dynamics in
isolated Bose gases following a strong cooling quench or
for equivalent initial conditions has been studied theo-
retically by means of non-perturbative kinetic equations
[12, 13]. Therein, the universal scaling function is ex-
pected to depend on dimensionality d. The predicted
power-law fall-off n(k) ∼ k−ζ , with ζ = d+1 [13], is con-
sistent with the approximate form of the scaling function
given by the RDM and the quasicondensate at low mo-
menta but differs (slightly) from the experimental results.

More prominently, a scaling analysis of the kinetic
quasiparticle transport yields the exponent β = 1/2 [12]
in Eq. (1) to be independent of d. This theory, however, is
not expected to fully apply. In particular, in d = 1, due
to the kinematic restrictions from energy and momen-
tum conservation, the associated transport is expected
to vanish.

The contributions of the higher dimensions to the 1D
physics are a plausible path to explain the non standard
scaling function and scaling exponents observed. Initially
there is a small population of atoms with momenta large
enough to excite thermalising collisions [26], and a very
small initial seed can lead to thermalisation as observed
in [27]. This is confirmed by a quasicondensate fit to
the final momentum distribution where, assuming ther-
mal equilibrium, one obtains an excited state population
of 11% (T = 95nK = 0.6~ω⊥). Our experimental re-
sults provide a quantum simulation near the dimensional
crossover between 1D and 3D physics, establishing uni-
versal scaling dynamics far-from-equilibrium in a regime
where currently no theoretical predictions are available.

The presented direct experimental evidence of scal-
ing dynamics in an isolated far-from-equilibrium system
presents a crucial step towards a description of non-
equilibrium evolution by non-thermal fixed points and
the associated phenomena. Similar exciting phenomena
have recently been observed by the Oberthaler group [28]
in Heidelberg in a Spin-1 system, however with scaling
exponent β = 1/2. If successful, such programs can lead
to a unified description of non-equilibrium evolution rem-
iniscent of the classification of equilibrium critical phe-
nomena in terms of renormalization group fixed points
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FIG. 4. Universal scaling function and spatially averaged observables. a, Universal scaling function for varying initial
conditions N = 1700 , ns = 1.4µm−1 (blue), N = 2800 , ns = 0.9µm−1 (red), and N = 1150 , ns = 2.3µm−1 (green). All initial
conditions collapse to a single universal function fS with exponent ζ = 2.39 ± 0.18 (gray solid line) for all times within the
scaling region. The rescaled experimental data is binned over 3 adjacent points in k for clarity. The small deviations for low
momenta are due to the finite expansion time of the gas (see Methods). The initial single-particle momentum distribution at
the end of the quench is depicted in the inset. b, Scaling of averaged observables. The fraction of particles in the scaling region
N̄ ∼ (t/t0)

∆αβ (upper panel) becomes approximately conserved (solid black line) within the scaling period (gray shaded region)
while being transported towards the IR. Scaling of the mean kinetic energy per particle in the scaling region, M̄2 ∼ (t/t0)

−2β ,
(lower panel) clearly signals the extent of the scaling period in time through deviations from the predicted scaling (solid black
line). The error bars are marking the 95% confidence interval.

[29, 30]. This may lead to a comprehensive classification
of systems based on their universal properties far from
equilibrium, relevant for a large variety of systems at dif-
ferent scales.
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Appendix

1. Preparation of the gas and cooling quench

The initial thermal Bose gas is prepared using our stan-
dard procedure to produce ultra-cold gases of 87Rb on
an atom chip [31]. We prepare a thermal cloud of typ-
ically N = (2.7 − 3.2) · 104 atoms initially in an elon-
gated, ω‖ = 2π · 23Hz and ω⊥ = 2π · 3.3 kHz, deep trap-
ping potential Vi ≈ h · (130− 160) kHz at a temperature
T ≈ 530− 600 nK. The atoms are held in this configura-
tion for 100ms to ensure a well-defined initial state. The
thermal cloud is both above the dimensional crossover
to an effective one-dimensional system and the critical
temperature Tc for the phase transition to a 3D Bose-
Einstein condensate, and therefore has a large excess of
particles in transversally excited, high-energy states. The
trap depth is reduced to its final value Vf at a constant
rate Rq = (Vi−Vf)/τq = h·25 kHz/ms, by applying radio-
frequency (RF) radiation at a time dependent frequency
(RF-knife), leading to an energy-dependent transition of
atoms from a trapped to an un-trapped spin state. This
allows the high-energy particles to rapidly leave the trap,
leading to the competing time scales τq and the typical
collision times needed for re-equilibration of the system.
The final trap depth is Vf ≈ h · 2 kHz, which lies be-
low the first radially excited state of the trapping poten-
tial hVf < ~ω⊥. At the end of the cooling ramp, the
RF-knife is held at its final position for τh = 0.5ms be-
fore it is faded out within τf ≈ 1ms, thereby raising the
trap depth to V ≈ h · 20 kHz. Additionally, since the
RF-knife slightly reduces the radial trapping frequency,
this leads to a small interaction quench (∼ 10%) of the
1D system. The system is therefore rapidly quenched to
the quasi one-dimensional regime, finally only occupying
the transverse ground state. The experimental realisa-
tions 1 to 3 reported in the main text have final atom
numbers N ≈ 1700 , 2800 , 1150 and agree well with the
RDM with a defect density ns = 1.4 , 0.9 , 2.3 and defect
width ξs = 0.07 , 0.06 , 0.05 (corresponding to ξs/ξh =
0.3 , 0.3 , 0.17). The resultant far-from-equilibrium state
is held for variables times up to t ≃ 1 s, during which the
universal dynamics develops and takes place.

2. Measurement of density and momentum

distributions

The density and momentum distribution of the gas are
measured after finite time of flight for ttof = 1.5 ms and
ttof = 46 ms of free expansion. This gives access to the
in-situ (iS) and time-of-flight (tof) density profiles, for
which the atoms are detected through absorption and flu-
orescent imaging in a thin light sheet, respectively. We
afterwards calculate the radially centered and integrated,
density profiles in longitudinal direction. We correct the
profiles for possible random sloshing effects. The quench
and measurement is repeated for each experimental shot

and hold time t for 10 − 15 times for the in-situ data
and 25 − 50 times for the time-of-flight data. The fast
expansion in radial direction dilutes the gas and leads to
ballistic expansion in the longitudinal direction. Since
therefore the momentum of the particles during the ex-
pansion is approximately conserved, the density distri-
bution after expansion converges to the in-situ momen-
tum distribution of the cloud. We checked the effects
of a finite dilution time via numerical simulations of the
Gross-Pitaevskii equation using hydrodynamic models to
determine the time dependence of the interaction con-
stant g for early times of the expansion. For the param-
eters of the experiment we could not find any significant
deviations from a completely ballistic expansion in the
longitudinal direction.
The pulled back momentum distribution converges for

high k-values rapidly towards the true momentum distri-
bution of the gas. For low momenta the finite in-situ size
of the cloud does not allow for a clear separation of differ-
ent momentum modes and atoms of different momenta
overlap in the measured density after time-of-flight. This
means that for a cloud of size R, particles with momen-
tum k . kiS = Rm/(~ttof) do not have time to prop-
agate sufficiently far outside the in-situ bulk density to
be clearly separated. Therefore the pulled back momen-
tum distribution for k . kiS rather resembles the in-situ
density profile than the actual momentum distribution of
the gas.

3. Scaling analysis

We extract the universal scaling exponents α , β
through a least-square fit of the analytical prediction (1),
minimising

χ2(α, β) =
1

N2
t

Nt
∑

t,t0

χ2
α,β(t, t0) , (2)

where we average over all times t and reference times t0
within the scaling period. The local χ2

α,β(t, t0) is calcu-
lated via

χ2
α,β(t, t0) =

∫ kh

kl

dk

[

(

(t/t0)
αñ[(t/t0)

βk, t0]− ñ[k, t]
)2

σ̃[(t/t0)βk, t0]2 + σ̃[k, t]2

]

,

where σ denotes the standard error of the mean and
ñ(k, t) = n(k, t)/N(t) and σ̃(k, t) = σ(k, t)/N(t) are nor-
malised by the total atom number to minimise the in-
fluence of atom loss during the evolution. Note how-
ever, that the atom loss is negligible during the time
period where the system shows scaling behaviour. For
later times the atom loss is ≈ 10% per 100ms, with a
final atom number of approximately 40% at the end of
the evolution. The rescaling of the momentum variable
inevitably leads to the necessity to compare the momen-
tum distributions at momenta lying between the discrete
values measured in the experiment. We therefore use a
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linear interpolation of the spectrum and its error at the
reference time t0 which allows to evaluate the experimen-
tal spectrum at all momenta (t/t0)

βk. For the scaling
analysis we symmetrise the spectrum by averaging the
momentum distribution over ±k to lower the noise level.

Estimation of the exponents and their error is done
via the likelihood function. In order to decouple the two
exponents we take α = β+∆αβ and fit the deviation ∆αβ

of the exponent from the theoretical expectation α ≡ β.
We therefore define the likelihood function

L(∆αβ , β) = exp

[

−1

2
χ2(∆αβ , β)

]

. (3)

The most probable exponents are determined by the
maximum of the likelihood function. The error of the es-
timate is determined by integrating the two-dimensional
likelihood function along one dimension, and extracting
the variance of the remaining exponent through a Gaus-
sian fit to the marginal likelihood functions. We find ex-
cellent agreement between the marginal likelihood func-
tions and the Gaussian fits. Therefore the Gaussian es-
timate of the error is equivalent to the (asymmetric) es-
timate using a change in the log-likelihood function by
1/2. The reason for this good agreement is the above
mentioned decoupling of the exponent, which results to
a good degree in a two-dimensional, Gaussian likelihood
function for L(∆αβ , β). The estimates of the scaling ex-
ponents for different reference times are calculated equiv-
alently (neglecting the sum over t0 in Eq. (2)). The es-
timate is insensitive to the upper cutoff kh (within rea-
sonable limits). The momentum kS, limiting the scaling
region in the UV, is determined as the characteristic scale
for which the mean deviation of the rescaled momentum
distributions for |k| ≤ kS and averaged over all times t in
the scaling period exceeds the 95% confidence interval at
the reference time t0. The lower cutoff is taken as kl = 0.
Excluding momenta |k| < kiS leads to a small shift of the
exponents towards lower values, but agrees well within
the estimated errors of the exponents (. 0.3σ deviation).
The results of the scaling analysis for three independent
experimental realisations is shown in appendix Figs. 6–8.
We find similar results in all cases. The exponents and
errors reported in the main text, are estimated through
the combined likelihood function L =

∏

i Li, where i la-
bels the independent experimental realisations.
The universal function fS is determined equivalently,

where for each fixed exponent ζ the non-universal scales
are determined through a least-square fit to each experi-
mental realisation separately. To minimise the influence
of the finite expansion of the gas, we consider momenta
|k| > kiS for the determination of fS. The likelihood func-
tion is subsequently defined by the averaged residuals of
the scaled data as compared to the universal scaling func-
tion fs = (1 + kζ)−1 for all realisations simultaneously .
The error is again estimated using a Gaussian fit to the
(one-dimensional) likelihood function. The non-universal
scales for the most-likely exponent ζ = 2.39±0.18 for the
experimental realisations 1 to 3 are the characteristic mo-

mentum scale k0 = 2.61 , 2.28 , 3.97µm−1 and the norm
N = 0.14 , 0.15 , 0.10, respectively.

4. Global observables

We define the global observables

N̄ =

∫

|k|≤(t/t0)−βk0

dk
n(k, t)

N(t)
∼ (t/t0)

−∆αβ (4)

M̄n≥1 =

∫

|k|≤(t/t0)−βk0

dk
|k|nn(k, t)
NN̄(t)

∼ (t/t0)
−nβ , (5)

where k0 = 6.5 . . . 8µm−1 defines the high-momentum
cutoff for the scaling region in k. We consider, in the
main text, the fraction of particles in the scaling region
N̄ ∼ (t/t0)

∆αβ and the mean kinetic energy per parti-
cle in the scaling region M̄2 ∼ (t/t0)

−2β . Note that the
global observables N̄ and M̄ show independent scaling
in time with the exponents ∆αβ and β, while we high-
light that the integral ranges depend non-trivially on β.
The results for each experimental realisation are shown
in appendix Fig. 9. In the main text we report the result
obtained by averaging over all experimental realisations.

5. Model fits

The density profile ρ(z) is determined by a fit to the
experimental in-situ density, measured after τ = 1.5 ms
of free expansion. In case of the RDM we consider
for a fixed atom number N(t) a scaled density profile
ρ[z, t] = b−1(t)ρ[z/(b(t)] in the Thomas-Fermi approxi-
mation, leaving the scaling factor b(t) as the only free pa-
rameter (more precisely the result of Gerbier [32] is used
for the density profile, which takes the radial swelling of
the condensate into account). We neglect possible finite
temperature fluctuations as well as contribution of ra-
dially excited states in the RDM, assuming the gas to
be dominated by solitonic defects. For early times, the
high momentum modes do not show a significant thermal
occupation, and we find good accordance with the RDM.
In case of the QC, we determine the thermal density

profile for a given temperature T and chemical potential
µ, through simulations of the stochastic Gross-Pitaevskii
equation (see e.g. [33]). The broadening of the density
distribution is herein due to the finite temperature of
the gas. The density profile is subsequently fitted via
ρ(z, t) = ρQC[z, T (t), µ(t)] + ρ⊥[z, T (t), µ(t)]. Here we
take into account the thermal occupation of radially ex-
cited states ρ⊥ within the semiclassical approximation,
which are non-negligible for late times. The chemical
potential µ is fixed by the total atom number, through
∫

dz ρ(z, t) = N(t).
The fitted density profiles are subsequently used to

determine the single-particle momentum distribution
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n(k, t) of the inhomogeneous system by a least-square
fit of the experimental data to the theoretical predic-
tions within the local density approximation. For both
models we restrict the fitting region to |k| > kiS, due
to the simplified hydrodynamic model for the finite ex-
pansion of the gas. The RDM [10] is fitted over the full
momentum range accessible in the experiment. For high
defect densities the RDM fit shows correlations between
the determined defect density and width, since these two
scales become of the same order for the observed far-
from equilibrium state. As it is theoretically expected
that the defect width is approximately conserved during
the evolution, we fix the defect width to its mean value
within the first 25ms of the evolution, leaving the defect
density as the only free parameter. We find reasonable

agreement between the RDM results and the indepen-
dent scaling analysis. In particular, the RDM is clearly
preferred as compared to a thermal distribution within
the scaling period.
For the fits in thermal equilibrium we consider a qua-

sicondensate model [34], including thermal occupation
of radially excited states [35]. Considering the validity
regime of the QC model, we restrict the fitting procedure
to momentum modes with energy less then ~ω⊥. We con-
sequently determine the chemical potential µ, by fixing
the atom number within this region of momentum space.
This leads to a slight shift in the chemical potential as
compared to the in-situ fits. For late times we find ex-
cellent agreement to the experimental data, showing the
relaxation of the system to thermal equilibrium.

FIG. 5. Results of random-defect and quasicondensate models. Time evolution of the characteristic scales for the
experimental data scan 1 reported in the main text. The resulting temperature (blue, log-lin scale) and defect density (red, log-
log scale) are shown in the upper panel for the full time evolution. The defect width for the RD model is fixed to ξd = 0.087µm,
determined by the mean over the first 25 ms during the evolution. The defect density within the scaling region shows power-
law dependence consistent with the determined scaling exponent of the self-similar evolution. For later times deviations occur,
signaling the end of the scaling region. The quality of the model fit is depicted in the lower panel (black squares), where a
positive (negative) value favors the RD (QC) model. The RD model is strongly preferred for t . 100ms, beyond which the
system converges to a thermal QC within ≈ 400 ms. The absolute values of the reduced χ2 for the RD (QC) model are ≈ 1
(≈ 25) and ≈ 5 (≈ 1) for early and late times, respectively.
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a

c

b

FIG. 6. Rescaling analysis for different initial conditions. a to c, original (left row) and rescaled (right row) single-
particle momentum distribution for scans 1 to 3 reported in the main text. The time is encoded in colors from blue to red. The
gray dashed vertical line indicates the scaling regime in k. The scaling exponents are in excellent agreement with the reported
mean values in the main text. Note that here we compare the data for the full experimental resolution in k. The distribution
at the reference time is given by the gray line, its width marking the 95% confidence interval.
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a b c

FIG. 7. Likelihood function for different initial conditions. a to c, two-dimensional likelihood functions and marginal
likelihood functions for scans 1 to 3 reported in the main text. A clear peak at non-zero α ≈ β is visible for each realisation.
Note that for scan 2 a small condensate may have been present before the quench, which leads to the larger extent of the
likelihood function. Gaussian fits to the marginal likelihood functions are in excellent agreement and determine the error of
the scaling exponents reported in appendix Fig. 6.

a

c

b

FIG. 8. Time evolution of scaling exponents for different initial conditions. a to c, scaling exponents for scans 1 to 3
determined from the likelihood function for each reference time t0 are in good agreement with the predicted mean. The errors
denote the standard deviation obtained by a Gaussian fit to the marginal likelihood functions at each reference time separately.
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a b c

FIG. 9. Spatially averaged observables for different initial conditions. a to c, time evolution of averaged observables N̄
and M̄2 for the scans 1 to 3. Within the scaling region (shaded gray area) N̄ is approximately conserved. The solid black lines
are the approximately conserved value and scaling solutions (4), respectively. The errors mark the 95% confidence interval.
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