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Abstract: We obtain an asymptotic formula for the average value of the operator product

expansion coefficients of any unitary, compact two dimensional CFT with c > 1. This for-

mula is valid when one or more of the operators has large dimension or — in the presence

of a twist gap — has large spin. Our formula is universal in the sense that it depends only

on the central charge and not on any other details of the theory. This result unifies all

previous asymptotic formulas for CFT2 structure constants, including those derived from

crossing symmetry of four point functions, modular covariance of torus correlation func-

tions, and higher genus modular invariance. We determine this formula at finite central

charge by deriving crossing kernels for higher genus crossing equations, which give analytic

control over the structure constants even in the absence of exact knowledge of the conformal

blocks. The higher genus modular kernels are obtained by sewing together the elementary

kernels for four-point crossing and modular transforms of torus one-point functions. Our

asymptotic formula is related to the DOZZ formula for the structure constants of Liou-

ville theory, and makes precise the sense in which Liouville theory governs the universal

dynamics of heavy operators in any CFT. The large central charge limit provides a link

with 3D gravity, where the averaging over heavy states corresponds to a coarse-graining

over black hole microstates in holographic theories. Our formula also provides an improved

understanding of the Eigenstate Thermalization Hypothesis (ETH) in CFT2, and suggests

that ETH can be generalized to other kinematic regimes in two dimensional CFTs.
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1 Introduction and discussion

Two dimensional conformal field theories are among the most important and interesting

quantum field theories. They describe important condensed matter and statistical me-

chanics systems at criticality and, remarkably, possess an infinite dimensional group of

symmetries related to local conformal transformations [1]. In this paper we will be inter-

ested in irrational CFTs with c > 1 and an infinite number of primary states. Although

these theories are not exactly solvable, they are nevertheless under much greater analytic

control than their higher dimensional cousins. In this paper we will describe a particular

example of this fact: the dynamics of heavy (i.e. high dimension) operators is universal

in two dimensional CFTs, in the sense that these dynamics are determined only by the

central charge and not by any other details of the theory.

The basic dynamical data that defines a CFT2 is a list of primary operators Oi, along with

• Their scaling dimensions ∆i ≡ hi + h̄i and spins Ji ≡ hi − h̄i, and

• The operator product expansion (OPE) coefficients Cijk.

These data, along with the central charge c, uniquely determine the correlation functions

of the theory in flat space as well as on an arbitrary surface. Ideally one would like to solve

the constraints of unitarity and conformal invariance to determine the possible allowed

values of the {hi, h̄i, Cijk}, and hence completely classify two dimensional CFTs. In the

absence of such a complete classification, however, we will ask a more modest question:

which features of this data are universal (i.e. true in any conformal field theory) and which

are theory dependent?

A simple example of a universal feature is the dimension and spin of the identity

operator:1

h1 = 0 = h̄1 (1.1)

which is the same in every CFT2. A second and somewhat more subtle universal feature

is Cardy’s formula for the growth of the high energy density of primary states [2]:2

ρ(h, h̄) ≈ exp

{
4π

(√
(c− 1)h

24
+

√
(c− 1) h̄

24

)}
when h, h̄→∞. (1.2)

1We restrict our attention in this paper to unitary, compact CFTs, defined to have a discrete spectrum

with a unique sl(2)-invariant ground state. The same approach will, however, apply more generally with

some modest modifications. We focus on theories with cL = cR = c for simplicity, but the modification of

our results to theories with cL 6= cR is straightforward.
2Throughout this paper we use the notation a ∼ b to denote that a

b
→ 1 in the limit of interest. We will

also use the notation a ≈ b to denote that a and b have the same leading scaling in the limit of interest.
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Equation (1.2) is true in any compact CFT2 with c > 1, and is universal in the sense that

it depends only on the central charge c and not on any other details of the theory. In

fact, these two universal features (1.1) and (1.2) are closely related: they are “dual,” in

the sense that they are related by modular invariance. Cardy’s formula is the statement

that the identity operator has dimension zero, albeit interpreted in a dual channel in the

computation of the torus partition function.

Every unitary, compact CFT possesses an additional universal feature: the identity

operator will appear in the fusion of any operator with itself. In terms of the OPE data,

this means that

Cii1 = 1 (1.3)

for any operator Oi.3 This leads to the following natural question: what is the corre-

sponding dual universal feature? In other words, what universal feature do the three point

coefficients obey which plays the same role to equation (1.3) as Cardy’s formula (1.2) does

to equation (1.1)?

We will answer this question in this paper. The result is a universal asymptotic formula

for the average value of the OPE coefficients:

Cijk2 ∼ C0(hi, hj , hk)C0(h̄i, h̄j , h̄k) (1.4)

where

C0(hi, hj , hk) ≡
1√
2

Γb(2Q)

Γb(Q)3

∏
±±± Γb

(
Q
2 ± iPi ± iPj ± iPk

)
∏
a∈{i,j,k} Γb(Q+ 2iPa)Γb(Q− 2iPa)

. (1.5)

In this equation
∏
± denotes a product of eight terms with all possible sign permutations.

Here rather than using the central charge c and dimensions h and h̄ to write our formula,

we have used the “Liouville parameters”

c = 1 + 6Q2 = 1 + 6(b+ b−1)2, h = α(Q− α), α =
Q

2
+ iP . (1.6)

Just as with Cardy’s formula, this result is universal in the sense that it is true in any

(compact, unitary) CFT, and the only free parameter appearing in this formula is the

central charge c.

In interpreting this formula, a few comments are in order. The first is that equa-

tion (1.4) is an expression for the average OPE coefficient, with the heavy operator weight(s)

averaged over all Virasoro primary operators, which is valid for any finite c > 1. In this

sense, our result differs from most of the previous results in the literature. The second is

that, although we have only written one formula, equation (1.4) is secretly three different

formulas hiding in one. In particular, this formula is valid in three different regimes, and

is derived using three types of crossing symmetry. Equation (1.4) holds:

• When two operators are taken to be fixed and the third is taken to be heavy, in

which case it follows from the crossing symmetry of four-point functions with pairwise

identical external operators.

3We have chosen a basis of operators such that the two-point function is diagonal and canonically

normalized, 〈Oi(0)Oj(1)〉 = δij .

– 2 –



J
H
E
P
0
7
(
2
0
2
0
)
0
7
4

• When one operator is fixed and the other two are heavy, in which case it follows from

the modular covariance of torus two-point functions of identical operators.

• When all of the operators are taken to be heavy, in which case it follows from modular

invariance of the genus two partition function.

In each case, the averaging taken in equation (1.4) should be understood as an average

over the heavy operator(s), but not over the other operators which are held fixed.4 The

surprising result is that we obtain exactly the same formula in each case.

Various authors have previously considered the asymptotic behaviour of three point co-

efficients in each of these three separate limits [3–19]. The asymptotic formulas which were

obtained generally relied on detailed computations of the conformal blocks, and — while

correct — required assumptions about the behaviour of the blocks in certain kinematic

regimes or the simplification of large central charge. Our single asymptotic formula (1.5)

unifies all of these previous results, and in the darkness binds them. Moreover, it holds for

any finite value of the central charge c > 1, and interpolates between all of the previously

known results in the literature.

Before describing the details of our derivation, in the remainder of the introduction

we will describe the strategy underlying our derivation and comment in more detail on the

interpretation of this result.

1.1 The strategy: bootstrap without the blocks

In order to illustrate our basic strategy, consider the following simple example where one

extracts the asymptotic behaviour of OPE coefficients from crossing symmetry of four point

functions. Consider the four point function of an operator O

〈O(0)O(x)O(1)O(∞)〉 =
∑
Os

|COOOs |2xhs−2hO x̄h̄s−2h̄O

=
∑
Ot

|COOOt |2(1− x)ht−2hO(1− x̄)h̄t−2h̄O
(1.7)

where in first line and second lines we have expanded in a basis of intermediate operators

in the S-channel and T -channel, respectively. In this simple version of the computation

the sums run over all operators in the theory, both primaries and descendants, and we

are not organizing the states into representations of the conformal group. The functions

xhs−2hO and (1 − x)ht−2hO play the role of conformal blocks in the S- and T -channel,

respectively. This four point function has a pole at x = 1 coming from the operator 1 in

the T -channel, which allows us to determine the asymptotic behaviour of the S-channel

expansion coefficients |COOOs |2 when hs is large. We do so by expanding the T -channel

conformal block of the identity operator into S-channel blocks:

1

(1− x)2hO
=

∞∑
n=0

(−1)n
(
−2hO
n

)
xn =

∞∑
n=0

(
2hO + n− 1

n

)
xn (1.8)

4As we will elaborate on below, “heavy” in this context means that h and h̄ are much larger than both

the central charge and the dimensions of the other operators which are held fixed. For this reason the three

different regimes described above are distinct, and there is a-priori no reason to expect to get the same

result in each regime.
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The binomial coefficient
(

2hO+n−1
n

)
appearing in this expression is a simple example of

a crossing kernel : the coefficients which appear when we expand a conformal block in

one channel in terms of conformal blocks in a dual channel.5 Comparing the two channel

decompositions of our correlation function, we see that our crossing kernel must equal the

average value of the OPE coefficients at hs = 2hO + n in the limit where the operator Os
is heavy:

|COOOs |2scaling ∼
(

hs − 1

hs − 2hO

)(
h̄s − 1

h̄s − 2h̄O

)
∼ h2hO−1

s

Γ(2hO)

h̄2h̄O−1
s

Γ(2h̄O)
, hs, h̄s →∞ (1.9)

The subscript ‘scaling’ reminds us that, as we did not organize into representations of the

conformal group, the average here is over all heavy operators Os — both primaries and

descendants — of dimensions hs, h̄s. We have also not specified the exact nature of the

average which is being taken, i.e. over how wide a range of operators one must average in

order for the result (1.9) to hold. We will return to this subtlety below.

In order to determine the asymptotic behaviour of primary operator OPE coefficients

we must improve this computation by organizing the sum over intermediate states into a

sum over representations of the conformal group. This is accomplished by taking Os and

Ot above to be primary operators and replacing the functions xhs−2hO and (1 − x)ht−2hO

by the appropriate conformal blocks. We then expand the identity block for the T -channel

in terms of the S-channel blocks for heavy operators, exactly as in (1.8). The average

value of the primary operator OPE coefficients is then given by the analog of the binomial

coefficient appearing in this expansion. As conformal blocks for Virasoro symmetry are not

known analytically one might think that this computation is impossible. Remarkably, this

is not the case, as Ponsot and Teschner obtained explicit (but complicated) expressions

for the crossing kernel of Virasoro blocks for four-point functions [21, 22].6 However, when

we take the operator in the T -channel to be 1 these crossing kernels simplify considerably,

and they are essentially given by our expression (1.5).

This computation will be carried out in more detail below, but already several features

are apparent. The first is that, as conformal blocks are purely kinematic objects — i.e.

they depend on central charge and the dimensions of the operators under consideration

but not on which theory we are studying — the crossing kernels are purely kinematic as

well. This guarantees that our resulting asymptotic formula will be universal, in the sense

that it depends only on the central charge but not on any other details of the theory. The

second is that, from this point of view, conformal blocks can be bypassed altogether and

one can work directly with crossing kernels. In particular, as long as one is interested in

5Note however that this crossing kernel is only supported on a discrete set of intermediate operator

weights (namely hs = 2hO + n for n a non-negative integer); this is similar to the situation for global

SL(2,R) conformal blocks, which can be expanded as a sum over double-twist blocks and their derivatives

in the cross channel (see [20] for an explicit decomposition). This is unlike the case of Virasoro blocks that

will be the subject of this paper, as the cross-channel decomposition of the Virasoro block will typically

involve a continuum.
6The higher-dimensional analog of the Virasoro fusion kernel is the 6j symbol for the principal series

representations of the Euclidean global conformal group SO(d+ 1, 1) [23], which serves as a crossing kernel

for conformal partial waves.
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understanding the constraints that crossing symmetry imposes on the dynamical data of a

CFT (the spectrum and OPE coefficients) the conformal blocks represent an unnecessary

complication. Blocks are only needed if one wishes to extract an observable, such as a

correlation function, from this basic dynamical data.

The above discussion shows that crossing symmetry of four point functions will deter-

mine the asymptotic behaviour of OPE coefficients in the limit where one operator is taken

to be heavy and the others are held fixed. In order to obtain other constraints, we must con-

sider crossing symmetry and modular invariance for more general observables. The most

general observable is an n-point correlation function of Virasoro primaries on a Riemann

surface of genus g, which we will denote Gg,n({qi}), where the qi are a set of continuous

variables which parameterize the moduli of the Riemann surface as well as the locations of

the insertion points of these primary operators. We then expand this observable as a sum

over intermediate operators propagating in a particular channel, as

Gg,n({qi}) =
∑
{Oj}

C{Oj}F({Pj}|{qi})

≡
∫

[dPj ] ρ({Pj})F({Pj}|{qi}).
(1.10)

Here the {Oj} are the internal operators which contribute to this observable, and the C{Oj}
are the corresponding products of OPE coefficients. We are organizing into conformal fam-

ilies, and the conformal block F({Pj}|{qi}) encodes the contribution of all descendants of

the operators {Oj}. As the conformal blocks are kinematic, they depend only on the spins

and dimensions of the operators {Oj}, which we are writing in terms of the parameters

{Pj} defined by equation (1.6). In order to keep the notation compact, in this formula

{Pj} and {qi} denote both the holomorphic and anti-holomorphic weights of the internal

operators and moduli of the punctured Riemann surface, and the block F({Pj}|{qi}) in-

cludes contributions from both left- and right-moving descendants. For simplicity we have

suppressed the dependence on the external operators. In the last line we have introduced

a “density of OPE coefficients”

ρ({Pj}) =
∑
{Oj}

C{Oj}
∏
j

δ
(
Pj − POj

)
δ
(
P̄j − P̄Oj

)
(1.11)

which is a function only of the Pj .
7

In (1.10) we have reduced the correlation function to a sum of products of OPE coef-

ficients. On a higher genus Riemann surface this is an in principle complicated procedure,

as one must decompose the Riemann surface into pairs-of-pants and then sum over inter-

nal operators which propagate through the cuffs of these pairs of pants. This makes the

computation of the conformal blocks quite difficult. The advantage of our approach is that

by working directly with crossing kernels rather than conformal blocks, almost all of the

details of this construction are irrelevant. Thus it is possible to understand the constraints

7Strictly speaking ρ is a distribution rather than a function. Moreover, the Pi will be either real or

purely imaginary depending on dimensions and spins of the operators Oj , and the definition of the integral

in (1.10) includes contributions from all states.
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of modular invariance and crossing symmetry without the need to explicitly construct the

Riemann surface.

We now wish to compare this to the expansion of our observable in another channel:

Gg,n({qi}) =
∑
{Ok}

C̃{Ok}F̃({Rk}|{q̃i})

=

∫
[dRk]ρ̃({Rk})F̃({Rk}|{q̃i}).

(1.12)

Here we denote the OPE coefficients, the Virasoro conformal blocks, and the OPE spectral

density in this alternate channel with a tilde. We have also denoted the moduli on which

the conformal blocks depend with a tilde to emphasize that the blocks in different channels

typically admit perturbative expansions in different parameterizations of the moduli. In

general the relationship between the two coordinate systems qj and q̃i on moduli space is

quite complicated. Our strategy of working entirely with crossing kernels ensures, however,

that we never need to determine this relationship explicitly.

Associativity of the operator product expansion implies that our two different opera-

tor product expansions must agree. We then compare these two different expansions by

introducing the crossing kernel K defined by:

F({Pj}|{qi}) =

∫
[dRk]K{Rk}{Pj}F̃({Rk}|{q̃j}). (1.13)

Plugging this into equation (1.10) and comparing with (1.12) gives us the crossing equation.

ρ̃({Rk}) =

∫
[dPj ]K{Rk}{Pj}ρ({Pj}) . (1.14)

In cases where the same OPE data appears in both channels, the solutions to the crossing

equation are the unit eigenvectors of the crossing kernel.

We now wish to extract universal features of the OPE coefficients C{Oj} by considering

limits where the identity operator dominates in one channel. In particular, we would like

to consider cases where the right hand side of the crossing equation (1.14) is dominated

by the identity operator (i.e. dominated by the term with all Oj = 1) when the internal

weights Rk are taken to infinity. This will occur when

K{Rk}{Pj}
K{Rk}{1}

→ 0 as Rk →∞. (1.15)

In this limit the density of OPE coefficients is just given by the corresponding crossing

kernel of the identity operator:

ρ̃({Rk}) ≈ K{Rk}{1} as Rk →∞. (1.16)

This is the generalization of our earlier result (1.9), that the crossing kernel of the iden-

tity operator serves as the universal asymptotic behaviour of the OPE coefficients for

heavy states.

– 6 –
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We emphasize that, although we have phrased it more abstractly, this is equivalent

to the familiar strategy where one studies the crossing equation in a kinematic regime in

which the exchange of the identity operator dominates in one channel. For example, in the

case of the four-point function the limit we are considering is equivalent to the one where

the cross ratio x → 1. Similarly, the application of this strategy to the torus partition

function gives Cardy’s formula. A final example is the lightcone bootstrap [24, 25], where

the spectrum and OPE data of CFTd>2 approaches that of mean field theory at large spin.

However these arguments typically require the detailed knowledge of conformal blocks in

certain Lorentzian kinematic regimes, which in the Virasoro case is out of reach except in

the simplest cases. The advantage of our approach is that we only require the crossing

kernel, bypassing the need to compute the conformal blocks explicitly.

1.2 The Moore-Seiberg construction of crossing kernels

We now wish to apply this construction to constrain the asymptotics of the squared OPE

coefficients |Cijk|2. To begin, recall that Cijk is the correlation function 〈OiOjOk〉S2 on the

sphere, with the operators inserted at three points. Thus to study |Cijk|2 we must consider

observables obtained by sewing together two copies of the sphere at these insertion points.

For example, the four point function on the sphere is obtained by sewing together these

two spheres at a single point — say, the insertion point of the operators Ok — to give:8

〈Oi(0)Oj(x, x̄)Oj(1)O′i(∞)〉S2 =
∑
Ok

|Cijk|2F(Pk|x)F(P̄k|x̄) (1.17)

where F(Pk|x) is an appropriate holomorphic conformal block. Applying the crossing

arguments of the previous section will then lead to an asymptotic formula for the |Cijk|2

in the limit where Ok is taken to be heavy but the operators Oi and Oj are held fixed.

Similarly, we can sew together the spheres at a pair of points, the locations of the operators

Oj and Ok, to obtain the two point function on the torus:

〈Oi(v, v̄)Oi(0)〉T 2(τ) =
∑
Oj ,Ok

|Cijk|2F(Pj , Pk|τ, v)F(P̄j , P̄k|τ̄ , v̄) (1.18)

where F(Pj , Pk|τ, v) is now a conformal block for two point functions on the torus. This

will lead to an asymptotic formula for |Cijk|2 in the limit where both Oj and Ok are heavy

and Oi is fixed. Finally, sewing together all three insertion points gives the genus two

partition function:

Zg=2(q, q̄) =
∑

Oi,Oj ,Ok

|Cijk|2F(Pi, Pj , Pk|q)F(P̄i, P̄j , P̄k|q̄) (1.19)

where q is a collection of genus two modular parameters and F(Pi, Pj , Pk|q) is a holomorphic

genus two conformal block. This will lead to an asymptotic formula which is valid when

all of the operators are taken to be heavy.

The strategy described above is only useful, however, if we can accomplish two things:

we first need to find a dual channel where the identity operator dominates, and we must

8The notation O′(∞) means limz→∞ z2hO z̄2h̄OO(z, z̄).

– 7 –
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−−−→ and −−−→

Figure 1. The elementary crossing transformations: sphere four-point crossing between S and T

channels, and torus one-point crossing between the τ and (−1/τ) frames.

−−−→ −−−→

Figure 2. Example of a crossing transformation on the torus two-point function.

then compute the relevant crossing kernels. To accomplish this we will follow the strategy

of Moore and Seiberg [26], who argued that all of the constraints of the associativity of

the OPE are completely captured by crossing symmetry of four point functions on the

sphere and modular covariance of one-point functions on the torus. This is because any

crossing transformation for any observable can be constructed by composing “elementary”

crossing transformations: four point crossing on the sphere (or fusion), and modular trans-

formations for one-point functions on the torus (along with braiding, which we will not

use in this paper). The crossing kernels for these elementary crossing transformations were

written down explicitly in [21, 22, 27, 28]. Thus, by assembling these together using the

Moore-Seiberg construction, we can obtain explicit formulas for general crossing transfor-

mations — such as those on higher genus Riemann surface — without ever computing a

conformal block.

We will write this down very explicitly below, but the general strategy is easy to under-

stand. The two elementary crossing transformations we use can be represented pictorially

as in figure 1. The first of these is the crossing transformation for four point functions on

the sphere, where we have chosen to represent the four external operators by holes rather

than infinitesimal points. The S- and T -channel decompositions of the four point function

then correspond to the two different ways of constructing this four-holed sphere as two

pairs-of-pants glued together shown above. Similarly, the second picture in figure 1 de-

scribes the crossing transformation between two different channels for a one-point function

on the torus.

We can now construct crossing transformations for two point functions on the torus by

composing these elementary transformations, as in figure 2. We recognize the first of these

as the modular S transformation for one point functions on the torus, and the second as

the fusion move for four point functions on the sphere. The result is an expression for this

more complicated crossing kernel as a product of these two elementary kernels. Indeed, we

recognize the channel on the far right as precisely the one which gives the square of the OPE

coefficients in equation (1.18), where Oj and Ok are the operators which propagate through

the two blue circles. Our asymptotic formula for |Cijk|2 is then obtained by considering the

kinematic limit which is dominated by the identity operator 1 propagating in the channels

(marked by yellow circles) on the far left.

– 8 –
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−−→ −−→

Figure 3. Example of a crossing transformation on the g = 2 partition function.

We can construct the crossing transformations at genus two in a similar manner, as in

figure 3: we have first done two crossing moves for torus one point functions, followed by a

four-point crossing move on the sphere. Again, the channel on the far right gives the square

of the OPE coefficients considered in equation (1.19) where the operators Oi, Oj and Ok
propagate through the three blue circles. The asymptotic formula for |Cijk|2 when these

three operators are taken to be heavy is found by considering the limit where the identity

operator 1 dominates in the channel decomposition depicted on the far left. This formula

is given in terms of a genus two crossing kernel which — by construction — is a product

of the elementary crossing kernels which were written down by Ponsot and Teschner.

The result is an asymptotic formula for the averaged OPE coefficients |Cijk|2 in the

three limits described above, where either one, two or all three operators are taken to be

heavy, and only the heavy operators are averaged over. For example, in the case where the

differences between the heavy operator dimensions and all spins Ji are held fixed in the

large-dimension limit, we can state all of our asymptotic formulas as follows:9

C2
O1O2O ≈ 16−∆e

−2π
√
c−1
12

∆
∆2(∆1+∆2)− c+1

4 , ∆� c, J,∆i, Ji (1.20)

C2
O0O1O2

≈ e−4π
√
c−1
12

∆1∆∆0
1 , ∆1,∆2 � c, Ji,∆0, J0, |∆1 −∆2| (1.21)

C2
O1O2O3

≈
(

27

16

)3∆1

e
−6π

√
c−1
12

∆1∆
5c−11

36
1 , ∆1,∆2,∆3 � c, Ji, |∆i −∆j | (1.22)

In addition to these, there are other distinct asymptotic limits, for example fixing the ra-

tios of ∆i instead of differences as in (4.12) and (4.20), which are also controlled by (1.4).

Remarkably, all of these formulas (appearing in equations (4.4), (4.12), (4.13), (4.20)

and (4.21)) are realized as limits of the same underlying formula (1.5). This is perhaps

the most surprising feature of our result, and is a consequence of the Moore-Seiberg pro-

cedure which constructs all of these different crossing kernels from the same elementary

building blocks.

1.3 Generalizations to other observables

We emphasize that, although we have applied our strategy to the computation of the

asymptotics of the |Cijk|2, this argument works much more generally. Whenever one can

find a kinematic limit where the identity block dominates a CFT observable, there is a

corresponding universal formula for the OPE data in the dual channel — it is just a matter

of assembling the appropriate crossing kernel. In this sense our strategy should be regarded

9Here, our notation with the ≈ symbol means that we have omitted the order one coefficients appearing

in these formulas. These coefficients can be found in equations (4.4), (4.13) and (4.21).
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as defining an entire class of CFT asymptotic formulas which govern the universal dynamics

of heavy operators in two dimensional CFTs. It would clearly be worth exploring these

dynamics in more detail.

In addition, while our main focus is on universal asymptotic formulas — namely those

which are constructed only from the propagation of the identity operator in a cross channel

— one can also consider non-universal quantities which are constructed from other light

operators propagating in a cross channel. For example, the leading corrections to the

universal formulas described above will come from the other light operators in the theory,

and one can obtain improved (but non-universal) asymptotic formulas which depend on the

data (such as the spectrum and OPE coefficients) of whatever light operators are present

in the theory.

The most interesting example of this type would be one where the contribution from

1 in the cross channel vanishes, in which case the asymptotic behaviour would be non-

universal and depend on the light data of the theory. The prototypical example is the

average value of the Light-Heavy-Heavy OPE coefficient Ciij , where the state i is heavy

and averaged over, while the j is held fixed. This is determined by considering the modular

covariance of one point functions 〈Oj〉T 2(τ) on the torus in the limit τ → 0 [5]. The

contribution from the identity operator propagating in the dual channel (i.e. taking τ →
−1/τ) is just the one-point function of Oj on the plane, which vanishes. The first non-

vanishing contribution will come from the lightest operator χ which has Cjχχ 6= 0. Previous

results have either worked only at large central charge, or have organized into scaling blocks

or global blocks, rather than full conformal blocks (so that the average in Ciij is an average

over quasi-primaries or over all states in the theory, rather than over Virasoro primaries) [5].

We can now write down the complete answer at finite central charge, where the average is

taken only over primaries; this will be discussed in section 7.

1.4 Large central charge limit

One important special case is the large central charge limit, which is relevant for holographic

theories with an AdS gravity dual. In this case a generic heavy state is interpreted as

a microstate of a BTZ black hole. The observation that the average OPE coefficients

take a universal form then has a natural physical interpretation, as the emergence of a

semi-classical black hole geometry which arises upon coarse-graining over heavy states.

That our formula depends only on the central charge and the dimensions and spins of the

operators reflects the fact that this semi-classical configuration is purely geometric: the

holographically computed OPE coefficient depends on Newton’s constant and the masses

and spins of the objects under consideration, but not on any other details of the state.

Our formulas can thus be regarded as an extrapolation of the usual gravitational “no

hair” theorems to CFT. Indeed, various limits of our formula have already been shown to

reproduce the classical dynamics of particles in black hole backgrounds [4–7, 10], and appear

in closely related gravitational computations of semiclassical conformal blocks [29, 30]. We

note that from the point of view of classical gravity it is not at all obvious that there should

be a single formula that interpolates between the three different limits we are considering

(where either one, two or all three of the operators are taken to be heavy). Indeed, our
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formula reflects this: it smoothly interpolates between these three limits at finite c, but

not after taking a c→∞ limit.

Perhaps the most important point to emphasize here is that, as we take c → ∞, the

“heavy” operators appearing in our formula should still be understood to have dimension

large compared to c. This is necessary in order for the identity operator to still dominate

in the dual channel. Such a state, however, will be interpreted as a black hole whose

horizon area is very large in AdS units. A black hole whose size is order one in AdS units

would correspond to an operator whose dimension is order c. It is therefore natural to

ask under what circumstances the regime of validity of our asymptotic formulas could be

extended to operators with finite h/c in the large c limit. Generically, this will only happen

if we impose severe restrictions on the “light” data in our theory. For example, the regime

of validity of Cardy’s formula can be extended all the way down to dimensions of order

c only if the density of states of the light spectrum is sufficiently sparse [31]. It would

be interesting to ask whether similar considerations could be applied to our asymptotic

formulas. We expect that the corresponding sparseness constraint will be considerably

more subtle, however, and may require more than just a constraint on the density of OPE

coefficients of light operators — see [30, 32] for discussions of this in the context of higher

genus partition functions of symmetric product orbifolds and holographic CFTs.

1.5 Chaos, integrability and eigenstate thermalization

Our results have an important role to the play in the study of chaos in two dimensional

CFTs. To see this, we first note that while we have written formulas of the form

Cijk2 ∼ C0(hi, hj , hk)C0(h̄i, h̄j , h̄k) (1.23)

we have not yet stated precisely what range of states one must average over. The weakest

possible statement would be that our asymptotic formula is true only in an integrated

sense, where rather than averaging over a small window of states one simply sums over all

states below some (large) cutoff. We expect, however, that a much stronger version is true,

where one needs to integrate only over a small window; results that establish this kind of

behaviour go under the general name of Tauberian theorems (see e.g. [16, 33–37] for recent

applications of Tauberian theorems in this context). In the present case we would require

new results for several variables, adapted to the Virasoro crossing transforms. This is an

important avenue for future research, which is not merely a mathematical subtlety but a

question of important physical interest.

In particular, our expectation is that in a generic, chaotic theory one would need to

average only over very small window in order to obtain the asymptotic result (1.23). In

other words, in a chaotic theory the typical OPE coefficient should be rather close to the

average one. In an integrable theory, however, many OPE coefficients will vanish due to

selection rules, so any average result is obtained only by including many different states

in the average. We expect that in a chaotic theory one would need to average over a

window of size not much larger than e−S , where S is the microcanonical entropy, while

in an integrable theory one must average over a window of some fixed width rather than
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one that is exponentially small at high energies. It is important to emphasize that all of

our results are derived from crossing and modular constraints which hold in any CFT.

Thus our result (1.23) will be equally true in integrable and chaotic theories. The crucial

difference will be in the way in which this average is realized. Indeed, we would propose

that the size of the window one must average over should be used as a sharp criterion for

chaos in conformal field theory: a chaotic theory is one where one needs to average only

over windows of size O(e−S). It would be interesting to compare this to other proposed

characterizations of chaos in quantum field theory.

Indeed, our asymptotic formulas also play an important role in the Eigenstate Ther-

malization Hypothesis (ETH) [38, 39], which states that in a chaotic theory the matrix

elements of an operator O should obey

〈i|O|j〉 ≈ fO(∆i)δij + gO(∆i,∆j)Rij (1.24)

for states i and j of fixed energy density in a large volume thermodynamic limit. Here, fO

and gO are smooth functions of energy related to the microcanonical one- and two-point

functions, and Rij is a random variable of zero mean and unit variance; if the one- and

two-point functions are of order one, then fO is of order one and gO of order e−S/2. In a

scale-invariant theory, the large volume thermodynamic limit is equivalent to a large energy

limit at fixed volume, which is the heavy limit we have been studying. When O is a local

operator, ETH is a statement about the statistics of structure constants (see [19, 40–53]

for more detailed discussion of ETH in the context of conformal field theories).

In a two dimensional CFT it is natural to take this to be a statement about primary

operator OPE coefficients; descendant state OPE coefficients are completely determined by

Ward identities, and hence by definition do not provide any information about the chaotic

dynamics of the theory. Indeed, dynamics within a particular Virasoro representation will

never thermalize due to the infinitude of conserved quantities. At infinite central charge this

distinction is largely irrelevant, as the typical high energy state is — if not a primary state

itself — then very close to one. For finite c CFTs, however, these considerations become

important and the most sensible definition of ETH is one where (1.24) is interpreted as a

statement about the statistics of primary operators.

In this case our asymptotic formulas for COii and COij2 determine the functions fO

and gO:

COii = fO(∆i), |COij |2 = (gO(∆i,∆j))
2 (1.25)

Thus our formulas provide a precise formulation of ETH for CFTs with finite central

charge c. It is important to emphasize that our asymptotic formulas predict the form of

the smooth functions fO and gO (and provide the consistency check that |COij |2 ∼ e−S),

but say nothing about the statistics of the remainder term Rij . The statement that Rij
has zero mean and unit variance, severely constraining the fluctuations of matrix elements,

is an important component of ETH and one which is invisible using the techniques of this

paper. Indeed, all CFTs are crossing invariant, so no argument based on crossing symmetry

alone can distinguish between a chaotic and an integrable theory. Our arguments establish

the universal behaviour of averaged OPE asymptotics, and so are not sensitive to the fine-

grained statistics of individual eigenstates. Some additional input must be included in order
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to use crossing arguments to probe this more refined structure of ETH. One might hope

that assuming no additional currents would be sufficient to ensure the theory is chaotic,

but while we make use of this assumption to establish universal formulas that apply at

large spin, it is not clear how to use it to say more about statistics of OPE coefficients

relevant for ETH.

An important feature of the ETH formula is that it is expected to govern the statistics

of OPE coefficients in the Heavy-Heavy-Light limit, where the operators i and j are heavy

but O is fixed. On the other hand, our asymptotic formulas for OPE coefficients smoothly

interpolate between this limit and the Light-Light-Heavy and Heavy-Heavy-Heavy regimes.

This immediately suggests that the ETH conjecture (1.24) should be generalized to these

regimes as well. It also suggests that a version of ETH should hold not just at large dimen-

sion, but also for operators with large spin at fixed twist. We expect this extended regime

of validity to be a special feature of CFTs (where there is a state-operator correspondence)

rather than general QFTs. One intriguing aspect of this conjecture is that while the Heavy-

Heavy-Light version of ETH has a natural thermodynamic interpretation — it captures the

intuitive notion that in a chaotic theory every state should be approximately thermal in

the thermodynamic limit — the interpretation of equation (1.24) in this extended regime

is much more mysterious.

A second important point is that the behaviour of the two functions fO and gO is

quite different in two dimensional CFTs from their behaviour in higher dimensions. In

a higher dimensional theory the diagonal terms in the OPE coefficients are exponentially

larger than the off-diagonal terms: fO is of order one, while gO ≈ e−
1
2
S(

∆i+∆j
2

) is expo-

nentially suppressed. In a two dimensional CFT this behaviour is modified, as fO itself

is exponentially small. This can be seen by noting that at high temperature a thermal

one point function becomes a one point function on the cylinder S1 × R, which is — by

the usual radial quantization map — conformally equivalent to the plane. Hence thermal

one point functions will be exponentially small at high temperature, with exponent deter-

mined by the dimension of the lightest operator which couples to the operator O. Thus we

expect that the off-diagonal terms for a generic primary operator O will be exponentially

suppressed relative to the diagonal terms, but with an exponent that is not e−
1
2
S(

∆i+∆j
2

)

but rather is determined by the size of the gap in the theory. This is a consequence of the

strange fact that in CFT2 thermal one point functions vanish at high temperature, while

thermal two point functions do not.

In the extreme case — where the size of the gap in the theory is sufficiently large

— the off-diagonal terms will be the same size as the diagonal terms. We will clarify

this statement in section 7 and show that this will occur when the lightest non-vacuum

primary that couples to O has dimension greater than or equal to c−1
16 (in the case that

this lightest operator is a scalar). This fact will be a simple consequence of the structure of

the corresponding crossing kernels. A theory with a gap of size O(c) would be interpreted

as a theory of pure gravity in AdS3 in the large c limit, as the spectrum of perturbations

around empty AdS would include only boundary gravitons (i.e. descendants of the identity

operator). We therefore come to a remarkable conclusion — a theory of pure gravity in
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AdS3 is precisely one where the off-diagonal terms in ETH are not suppressed relative

to the diagonal ones. This provides an intriguing link between black hole dynamics and

quantum chaos. A similar conclusion was recently reached for JT gravity in two dimensions

in [54].

1.6 Connection to Liouville theory

Our universal OPE coefficient formula (1.5) closely resembles the DOZZ formula for the

structure constants of Liouville theory [55, 56]. However, our universal asymptotic formulas

do not apply to Liouville theory, since it is not compact (the spectrum does not include an

sl(2)-invariant ground state). We here explain the similarity of the formulas by noting that

they both follow from Virasoro representation theory, and contrast their interpretation.

The spectrum of Virasoro primary states of Liouville theory is continuous, consisting

of scalars of dimension h = h̄ = c−1
24 + P 2 for P > 0. Their three-point coefficients are

given by the DOZZ formula CDOZZ(P1, P2, P3), which is related to our formula (1.5) by

C0(P1, P2, P3) ∝ CDOZZ(P1, P2, P3)(∏3
k=1 S0(Pk)ρ0(Pk)

) 1
2

, (1.26)

with a proportionality constant independent of P1,2,3, and S0 is the ‘reflection coefficient’

defining the normalisation of the vertex operators through the two-point function10

〈VP1(0)VP2(1)〉 = 2πδ(P1 − P2)S0(P1). (1.27)

Since the theory is noncompact, there is in fact no canonical normalisation of operators,

and only the combination (1.26) (up to the P -independent normalisation) is unambiguously

determined from the bootstrap. The denominator can be understood as a change of measure

on the space of states, from the one defined by (1.27) to a natural one proportional to

dP ρ0(P ) (see footnote 16).

Given this relation, on might be tempted to interpret our result as describing the precise

sense in which Liouville theory captures the universal dynamics of heavy operators, a point

of view that has been advocated in the context of holographic theories in [57, 58]. We should

not, however, interpret this too literally, since CDOZZ has a very different interpretation to

C0. In particular, Liouville theory has only scalar primary operators, with OPE coefficients

CDOZZ, whereas our results give OPE coefficients for all spins, from a product of two copies

of C0 (left- and right-moving). Indeed, a unitary compact CFT with c > 1 will necessarily

contain primary operators with arbitrarily large spin [59], and Liouville theory falls outside

10The proportionality constant is

(πµγ(b2)b2−2b2)
Q
2b

2
3
4 π

Γb(2Q)

Γb(Q)

and the reflection coefficient is

S0(P ) = (πµγ(b2)b2−2b2)−2iP/b Γb(2iP )Γb(Q− 2iP )

Γb(Q+ 2iP )Γb(−2iP )
,

where µ is the Liouville cosmological constant and γ(x) = Γ(x)
Γ(1−x)

.
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the scope of our asymptotic formula precisely because it is not compact. Rather, we regard

the relation (1.26) as a consequence of the fact that Liouville dynamics is governed by

precisely the same Virasoro representation theory that determines our asymptotic formula,

as we now explain.

Liouville theory is distinguished by having only scalar Virasoro primary states. In this

sense, it is analogous to the A-series or diagonal minimal models which exist for degenerate

values of c < 1, and have a spectrum of scalar primaries (finitely many in that case).

The restriction to scalars is sufficient to uniquely specify the theory, since it determines

a unique solution to the bootstrap (up to normalisation of operators and a decoupled

TQFT). Furthermore, this solution is given explicitly in terms of the identity fusion kernel

by a relation precisely of the form (1.26), which is determined by representation theoretic

considerations. We give an argument that can be applied both to four-point crossing

symmetry and to modular covariance of torus one-point functions. This type of argument

for four-point crossing is not new (see [60], for example), but the version for torus one-point

functions is novel, as far as we are aware.11 We sketch the arguments here, giving more

detailed explanations of the relevant identities in section 5.

To outline the argument for uniqueness, we first write the crossing equation (1.14)

including left- and right-moving dependence explicitly as

ρ′(P ′, P̄ ′) =

∫
[dPdP̄ ]KP ′PKP̄ ′P̄ ρ(P, P̄ ) . (1.28)

Here, the densities ρ, ρ′ denotes a spectral density for internal operators in either the four-

point function or the torus one-point function, and K is either a fusion kernel F or a modular

S-transform S, as discussed in sections 3.2 and 3.3 respectively. We can schematically write

this as a matrix equation

ρ′ = KρK†, (1.29)

where the rows and columns of ρ are labelled by P, P̄ respectively, and similarly for ρ′.

Now, if we assume that the spectrum contains only scalars, then ρ and ρ′ are diagonal

(nonzero only for P = P̄ ). In that case, we can choose to use a different normalisation

for the conformal blocks, and hence fusion kernel, that absorbs factors of ρ1/2, (ρ′)−1/2

into the columns and rows of K: K̂ = (ρ′)−1/2Kρ1/2. With this normalisation, the crossing

equation becomes K̂K̂† = 1, so that K̂ is unitary (after restricting to the support of

ρ, ρ′). Such a normalisation exists for the fusion kernel [22], thus determining a scalar

solution of crossing. This solution reproduces the DOZZ formula up to the ambiguities of

normalisation. Moreover, the only way that this solution can fail to be unique is if K̂ is

block diagonal in the P basis.12

For the final step, we must relate the unitary normalisation of K to the identity fusion

kernel. For four-point crossing, such a relation follows from a special case of the pentagon

identity satisfied by the fusion kernel. The identity representation is picked out by its

11We thank S. Ribault for correspondence.
12In fact, the Virasoro fusion kernel is block diagonal, since the degenerate representations form an

invariant subspace. If we relax the assumption of unitarity, this leads to a second solution to crossing,

namely the ‘generalized minimal model’ [60].
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simple fusion rule, which implies that the fusion kernel with an external identity operator

is trivial. For the torus one-point function, we have a similar identity relating the modular

S-matrix and fusion kernel. We give the explicit forms of these identities and their deriva-

tions in section 5, along with arguments explicitly verifying them from the closed-form

expressions [21, 22, 28] for the Virasoro fusion and modular kernels.

1.7 Discussion

Before moving on to a derivation of our formula, we discuss a few final interesting features

of our result.

While our asymptotic formula (1.5) might look arbitrary, it is in fact extremely highly

constrained if we assume analyticity. In fact, equation (1.5) is almost completely deter-

mined by its analytic structure and simple physical considerations. To see this, we note

that C0(Pi, Pj , Pk) is a meromorphic function of its arguments which has

• Zeroes when Pi = iQ2 ±
i
2

(
rb+ sb−1

)
with r, s ∈ Z≥0,

• Poles when Pi = Pj + Pk ± iQ2 + i
(
mb+ nb−1

)
with m,n ∈ Z≥0,

and is invariant under reflections Pi → −Pi and permutations of the (Pi, Pj , Pk). These

zeros occur precisely when Oi has a null Virasoro descendant at level rs. The poles occur

precisely when the weights of Oi are equal to the weights of a double twist operator built out

of Oj and Ok [20]. A meromorphic function is uniquely determined by its poles and zeroes,

up to the exponential of a polynomial. Thus in retrospect, once one postulates the existence

of a meromorphic function that interpolates between the asymptotic regimes, one could

have completely determined C0(Pi, Pj , Pk) up to the exponential of a polynomial in the

(Pi, Pj , Pk), simply by demanding the existence of zeros at null states and poles at double

twist operators. One might even argue that this polynomial must be a constant in order

to guarantee the convergence of the operator product expansion (although this argument

is subtle because we are varying the (Pi, Pj , Pk) as complex variables independently). This

suggests that the function C0(Pi, Pj , Pk) can be completely determined by analyticity and

simple physical constraints.

We will now move on to the derivation of our result. We begin in section 2 with a

detailed warm-up exercise, where we describe the derivation of various versions of Cardy’s

formula using the crossing kernel for modular transformations. We then proceed to discuss

the Moore-Seiberg procedure in more detail in section 3.1, before turning to the elementary

crossing kernels in sections 3.2 and 3.3. We apply this to compute higher genus crossing

kernels and OPE asymptotics in section 4. Large central charge limits, and comparisons

to the literature, are discussed in section 6. Section 7 discusses the computation of the

average value of the light-heavy-heavy OPE coefficients using the modular covariance of

torus one-point funcitons. We relegate some details of the elementary crossing kernels and

their asymptotics to the appendices.

2 Cardy’s formula from crossing kernels

To illustrate the main idea of the paper, we first revisit the derivation of the Cardy formula

for primary states (and its large-spin version [20, 61–64]) using the modular S-matrix, a
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strategy which we will generalize in later sections. We follow the presentation and notation

of [64], which contains some more details and applications. The relationship between the

Cardy formula and the modular S-matrix was first elucidated in [65].

2.1 Natural variables for Virasoro representation theory

As a preliminary, we introduce a parameterization of the CFT data that turns out to be

natural for the representation theory of the Virasoro algebra. The central charge c can be

written in terms of a “background charge” Q or “Liouville coupling” b as

c = 1 + 6Q2 = 1 + 6(b+ b−1)2. (2.1)

We will make the choice that c > 25 corresponds to 0 < b < 1, while 1 < c < 25 corresponds

to b a pure phase in the first quadrant. To label Virasoro representations we use a variable

P , or sometimes the equivalent α = Q
2 − iP , which is related to the more usually seen

conformal weight by

h =
(
Q
2

)2
+ P 2 = α(Q− α), (2.2)

and similarly P̄ or ᾱ in place of h̄. Two things about this parameterisation should be

noted. First, it is redundant, being invariant under the reflection reflections P → −P (or

α → Q − α). Secondly, it naturally splits unitary values of the weights (h ≥ 0) into two

distinct ranges: h ≥ c−1
24 corresponds to real P (or α ∈ Q

2 + iR), and 0 ≤ h < c−1
24 , which

corresponds to imaginary P (or α ∈ (0, Q2 )).

2.2 The partition function and density of primary states

Now consider the torus partition function of a compact13 CFT with c > 1. The partition

function encodes the spectrum of the theory, admitting a decomposition into Virasoro

characters:

Z(τ, τ̄) = χ1(τ)χ̄1(τ̄) +
∑
i

χPi(τ)χ̄P̄i(τ̄) (2.3)

The sum runs over Virasoro primary states labelled by i, with conformal weights labelled

by Pi, P̄i, and the nondegenerate Virasoro characters χP packaging together all states in a

conformal multiplet are given by

χP (τ) =
qP

2

η(τ)
, (2.4)

where q = e2πiτ . The identity character χ1 is distinguished because the corresponding

representation is degenerate (L−1 annihilates the vacuum state), so

χ1(τ) = χ i
2 (b−1+b)

(τ)− χ i
2 (b−1−b)

(τ) =
q−

Q2

4 (1− q)
η(τ)

. (2.5)

If there are any other conserved currents (operators with h = 0 or h̄ = 0) in the theory, we

should similarly use this degenerate character for either the left- or right-moving half.

13By “compact,” we mean a CFT with a normalizable SL(2,C)-invariant vacuum state and a discrete

spectrum of Virasoro primary operators.
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We can rewrite the character decomposition of the partition function in terms of a

density of primary states ρ, writing

Z(τ, τ̄) =

∫
dP

2

dP̄

2
ρ(P, P̄ )χP (τ)χ̄P̄ (τ̄), (2.6)

where ρ is a distribution given by a sum of delta-functions δ(P − Pi)δ(P̄ − P̄i) for each

primary. Using the reflection symmetry, we make the choice that ρ is an even distribution,

so each primary contributes four terms related by reflections in P, P̄ , and we introduce

the factors of 1
2 in the integrals to avoid overcounting. It is also convenient to always

use nondegenerate characters in the expansion, so for the identity (and other currents, if

present), ρ includes delta-functions with negative weight at P, P̄ = ± i
2

(
b−1 − b

)
to subtract

the null descendants. Finally, we note that ρ is a somewhat unconventional distribution,

since it has support at imaginary values for operators with h, h̄ < c−1
24 . This is nonetheless

rigorously defined if we integrate against analytic test functions, of which the characters

should form a complete set in an appropriate topology (see [64] for more details).

2.3 The modular S-transform

Locality of a CFT implies invariance of the torus partition function under the modular S-

transform, Z(−1/τ,−1/τ̄) = Z(τ, τ̄), which in turn constrains the allowed CFT spectrum.

We will reformulate this constraint directly on the density of states ρ(P, P̄ ). To do this,

first note that the modular S-transformation τ → −1/τ acts on individual characters as a

Fourier (cosine) transform in the momentum:

χP (−1/τ) =

∫
dP

2
χP ′(τ)SP ′P [1]

SP ′P [1] = 2
√

2 cos(4πPP ′) .

(2.7)

The kernel of this integral transform is the ‘modular S kernel’ SP ′P [1], where the [1] label

indicates that the partition function is a trivial example of the torus one-point function

of the identity operator, with the generalization to nontrivial operators to follow. The

notation emulates the situation in rational CFTs, where there are a finite number repre-

sentations, so the modular kernel S[1] becomes a finite-dimensional matrix.

Given a function Z(τ, τ̄) expanded in characters using a density of primary states

as in (2.6), we can take a modular S-transform and use the kernel (2.7) to rewrite the

transformed characters:

Z(−1/τ,−1/τ̄) =

∫
dP

2

dP̄

2

dP ′

2

dP̄ ′

2
SP ′P [1]SP̄ ′P̄ [1]ρ(P, P̄ )χP ′(τ)χ̄P̄ ′(τ̄) . (2.8)

Exchanging order of integration between the primed and unprimed variables, we can in-

terpret this as an expansion (2.6) of the modular transformed function with a transformed

density of primary states:

ρ̃(P ′, P̄ ′) =

∫
dP

2

dP̄

2
SP ′P [1]SP̄ ′P̄ [1]ρ(P, P̄ ) . (2.9)
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Since the partition function uniquely determines the spectrum, this equation expresses the

modular S-transform as a Fourier transform acting on the density of primary states ρ.14 In

particular, a physical spectrum corresponding to a modular invariant theory is invariant

under this Fourier transform:

Modular invariance ⇐⇒ ρ̃(P, P̄ ) = ρ(P, P̄ ) (2.10)

From (2.9), we can think of the modular S-matrix as the contribution of a single

operator to the density of states in the transformed channel. The only exception to this is

the degenerate representations with h = 0 (or h̄ = 0), so we introduce an ‘identity S-matrix’

SP1[1] = SP, i
2

(b−1+b)[1]− SP, i
2

(b−1−b)[1] = 4
√

2 sinh(2πbP ) sinh(2πb−1P ), (2.11)

which encodes the contribution of such a degenerate state. The density of states

SP1[1]SP̄1[1] dual to the vacuum will be of central importance for us.

2.4 Cardy formulas

The density of states ρ(P, P̄ ) is a sum of delta-functions for each primary operator, so for

a modular invariant spectrum, by taking the S-transform we can instead write it as a sum

over modular S-matrices:

ρ(P, P̄ ) = SP1[1]SP̄1[1] +
∑
i

SPPi [1]SP̄ P̄i [1] (2.12)

We have not explicitly included any nontrivial primary currents, which would contribute the

identity S-matrix in P and the nondegenerate S-matrix in P̄ or vice versa. If such currents

are present, it is most natural to organise the states into multiplets of an extended algebra,

under which all currents are descendants of the vacuum, and use the modular S-matrix

pertaining to the extended algebra.

Now consider this sum in the limit of large P and/or P̄ . In this limit, the relative

importance of the terms is determined by Pi, P̄i: for a state with 0 < h < c−1
24 , the relevant

S-matrix is exponentially suppressed relative to the vacuum:

SPP ′ [1]

SP1[1]
∼


e−4πα′P α′ = Q

2 + iP ′ ∈
(

0, Q2

)
2 cos(4πPP ′)e−2πQP P ′ ∈ R

as P →∞ (2.13)

From this, we find (at least naively; we revisit this more carefully at the end of the section)

that the density of states at large P, P̄ asymptotically approaches the vacuum S-matrix:

ρ(P, P̄ ) ∼ ρ0(P )ρ0(P̄ ) as P, P̄ →∞, where ρ0(P ) := SP1[1] ∼
√

2e2πQP (2.14)

14We can strip off the characters since, by assumption, they are complete in the relevant space of test

functions. This just means that a distribution is defined by its integral against all characters, i.e. its

corresponding partition function. The same applies for the more complicated transforms we encounter later.
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This is of course nothing but Cardy’s formula for the asymptotic density of primary states

at large dimension, correct up to corrections exponential in
√
h,
√
h̄ coming from the lightest

non-vacuum primary state.15

With this derivation, it becomes clear that the Cardy formula (2.14) is also valid in a

‘large spin’ regime where we fix h and take h̄ → ∞ [20, 61–64]. In this limit, the relative

suppression (2.13) of non-vacuum blocks is controlled by ‘barred’ dimension only, so we

require the additional assumption of a ‘twist gap’ (h̄ is bounded away from zero for all

non-vacuum operators, so in particular there are no extra conserved currents). In this

limit, for any fixed h > c−1
24 , the density of states grows with spin ` as e

2π
√
c−1

6
`
, with

a prefactor determined by ρ0(P ); for any h < c−1
24 , this prefactor is formally zero, which

means that the density grows more slowly (perhaps still exponentially in
√
`, but with a

smaller coefficient).

We therefore find that the asymptotic spectrum of CFTs is quite generally determined

by the simple formula

ρ0(P ) = SP1[1] = 4
√

2 sinh(2πbP ) sinh(2πb−1P ), (2.15)

which we refer to as the ‘universal density of states’ for c > 1 compact CFTs without

extended current algebras. Our derivation emphasizes that this object comes from the

representation theory of the Virasoro algebra, describing the decomposition of the trivial

representation after modular transformation.16 In the remainder of the paper, we will

show that another representation theoretic object similarly controls the OPE coefficients

in a variety of limits.

Now, our argument for the asymptotic formula (2.14) was very imprecise, and indeed

the result is simply false if interpreted literally, so we briefly discuss the sense in which it

holds. The equation (2.12) expressing the density of states as a sum of modular S kernels

does not converge in the usual sense (and uniform convergence would be necessary for our

argument to apply immediately), and since ρ is a sum of delta functions, it does not have

smooth asymptotic behaviour. Rather, the sum converges in the sense of distributions (it

should converge when integrated against any test function), which requires some ‘smearing’,

and the asymptotic formulas should be interpreted accordingly. The most conservative

statement is that the formula applies in an integrated sense: the total number of states

below a given energy or spin is asymptotic to the integral of the Cardy formula (see [35–37]

for a more detailed discussion and rigorous results). In the particular case of the Cardy

formula, a very interesting recent paper [35] has shown that if the averaging window is of

fixed width in the large dimension limit, corrections due to the finite size of the averaging

window only affect the order-one term in the expansion of the logarithm of the density

of states at large dimension. For chaotic theories, we expect the far stronger statement

that the asymptotic formula applies to a microcanonical density of states averaged over a

15This is the density in the P, P̄ variables, so a Jacobian is required to convert to density in h, h̄. For an

asymptotic formula in dimension ∆ = h+ h̄ only, insensitive to spin, one simply integrates (2.14) over the

circle P 2 + P̄ 2 = ∆− c−1
12

, obtaining the Bessel function formulas of, for example, [35, 59].
16In fact, ρ0 has a purely representation theoretic characterization: it is the Plancherel measure on the

space of representations of the Virasoro algebra [22].

– 20 –



J
H
E
P
0
7
(
2
0
2
0
)
0
7
4

small window (we require only that the window contains parametrically many states, so

its width can shrink as fast as e−S); this is a consequence of the eigenstate thermalization

hypothesis (ETH) [38, 39]. The exact interpretation of our asymptotic formulas is not the

focus of this paper, so we will henceforth leave this aspect for future study.

3 Crossing equations for general correlation functions

We now extend this formulation of modular invariance as a transform on the density of

states, discussed in section 2, to its most general context as a similar formulation of all

consistency conditions of CFT2.

3.1 The Moore-Seiberg construction

In two dimensional CFTs, the most general correlation function of local operators, compris-

ing n operators O1, . . . ,On on a surface Σg of arbitrary genus g (which we denote by Gg,n),

can be formulated entirely in terms of the basic data of the theory, namely the spectrum

and OPE coefficients of primary operators.17 Note that this is far better than the situation

in higher dimensions, where it is unclear how to determine general correlation functions,

even on conformally flat manifolds such as the torus (S1)d, in terms of data of the theory

on Rd. Here, we review the construction of general correlation functions, and the crossing

relations required to consistently formulate the theory on an arbitrary surface.

The basic strategy is to break the surface into simple constituent pieces, separated by

circular boundaries, and insert a complete set of states along each boundary. First, we

insert a circle surrounding each operator insertion; by the state-operator correspondence,

the operator insertion is equivalent to deleting a disc to produce a boundary, and projecting

onto the corresponding state on that boundary. Label the resulting n boundaries by an

index e ∈ E (for ‘external’) and let ke denote the operator on each boundary, falling in

Virasoro representations Pke , P̄ke .

We are then left with a genus g surface with n boundaries, which we can decompose

into 2g + n − 2 pairs of pants (that is, topological 3-holed spheres, occasionally called

‘trinions’), which we label by indices t ∈ T , by cutting along a further 3g + n − 3 circles.

Along each of these 3g + n − 3 ‘cuffs’ where the pants are joined to one another, labelled

by an index i ∈ I (for ‘internal’), we insert a complete set of states. Each term in the sum

over states is then a product of amplitudes for each pair of pants, which can be conformally

mapped to sphere three-point functions, and thus is fixed by the structure constants of the

corresponding Virasoro primaries.

The contribution of descendants propagating along each cuff is completely fixed by

Virasoro symmetry, proportional to the OPE coefficients of the primaries from which they

descend. We may therefore package together the contribution of all descendants of a

particular set of primaries (labelled by {ki}i∈I) together, into a ‘conformal block’. In

other words, this is the sum over states described above, but restricting the states along

each cuff i to some chosen multiplet of the symmetry, in the representation Pki , P̄ki . By

17This excludes correlation functions on surfaces with boundaries and/or nonorientable surfaces, both of

which require additional data.
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construction, the blocks are purely kinematic, depending on the surface Σg,
18 and the pair

of pants decomposition,19 the locations of operator insertions, the central charge, and the

conformal weights Pke , P̄ke and Pki , P̄ki labelling the representations of the n external and

3g+n− 3 internal operators. Since the conformal algebra factorizes into holomorphic and

antiholomorphic sectors, the blocks also factorize in this way, so we can write them as a

product FF̄ : F = F [Pe](Pi|σ) depends on the n external representations Pe (for e ∈ E),

the 3g + n− 3 internal representations Pi (for i ∈ I), and kinematic variables collectively

labelled by σ; we similarly have F̄ = F̄ [P̄e](P̄i|σ̄). For Euclidean correlation functions, the

kinematic variables σ are (once a conformal frame has been specified) 3g − 3 + n complex

numbers parameterising the complex structure moduli of Σg and complex coordinates of

the locations xe of operator insertions, and σ̄ are complex conjugates of σ; more generally,

σ and σ̄ need not be related in this way (for example, for Lorentzian kinematics they often

become independent and real ‘lightcone’ coordinates).

The dynamical data of the theory appears through the spectrum of operators, and the

OPE coefficients C∂t for each pair of pants t ∈ T , where ∂t denotes a triple of indices ke
or ki labelling the primary operators propagating in the three cuffs bounding t. The result

is an expression of the following form for the correlation function:

Gg,n = 〈O1(x1) · · · On(xn)〉Σg

=
∑
ki=1

· · ·
∑

ki=3g+n−3︸ ︷︷ ︸
Primaries on internal cuffs

(∏
t∈T

C∂t

)
F [Pke ](Pki |σ)F̄ [P̄ke ](P̄ki |σ̄)

=

∫ (∏
i∈I

dPi
2

)
ρspec[ke](Pi, P̄i)F [Pke ](Pi|σ)F̄ [P̄ke ](P̄i|σ̄)

ρspec[ke](Pi, P̄i) =
∑
ki,i∈I

(∏
t∈T

C∂t

)∏
i∈I

(
δ(Pi − Pki)δ(P̄i − P̄ki) + (reflections)

)
(3.1)

The last line defines a ‘spectral density’ ρspec analogous to the density of states in (2.6),

now with several internal operators, weighted by OPE coefficients; the ‘reflections’ refers

to an additional three terms with Pki → −Pki and/or P̄ki → −P̄ki so that ρspec is an even

18The blocks (and the correlation functions) depend on the metric on the surface in two distinct ways.

Firstly, there are finitely many moduli (the 3g + n − 3 complex parameters σ) determining the metric

and operator locations up to equivalence under diffeomorphisms and Weyl transformations g 7→ e2ωg, upon

which the correlation function and blocks depend nontrivially. Secondly, there is the choice of metric within

each such conformal class, which changes the correlation function only by kinematic factors: the conformal

anomaly, and local conformal factors for each operator.
19In fact, the decomposition into pairs of pants is not quite sufficient to determine the blocks. A Dehn

twist, a relative rotation by angle 2π around a cuff, introduces phases e2πi(h−c/24) and e−2πi(h̄−c̄/24) in F and

F̄ respectively, so extra topological data is needed to keep track of these relative phases. When we combine

blocks into the product FF̄ with c− c̄ ∈ 24Z (here, we always have c = c̄) and integer spin (h̄−h ∈ Z), this

ambiguity cancels. We also require this extra data to fix an ambiguity in ordering of OPE coefficients, which

pick up a sign under odd permutations of indices if the total spin is odd: Cπ(1)π(2)π(3) = sgn(π)`1+`2+`3C123

for π ∈ S3. Relatedly, note that the condition for unitarity is C123C321 ≥ 0, so for total odd spin `1 +`2 +`3,

C123 is pure imaginary.
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i1

i2

e2

e1

A B

Figure 4. A conformal block decomposition of the torus two-point function G1,2, where the

kinematic parameters σ consist of a complex structure τ for the torus, and a separation w be-

tween operators. We sum over representations in the internal cuffs; for the yellow cuff i1, this

corresponds to the operators appearing in the OPE of external operators e1, e2, and for the blue

cuff i2, an insertion of a complete set of states in the thermal trace.

G1,2(τ, w, τ̄ , w̄) =
∑

i1

∑
i2
Ce1e2i1Ci1i2i2F [Pe1 , Pe2 ](Pi1 , Pi2 |w, τ)F̄ [P̄e1 , P̄e2 ](P̄i1 , P̄i2 |w̄, τ̄)

The OPE coefficients Ce1e2i1 , Ci1i2i2 are associated with the pairs of pants labelled A,B respectively,

with ∂A = (e1, e2, i1) and ∂B = (i1, i2, i2).

function of these variables. This general case is rather abstract, but we will ultimately be

interested in a few simple instances, for which we write concrete versions of (3.1) in later

sections; for now, one illustrative example is shown in figure 4.

While our quick argument is sufficient to demonstrate that the conformal blocks exist,

and are determined by Virasoro symmetry, it is another matter entirely to actually compute

them. Closed form expressions are known only in very special cases. The most efficient

way to compute them numerically is via recursion relations [66–69], but even these are

organised using different kinematic parameters and conformal frames for different channels,

so it remains a challenging task to formulate crossing symmetry using them. The technical

obstacles remain formidable even with the simplification of large central charge, where

there are still few analytic results, and one must also confront the possibility of Stokes

phenomena that are not well understood [14, 20, 45]. Fortunately, we will see later that

for our purposes, it is not required to know anything about the blocks directly!

While we have a systematic procedure for constructing the correlation functions by

sewing pairs of pants, it is far from unique, since there are infinitely many distinct ways

to decompose a surface into pairs of pants. We refer to a choice of decomposition as a

“channel”, each channel giving rise to a corresponding conformal block decomposition of the

correlation function. Consistency requires that the conformal block decompositions (3.1)

give the same result for the correlation function, whichever channel we choose to use. This

is a generalized statement of crossing symmetry or modular invariance, which imposes

strong constraints on the data of the CFT.

To formulate this notion of crossing symmetry more directly in terms of the data of the

CFT, we must first consider how to relate the block decompositions in different channels.

Following the work of Moore and Seiberg [26, 70], we can relate any two of the infinite

collection of possible channels by repeated composition of a small number of elementary

‘moves’, which can be described by purely topological relationships between pair of pants

decompositions. We will make use of two such moves, ‘fusion’ and ‘modular S’ (or just S),
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F−−−−→

S−−−−→

S−−−−→ F−−−−→

Figure 5. The elementary crossing moves relate different pair-of-pants decompositions of the four-

punctured sphere and the once-punctured torus, or more generally anywhere that these appear as

pieces of any decomposition of a surface. The associated crossing kernels relate Virasoro conformal

blocks in the corresponding channels. The fusion kernel (top) relates sphere four-point Virasoro

blocks in the S- and T-channels, and the modular kernel (middle) relates torus one-point blocks in

modular S-transformed frames. In the final line, we show an example relating two channels in the

torus two-point function G1,2 by composing these moves.

illustrated and described in figure 5, along with an example where the two are composed.20

Now, we may informally think of the set of conformal blocks in any particular channel,

labelled by the set of internal representations {Pi}i∈I , as forming a basis for correlation

functions. Given a second channels, with a new set of internal cuffs I ′, there should be a

change of basis matrix to the new variables {Pi′}i′∈I′ , relating the two corresponding sets

of blocks. From this point of view, it is plausible that the conformal blocks in any two

channels can be related by an integral transform, with some ‘crossing kernel’ K:

F [Pe](Pi|σ) =

∫ (∏
i∈I′

dPi′

2

)
F ′[Pe](Pi′ |σ′)KPi′Pi [Pe] (3.2)

We allow for a change of kinematic variables σ → σ′ because natural variables (e.g. those

appropriate for recursion relations) may be different in each channel. This equation is a

generalisation of the relationship (2.7) between characters in channels related by a modular

transform, where the kernel K[Pe] was given by the modular S-matrix S[1]. Furthermore,

20For a complete set of moves, we also require ‘braiding’, which acts on any two joined pairs of pants

by adding a half twist to the separating cycle. The extra topological data required to fix the phases from

footnote 19 is also necessary to uniquely prescribe the fusion/braiding moves among the infinitely many

ways to split a sphere with four boundaries into two pairs of pants. It was only recently proved in [71] that

fusion, braiding and S moves form a complete set of generators to relate any channels. We are grateful to

Xi Yin for bringing [71] to our attention.

– 24 –



J
H
E
P
0
7
(
2
0
2
0
)
0
7
4

if we relate two channels by a composition of the elementary moves described above and in

figure 5, the crossing kernel itself can be built by composing the kernels for the elementary

moves.21 Remarkably, not only do these kernels exist, but for the elementary moves they are

known in closed form! This is surprising and powerful when we consider how little analytic

control we have regarding the conformal blocks. We will introduce these elementary kernels

in the following subsections.

If the blocks are to be regarded as basis vectors, then the corresponding components

of any particular correlation function are the OPE coefficients, as encoded in the spectral

densities ρspec. Given a change of basis matrix K, we can therefore relate the spectral

densities in two channels by an integral transform with kernel K, generalising (2.9):22

ρ′spec(Pi′ , P̄i′) =

∫ (∏
i∈I

dPi
2

dP̄i
2

)
KPi′PiKP̄i′ P̄i

ρspec(Pi, P̄i) (3.3)

This is a direct statement of crossing or modular invariance, which makes no reference

to the correlation function, the kinematics or the conformal blocks. As a corollary to

the Moore-Seiberg construction, invariance under elementary moves implies invariance in

complete generality, so four-point function crossing symmetry and torus one-point modular

invariance for all operators suffice to prove consistency of a theory formulated on any

surface. Nonetheless, more complicated correlation functions encode an infinite set of

these constraints in a natural way, so more general crossing relations are still useful to

learn about the theory, as we will see.

The elementary moves do not act freely on the space of channels, so they themselves

are also highly constrained by the relations between moves. For example, we can consider a

five-point function, made up of three pairs of pants, joined with two internal cuffs. Applying

fusion moves alternately on each of the cuffs, we return to the original channel after five

moves, and imposing that this combination of five F’s acts trivially gives us the ‘pentagon

identity’ (5.4), explained in more detail in section 5. Assuming analyticity of the kernels,

along with properties of degenerate representations, such identities suffice to determine the

kernels uniquely [21, 22, 27].

The considerations we have described here have been understood and exploited for

several decades, but largely in the context of rational models, for which only finitely many

representations appear, so the kernel K is a finite-dimensional matrix (for a review, see [72,

73]). When applied to irrational theories, the technicalities are somewhat more subtle,

and our aims must be more modest (we should certainly not hope to classify and solve

all theories!), but this point of view nonetheless seems to be the most powerful way to

formulate the constraints of crossing, even for irrational CFTs.

21For this, it is important that the same kernels apply for the elementary moves when the external

operators are descendants of a given primary (which we sum over when these external legs become internal

legs for a more complicated correlation function). This follows because descendant correlators can be

obtained by acting with differential operators which are independent of the channel decomposition.
22This requires that the space of blocks is not overcomplete, so there is no nontrivial linear combination of

blocks that gives the zero correlation function. This is extremely plausible; for example, the short distance

behaviour of the correlator should be determined by the minimal dimension on which the spectral density

has support.
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For the remainder of the section, we move beyond the abstract discussion to dis-

cuss more concretely the kernels for the elementary fusion and S moves, and their

salient properties.

3.2 Elementary crossing kernels 1: fusion

The first of our elementary crossing moves arises when we consider the sphere four-

point function

G0,4(z, z̄) = 〈O1(0)O2(z, z̄)O3(1)O′4(∞)〉S2 , (3.4)

where z, z̄ denote the conformal cross ratios. By successively taking the OPE between pairs

of operators (corresponding to inserting a complete set of states in radial quantization),

this can be written as sum over products of three-point functions of pairs of the external

operators and intermediate operators:

G0,4(z, z̄) =
∑
Os

C12sC34sF
[
P2P1

P3P4

]
(Ps|z)F̄

[
P̄2 P̄1

P̄3 P̄4

]
(P̄s|z̄)

=

∫
dPs
2

dP̄s
2

ρs(Ps, P̄s)F
[
P2P1

P3P4

]
(Ps|z)F̄

[
P̄2 P̄1

P̄3 P̄4

]
(P̄s|z̄),

(3.5)

where F
[
P2P1

P3P4

]
(P |z) are the S-channel Virasoro blocks. In the second line we have writ-

ten this decomposition as an integral against the S-channel ‘spectral density’ ρs (leaving

implicit the dependence on external operators), which for a discrete spectrum is a sum

of delta-functions weighted by the OPE coefficients C12sC34s; this is an example of the

general decomposition (3.1), analogous to (2.6) for the partition function.

For this expression, we have chosen to take the OPE between operators O1 and O2,

giving the S-channel expansion (equivalently, we decompose the four-holed sphere into two

pairs of pants, with cuffs 1, 2, s and s, 3, 4). But the result must be the same if we instead

choose to use the T-channel expansion, taking the OPE of operators O2 and O3. This

associativity of the OPE leads to the crossing equation:∫
dPs
2

dP̄s
2

ρs(Ps, P̄s)F
[
P2P1

P3P4

]
(Ps|z)F̄

[
P̄2 P̄1

P̄3 P̄4

]
(P̄s|z̄)

=

∫
dPt
2

dP̄t
2
ρt(Pt, P̄t)F

[
P2P3

P1P4

]
(Pt|1− z)F̄

[
P̄2 P̄3

P̄1 P̄4

]
(P̄t|1− z̄)

(3.6)

The T-channel spectral density ρt appearing here is similar to ρs, but weighted by different

OPE coefficients C41tC23t. This is the crossing relation between the two pair of pants

decompositions of the four-holed sphere pictured on the top line of figure 5.

Continuing to follow the philosophy we applied to modular invariance in section 2 and

generalised in section 3.1, we will rewrite the crossing equation directly as a transform

relating S- and T-channel spectral densities. To do this, we require an object expressing

the decomposition of the T-channel Virasoro blocks in terms of S-channel blocks. This is

the fusion kernel (or crossing kernel, or 6j symbol), with the defining relation

F
[
P2P3

P1P4

]
(Pt|1− z) =

∫
dPs
2

FPsPt
[
P2P1

P3P4

]
F
[
P2P1

P3P4

]
(Ps|z), (3.7)

which is analogous to the relation (2.7) between the modular S-matrix and characters.
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It is not a priori obvious that such an object should even exist, but it is a remarkable

fact that it does, and an even more remarkable fact that it has been explicitly constructed by

Ponsot and Teschner [21, 22, 27]. A closed form expression is given in (A.2) in appendix A,

which contains the necessary technical results, many of which were derived in [20]. We

discuss the most relevant properties in a moment.

With the fusion kernel F in hand, we can now write the crossing equation as a transform

relating the spectral density in each channel, just as in (2.9):

ρs(Ps, P̄s) =

∫
dPt
2

dP̄t
2

FPsPtFP̄sP̄tρt(Pt, P̄t) (3.8)

Here we have suppressed the notation labelling the external operators, but it should be

borne in mind that the kernel of this transform depends on the external operator dimen-

sions P1,2,3,4.23

Like the modular transform of the vacuum (2.15) was the most important object in

section 2, the fusion transform of the vacuum will play a correspondingly central role for

our new asymptotic formulas. This can only appear in the case that the external operator

dimensions are equal in pairs, P1 = P4 and P2 = P3 (in the T-channel). In that case, the

fusion kernel simplifies24 [20], and we find it convenient to write it as

FPs1
[
P2P1

P2P1

]
= ρ0(Ps)C0(P1, P2, Ps), (3.9)

where ρ0(P ) is the density of states appearing as the modular S-transform of the vac-

uum (2.15). It turns out that C0 is then symmetric under the exchange of all three of its

arguments, and has a simple explicit expression in terms of the special function Γb:

C0(P1, P2, P3) =
1√
2

Γb(2Q)

Γb(Q)3

∏
±±± Γb

(
Q
2 ± iP1 ± iP2 ± iP3

)
∏3
k=1 Γb(Q+ 2iPk)Γb(Q− 2iPk)

(3.10)

The
∏

in the numerator denotes the product of the eight combinations related by the

reflections Pk → −Pk. The function Γb is a ‘double’ gamma function, which is meromorphic,

with no zeros, and with poles at argument −mb − nb−1 for nonnegative integers m,n

(similarly to the usual gamma function, which has poles at nonpositive integers).

If external operators are sufficiently light (specifically, α1 + α2 ≤ Q
2 or α3 + α4 ≤ Q

2 ),

the fusion kernel has a new subtlety, arising from poles in Ps that cross the real axis. In

23There is a similar transform to write the S-channel spectral density in terms of U-channel data (with

density weighted by OPE coefficients C13uCu24) using the braiding kernel. This is a fusion kernel conjugated

by phases, which become signs for integer spins:

ρs(Ps, P̄s) =

∫
dPu

2

dP̄u
2

(−1)`1+`4+`u+`sFPsPu

[
P2P1

P4P3

]
FP̄sP̄u

[
P2P1

P4P3

]
ρu(Pu, P̄u)

The resulting signs for odd spins are much the same as for U-channel inversion in [74], for example.
24Unlike for the modular S-matrix in section 2, the fusion kernel for the identity can be obtained as a

continuous ht → 0 limit of the generic fusion kernel (with external operators identical in pairs). This occurs

because the null states continuously decouple (their OPE coefficients go to zero continuously as ht → 0).

See footnote 27 for a more detailed comparison.
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order to maintain analyticity in the parameters, the contour in the decomposition (3.7),

which is implicitly taken to run along the real Ps axis, must be deformed. We can take

the deformed contour to run along the real Ps axis, but must additionally include circles

surrounding the poles which have crossed the axis, contributing residues. This gives rise to

a finite sum of S-channel operators with imaginary Ps (hs <
c−1
24 ) in the decomposition of

the T-channel conformal block. See [20] for more details. We can describe this by including

a sum of δ-functions supported at imaginary Ps in the kernel F [64].

The non-vacuum kernels with T-channel dimension ht > 0 will be important for us

only to compare their asymptotic contribution to the S-channel. The key result, established

in [20], is precisely analogous to (2.13) for the modular S-matrix:

FPsPt
FPs1

≈


e−2παtPs αt = Q

2 + iPt ∈ (0, Q2 )

e−πQPs cos(2πPtPs) Pt ∈ R
as Ps →∞ (3.11)

This result is accurate up to a factor independent of Ps, see equation (3.11).

3.3 Elementary crossing kernels 2: modular S

The second elementary move is a modular transform applied to one-point functions of

Virasoro primary operators on the torus

G1,1(−τ, τ̄) = 〈O0〉T 2(τ,τ̄), (3.12)

where τ labels the complex structure of the torus, and the conformal weight of the external

operator is h0 =
(
Q
2

)2
+ P 2

0 = α0(Q− α0). The translation invariance of the torus means

that the correlation function is independent of the location of the operator.

Generalizing the modular invariance of the torus partition function (which is the special

case where the external operator O0 is the identity), G1,1 transforms covariantly under

modular transformations, in particular the S-transform τ → −1/τ :

G1,1(−1/τ,−1/τ̄) = τh0 τ̄ h̄0G1,1(τ, τ̄) (3.13)

The factor τh0 τ̄ h̄0 = |τ |∆e−i`0 arg τ comes from rescaling and rotating the torus so the

thermal circle becomes the spatial circle.25 It occurs because the definition of the one-point

function implicitly makes a choice of metric on the torus, namely the flat metric in which

the spatial circle has length 2π; after modular transform, the cycle interpreted as the spatial

circle changes, and hence the metric is rescaled. The discussion of subsection 3.1 implicitly

assumed that we use the same metric for every channel, so there were no such factors.

We can write this correlation function in terms of the usual CFT data by insert-

ing a complete set of states on the spatial circle, and collecting the contributions from

25Performing this transform twice corresponds to rotating the torus through an angle π and gives a factor

(−1)`0 , from which we conclude that G1,1 is zero for operators with odd spin, since any nonzero expectation

value would break this Z2 symmetry.
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each Virasoro representation into torus conformal blocks F [P0](P |τ) with internal primary

weight P :26

G1,1(τ, τ̄) =
∑
O
COOO0F [P0](P |τ)F̄ [P̄0](P̄ |τ̄)x

=

∫
dP

2

dP̄

2
ρ[O0](P, P̄ )F [P0](P |τ)F̄ [P̄0](P̄ |τ̄)

(3.14)

In the second line we have defined the thermal spectral density ρ[O0] for the external

operator O0, consisting of δ-functions for each internal operator with coefficient COOO0 ,

analogously to (2.6) and (3.5), and another special case of (3.1).

Reprising the same strategy, we will recast modular covariance as invariance of

ρO0(P, P̄ ) under an S-transform, directly generalizing (2.9) for the density of states. To do

this, we introduce the torus one-point kernel, the object which decomposes torus one-point

conformal blocks into the modular-S transformed frame:

τh0F [P0](P |τ) =

∫
dP ′

2
F [P0](P ′| − 1/τ)SP ′P [P0] (3.15)

Given this object, the modular S transformation acts on the spectral density as

ρ̃[O0](P ′, P̄ ′) =

∫
dP

2

dP̄

2
SP ′P [P0]SP̄ ′P̄ [P̄0]ρ[O0](P, P̄ ), (3.16)

and modular covariance of G1,1 is stated as ρ̃[O0] = ρ[O0].

Once again, we are fortunate to have an explicit expression for the modular S-kernel

due to Teschner [28] (see also [75, 76]). We reproduce the precise formula in (A.8) of

appendix A, where we demonstrate various important properties of the kernel, the most

salient of which we now state.

Most important for us is that, like the fusion kernel, the modular S-kernel simplifies

when the external operator is the identity, taking h0 → 0 (P0 → iQ2 ). In this limit, we

find that

SPP ′ [P0]→ SPP ′ [1] = 2
√

2 cos
(
4πPP ′

)
, (3.17)

recovering the modular S-matrix for non-degenerate torus characters (2.7) from section 2.

Note that the kernel relevant for inversion of the vacuum character, namely

SP1[1] = 4
√

2 sinh(2πbP ) sinh(2πb−1P ) (3.18)

as in equation (2.11), is not recovered by a straightforward α′ → 0 limit of (3.17), because

the degenerate vacuum character is not given simply by the h′ → 0 limit of the non-

degenerate character. This is unlike the fusion kernel, where the identity kernel is obtained

26Explicitly, F [P0](P |τ) = TrP (e2πiτL0O0), where the trace is taken over the representation of the Vira-

soro algebra with weight labelled by P , normalising the expectation value of O0 in the lowest weight state

to unity.
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by an αt → 0 limit of the generic kernel with external operators identical in pairs: in that

case the null descendants continuously decouple in the ht → 0 limit.27

The second important property for us will be the behaviour of the kernel in the large

dimension limit P →∞, which we normalise by the vacuum S-matrix SP1[1] ≈ e2πQP for

comparison:

SPP ′ [P0]

SP1[1]
≈


e−4πα′PP h0 α′ = Q

2 + iP ′ ∈ (0, Q2 )

e−2πQP cos(4πPP ′)P h0 P ′ ∈ R
as P →∞ (3.19)

These formulas, derived in appendix B.2, are accurate up to a constant (that is, independent

of P ) factor. Crucially, this ratio is exponentially suppressed at large P , as long as h′ > 0.

This result reduces to (2.13) when the external operator is the identity.

4 OPE asymptotics from crossing kernels

Now that we have formulated the consistency conditions as statements about transforms

of spectral densities, it is simple to repeat the arguments of section 2, which led to the

Cardy formula, in a variety of new situations. Specifically, we study crossing for the three

correlation functions which decompose into two pairs of pants, and extract asymptotic

formulas for squares of OPE coefficients.

4.1 Sphere four-point function: heavy-light-light

For our first example, we study the constraints of crossing symmetry for the four-point

function of pairwise identical operators. We have already introduced all the required defi-

nitions and results in subsection 3.2; in particular, we have the fusion transformation (3.7)

relating S- and T-channel spectral densities,

ρs(Ps, P̄s) =

∫
dPt
2

dP̄t
2

FPsPtFP̄sP̄tρt(Pt, P̄t), (4.1)

and the result (3.11) that the fusion kernel for operators of positive dimension ht > 0 is

exponentially suppressed compared to the identity at large Ps. This is precisely the same

situation we had for the modular S-matrix when we derived the Cardy formula (2.14), so

repeating that argument gives us an analogous result for the S-channel spectral density:

ρs(Ps, P̄s) ∼ FPs1
[
P2P1

P2P1

]
FP̄s1

[
P̄2 P̄1

P̄2 P̄1

]
, Ps, P̄s →∞. (4.2)

This finding is not new, but was one of the main results of [20]. The focus of that paper

was the large spin limit of fixed Ps and P̄s →∞, but we here emphasise that this also holds

27Since
〈h′|L1O0L−1|h′〉
〈h′|L1L−1|h′〉

= 2h′+h0(h0−1)
2h′ 〈h′|O0|h′〉, we can take a vacuum limit in which the null descendant

is decoupled by fixing h′ = − 1
2
h0(h0 − 1) ∼ 1

2
h0 and taking h0 → 0. Indeed, taking a limit α0, α

′ → 0 with

α′ ∼ 1
2
α0, one can explicitly check that SPP ′ [P0] → SP1[1] (for a derivation, see (A.14) and surrounding

discussion). In contrast, for the fusion kernel we can take a more direct limit because the matrix elements
〈h1|O1L−1|ht〉〈ht|L1O2|h2〉

〈ht|L1L−1|ht〉 = ht
2
〈h1|O1|ht〉〈ht|O2|h2〉 go to zero as ht → 0.
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for large dimension (both Ps, P̄s → ∞), in fact more generally since we need not assume

existence of a twist gap in that case.

In higher dimensional CFTs, the analogous operation of expanding the T-channel

identity block (which is simply the product of two-point functions) into the S-channel

defines the spectrum and OPE coefficients of ‘double trace’ operators of mean field theory

(MFT). The identity fusion kernel can therefore be thought of as a deformation of MFT to

include Virasoro symmetry, and the corresponding spectral data was accordingly dubbed

“Virasoro mean field theory” (VMFT) in [20]. The large-spin universality of the identity

kernel is the d = 2 analogue of the result for d > 2 that there exist ‘double-twist’ operators

whose dimensions and OPE coefficients approach those of MFT at large spin [24, 25].

The analogy with double-twist operators in higher dimensions is sharpest for h < c−1
24 .

If the external operators O1,O2 have sufficiently low twist, then there are a finite number

of trajectories that asymptote at large spin to discrete values of h < c−1
24 ; see [20] for

details. There is also a continuum starting at h = c−1
24 described by the smooth VMFT

OPE density, which has no known analog in higher dimensions.

For h > c−1
24 , either fixed in the large spin limit or taken to be large simultaneously

with h̄, the asymptotic spectrum encoded in the fusion kernel is a smooth function of P, P̄ .

Just as for the Cardy formula explained in section 2, (3.5) should then be interpreted as a

microcanonical statement about the asymptotic spectral density integrated over a window

of energies. We can translate the result to a microcanonical average of OPE coefficients,

by dividing by the Cardy formula (2.14) giving the asymptotic density of primary states

ρ(Ps, P̄s) ∼ ρ0(Ps)ρ0(P̄s) in the relevant limits. Writing the identity fusion kernel in the

form (3.9) of the universal density ρ0(Ps) times C0(P1, P2, Ps), we find that C0 gives the

microcanonical average of the OPE coefficients:

|C12s|2 ∼ C0(P1, P2, Ps)C0(P̄1, P̄2, P̄s), Ps, P̄s →∞. (4.3)

This result is valid for any two fixed operators O1,O2, averaging over operators Os in either

a large dimension or large spin limit.

The asymptotic form of C0 in this limit was computed in [20]:

C0(P1, P2, Ps) ∼ 2−4P 2
s e−πQPsP

4(h1+h2)− 3Q2+1
2

s

× 2
Q2−2

6 Γ0(b)6Γb(2Q)

Γb(Q)3Γb(Q+ 2iP1)Γb(Q− 2iP1)Γb(Q+ 2iP2)Γb(Q− 2iP2)
, (4.4)

where Γ0(b) is a special function that appears in the large-argument asymptotics of Γb;

see appendix A of [20] for more details. The first factor exactly cancels a similar factor

in the conformal blocks (F ≈ (16q)hs [66]), ensuring that the block expansion has the

correct domain of convergence. A formula of this form for the asymptotics of the averaged

heavy-light-light structure constants was first obtained in [9]. In that paper, the authors

used the asymptotics of the Virasoro four-point blocks in the heavy limit hs → ∞ [66],

subsequently taking a z → 1 limit to reproduce the OPE singularity from the T-channel

identity operator. Their result matches the leading asymptotics of our formula (4.4) when
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written in terms of the conformal weights and central charge (as in equation (1.20)); we find

new terms appearing at subleading order arising from a subtlety in the order of hs → ∞
and z → 1 limits. Working directly with the spectral densities allows us to avoid such

difficulties in studying conformal blocks.

4.2 Torus two-point function: heavy-heavy-light

For our second example, we study the two-point function of identical Virasoro primaries

on the torus:

G1,2(τ, τ̄ ;w, w̄) = 〈O0(w, w̄)O0(0, 0)〉T 2(τ,τ̄) (4.5)

There are two qualitatively distinct ways to decompose such a correlation function into

conformal blocks. Firstly, we can take the OPE between the two operators and insert a

single complete set of states around a cycle of the torus, which we call the OPE channel.

Secondly, we can insert two complete sets of states between the operators on each side of

the thermal circle, which we call the necklace channel.

G1,2(τ, τ̄ ;w, w̄)

=
∑
O1

∑
O2

|C012|2F (N)[P0](P1, P2|q1, q2)F̄ (N)[P̄0](P̄1, P̄2|q̄1, q̄2)

=

∫
dP1

2

dP̄1

2

dP2

2

dP̄2

2
ρN(P1, P2, P̄1, P̄2)F (N)[P0](P1, P2|q1, q2)F̄ (N)[P̄0](P̄1, P̄2|q̄1, q̄2)

=
∑
O′1

∑
O′2

C002′C2′1′1′F (OPE)[P0](P ′1, P
′
2|q, v)F̄ (OPE)[P̄0](P̄ ′1, P̄

′
2|q̄, v̄)

=

∫
dP ′1
2

dP̄ ′1
2

dP ′2
2

dP̄ ′2
2
ρOPE(P ′1, P

′
2, P̄

′
1, P̄

′
2)F (OPE)[P0](P ′1, P

′
2|q, v)F̄ (OPE)[P̄0](P̄ ′1, P̄

′
2|q̄, v̄)

(4.6)

The second and fourth lines define ‘necklace’ and ‘OPE’ spectral densities ρN, ρOPE. We

have written the blocks using different kinematic variables, since the natural parameters

(for recursion relations, for example [69]) are different in the two channels. In the necklace

channel, q1 and q2 encode a Euclidean time evolution, between the two operator insertions,

and then round the torus back to the first operator insertion; in the OPE channel, there

is only one such parameter q, along with a separation v between the operators controlling

the OPE. These parameters can be related to one another, but all our results are derived

without explicit reference to any kinematics.

We will consider the crossing kernel that decomposes torus two-point blocks for identi-

cal operators in the OPE channel (with internal Liouville momenta P ′1, P
′
2) into two-point

blocks in the necklace channel (in the modular S-transformed frame). This sewing proce-

dure is illustrated in figure 6, from which we see that the required kernel is simply given

by the product of the torus one-point kernel and the sphere four-point kernel:

KP1P2;P ′1P
′
2
[P0] = SP1P ′1

[P ′2]FP2P ′2

[
P0P1

P0P1

]

ρN(P1, P2, P̄1, P̄2) =

∫
dP ′1
2

dP̄ ′1
2

dP ′2
2

dP̄ ′2
2

KP1P2;P ′1P
′
2
[P0]KP̄1P̄2;P̄ ′1P̄

′
2
[P̄0]ρOPE(P ′1, P

′
2, P̄

′
1, P̄

′
2)

(4.7)
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=
∫
dP1

2 SP1P ′1
[P ′2]

=
∫
dP1

2
dP2

2 SP1P ′1
[P ′2]FP2P ′2

[
P0P0

P1P1

]
Figure 6. The sequence of Moore-Seiberg moves to express the OPE channel torus two-point block

in terms of necklace channel blocks: a modular S, followed by a fusion move.

In an appropriate limit, the necklace channel data will be dominated by the identity

propagating in both internal cuffs of the OPE channel, described by the identity kernel

KP1P2;11[P0] = SP11[1]FP21

[
P0P1

P0P1

]
= ρ0(P1)ρ0(P2)C0(P0, P1, P2).

(4.8)

Once again, the asymptotics of C0 universally governs the asymptotics of OPE coefficients,

this time in a ‘heavy-heavy-light’ limit, where one operator is fixed, and the other two

operators are taken to have large dimensions. Corrections to this identity contribution due

to the exchange of non-vacuum primaries in the OPE channel are exponentially suppressed

when we take P1, P2 to be large, just as we have seen before. The technical result required

to show this is
KP1P2;P ′1P

′
2
[P0]

KP1P2;11[P0]
≈ e−2πα′1P1 (4.9)

in the limit P1, P2 → ∞, with either the ratio or difference of P1 and P2 held fixed. This

result is asymmetric in P1 and P2 because the OPE channel does not treat operators

symmetrically:28 it guarantees suppression of all non-vacuum blocks because α′2 cannot be

nonzero unless α′1 is also nonzero. See the discussion in appendix B.1.1 for more details.

As in the case of the sphere four-point function, this result means that the necklace

channel spectral density is well approximated by exchange of the vacuum Verma module

in the OPE channel when the internal weights are taken to be heavy:

ρ
(P0,P̄0)
necklace(P1, P̄1;P2, P̄2) ≈ KP1P2;11[P0]KP̄1P̄2;11[P̄0], P1, P2, P̄1, P̄2 →∞ (4.10)

Thus the kernel corresponding to propagation of the identity in the OPE channel (4.9)

encodes an asymptotic formula for OPE coefficients in the heavy-heavy-light regime, aver-

aged over the heavy operators, and for any fixed light operator. Stripping off the density

of states of the heavy operators, we have

|C012|2 ∼ C0(P0, P1, P2)C0(P̄0, P̄1, P̄2), P1, P2, P̄1, P̄2 →∞. (4.11)

28We could make the derivation symmetric in P1, P2 by including an extra fusion move, so that we are

relating two different OPE channels. Starting with the identity block, this extra fusion move is ‘free’ (that

is, the necklace identity block is equal to the OPE identity block), since there are external operators for F in

the identity representation. However, this extra move makes the argument for suppression of non-vacuum

operators more technically challenging.
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As in the case of the sphere four-point function, in the presence of a nonzero twist gap the

above asymptotic formula also holds in the large-spin regime when only P1, P2 or P̄1, P̄2

are taken to be large.

Now that there are multiple internal weights, there are several distinct ways to take

the large-weight limit. First, we can take the weights to infinity at fixed ratio P2
P1

, assuming

without loss of generality that P1 > P2. We will take this limit by writing Pi = xiP , with

xi fixed in the large-P limit. One finds:

logC0(P0, x1P, x2P )

=
(
− 4x2

1 log(2x1)− 4x2
2 log(2x2) + 2(x1 + x2)2 log(x1 + x2)

+ 2(x1 − x2)2 log(x1 − x2)
)
P 2 − πQ(x1 + x2)P +

(
2Q2

3
+ 4P 2

0 −
1

3

)
logP

+ log
2

1
6

(2Q2−1)(x1x2)
1
6

(Q2+1)(x2
1 − x2

2)
1
6

(Q2+12P 2
0−2)Γ0(b)4Γb(2Q)

Γb(Q)3Γb(Q− 2iP0)Γb(Q+ 2iP0)
+O(P−1).

(4.12)

The other interesting limit takes the difference P1 − P2 = 2δ to be fixed, with the average

P → ∞. Note that in terms of dimensions h, this means that h1 − h2 is of order
√
h. In

this limit one finds the following asymptotics

logC0(P0, P − δ, P + δ)

=− 2πQP + 2(h0 − 4δ2) log(P )

+ log
2

2Q2−1−96δ2

6 e−
Q2

4
−3P 2

0−12δ2

(16P 4
0 + 8P 2

0 (Q2 − 16δ2) + (Q2 + 16δ2)2)
1
12

×
(
Q2 + 4(P0 − 2δ)2

) 1
24

(Q2+12(P0−2δ)2) (
Q2 + 4(P0 + 2δ)2

) 1
24

(Q2+12(P0+2δ)2)

+ log
Γ0(b)4Γb(2Q)

Γb(Q)3Γb(Q− 2iP0)Γb(Q+ 2iP0)
+O(P−1). (4.13)

Several recent papers have studied asymptotics of the averaged off-diagonal heavy-heavy-

light structure constants in CFT2, including [10–12]. The most directly comparable result

is equation (2.33) of [10], which studied these OPE asymptotics by considering the torus

two-point function in a particular kinematic limit, imposing modular covariance, and per-

forming an inverse Laplace transform to extract the spectral density. While the first line

of our result (4.13) reproduces the entropic suppression e−S/2 expected from the eigenstate

thermalization hypothesis, there appears to be a nontrivial difference between our sublead-

ing terms (written in terms of the dimensions and the central charge in equation (1.21))

and those of [10]. Again, we would like to emphasize the technical simplicity of our argu-

ment, which does not rely on carefully establishing the behaviour of conformal blocks in

simultaneous large-weight and kinematic limits.

4.3 Genus-two partition function: heavy-heavy-heavy

The final constraint from crossing we will study arises from modular invariance of the

genus two partition function G2,0. We will relate the conformal block decomposition in two
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=
∫
dP1

2
dP2

2 SP1P ′1
[P ′3]SP2P ′2

[P ′3]

=
∫
dP1

2
dP2

2
dP3

2 SP1P ′1
[P ′3]SP2P ′2

[P ′3]FP3P ′3

[
P1P1

P2P2

]
Figure 7. The sequence of moves expressing a genus 2 ‘dumbell’ channel block in terms of ‘sunset’

channel blocks.

channels, which we call ‘sunset’ and ‘dumbbell’; these channels and the relation between

them are illustrated in figure 7.

G2,0 =
∑
O1

∑
O2

∑
O3

C2
123F (sunset)(P1, P2, P3)F̄ (sunset)(P̄1, P̄2, P̄3)

=

∫ ( 3∏
j=1

dPj
2

dP̄j
2

)
ρsunset(P1, P2, P3, P̄1, P̄2, P̄3)

×F (sunset)(P1, P2, P3)F̄ (sunset)(P̄1, P̄2, P̄3)

=
∑
O′1

∑
O′2

∑
O′3

C1′1′2′C2′3′3′F (dumbbell)(P ′1, P
′
2, P

′
3)F̄ (dumbbell)(P̄ ′1, P̄

′
2, P̄

′
3)

=

∫ ( 3∏
j=1

dPj
2

dP̄j
2

)
ρdumbbell(P1, P2, P3, P̄1, P̄2, P̄3)

×F (dumbbell)(P1, P2, P3)F̄ (dumbbell)(P̄1, P̄2, P̄3).

(4.14)

We have here suppressed the dependence of G2,0 and the blocks on the moduli, since by

now it is hopefully clear that we have no need of them. This is fortunate, because for g ≥ 2

the description of the moduli spaces and relations between different channels becomes

technically very challenging, and in particular, we must contend more directly with the

factors arising from the conformal anomaly.

To study the consequences of the genus-two modular crossing equation, we will employ

the crossing kernel that relates dumbbell channel genus-two Virasoro blocks to those in the

sunset channel. From figure 7, we see that, like the crossing kernel for the torus two-point

function, this kernel is simply a product of sphere four-point and torus one-point kernels:

KP1P2P3;P ′1P
′
2P
′
3

= SP1P ′1
[P ′2]SP3P ′3

[P ′2]FP2P ′2

[
P1P3

P1P3

]

ρsunset(Pi, P̄i) =

∫ ( 3∏
i=1

dP ′i
2

dP̄ ′i
2

)
KPi;P ′i

KP̄i;P̄ ′i
ρdumbbell(P

′
i , P̄

′
i )

(4.15)

Once again, we will find that in appropriate limits, the spectral density in the sunset

channel is dominated by the contribution of the identity in all internal cuffs of the dumbbell
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channel. The corresponding spectral density is given by the following identity kernel:

KP1P2P3;111 = SP11[1]SP31[1]FP21

[
P1P3

P1P3

]

= ρ0(P1)ρ0(P2)ρ0(P3)C0(P1, P2, P3).

(4.16)

Thus, once again, the asymptotic behaviour of the OPE coefficients, now when all three

operators are heavy, is determined by the asymptotics of the universal object C0(P1, P2, P3).

Precisely as in (4.9), corrections to this asymptotic formula due to the exchange of non-

vacuum primaries in the dumbbell channel are exponentially suppressed by the ratio

KP1P2P3;P ′1P
′
2P
′
3

KP1P2P3;111
≈ e−2π(α′1P1+α′3P3) (4.17)

in the limit where the ratios or differences between the Pi are held fixed. In the original

dumbbell channel, α′2 cannot be nonzero unless both α′1 and α′3 are nonzero, so this is

always exponentially small. More details are contained in appendix B.1.1.

The conclusion is that the sunset channel OPE density is well-approximated by the

exchange of the vacuum Verma module in the dumbbell channel when the internal weights

all become heavy:

ρsunset(P1, P̄1;P2, P̄2;P3, P̄3) ≈ KP1P2P3;111KP̄1P̄2P̄3;111, Pi, P̄i →∞ (4.18)

Thus the kernel (4.16) encodes an asymptotic formula for OPE coefficients in the heavy-

heavy-heavy regime, averaged over the weights of all three heavy operators

|C123|2 ∼ C0(P1, P2, P3)C0(P̄1, P̄2, P̄3), Pi, P̄i →∞. (4.19)

As before, in the presence of a nonzero twist gap this formula holds at large spin in which

only the left-moving momenta P1, P2, P3 or the right-moving momenta P̄1, P̄2, P̄3 are taken

to be large.

We can now recover asymptotic formulas for the microcanonical average of all heavy

OPE coefficients from the relevant asymptotics of C0. For example, if we fix ratios of Pi,

parameterizing as Pi = xiP with xi > 0 fixed and P →∞, we have

logC0(x1P, x2P, x3P )

=

(
− 4

3∑
i=1

x2
i log(2xi) +

∑
ε2,ε3=±

(x1 + ε2x2 + ε3x3)2 log |x1 + ε2x2 + ε3x3|

)
P 2

− πQ(x1 + x2 + x3)P +

(
5Q2 − 1

6

)
logP

+ log
2
Q2

2 (x1x2x3)
1
6

(Q2+1)∏
ε2,ε3=± |x1 + ε2x2 + ε3x3|

1
12

(Q2−2)Γ0(b)2Γb(2Q)

Γb(Q)3
+O(P−1).

(4.20)
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In the case where |Pi − Pj | is fixed in the limit, we instead have

logC0(P + δ1, P + δ2, P − δ1 − δ2)

= 3P 2 log
27

16
− 3πQP +

1

6
(5Q2 − 1) log(P )

+ log
2
Q2

2
−8(δ2

1+δ1δ2+δ2
2)3

Q2−2
12 Γ0(b)2Γb(2Q)

Γb(Q)3
+O(P−1).

(4.21)

These limits were studied using genus 2 modular invariance in [14], using conformal

block techniques. This analysis used the same underlying crossing relation, relating the

heavy blocks in the sunset channel to the identity in the OPE channel (or, equivalently, a

different necklace channel, obtained by an additional fusion move; the identity blocks in

these two channels are identical). Results were only obtained for large c, where additional

techniques to analyse conformal blocks are available, only included terms up to order

P ∼
√
h in logC0, and did not have a complete result for the term scaling exponentially in

P 2 ∼ h (the first line of (4.21)) valid at general ratios of operator dimensions. Nonetheless,

all our formulas match those in [14], including confirming a conjectured correction c→ c−1

from finite central charge. Our new method, with far less work, extends these results to

higher orders and finite central charge.

5 On the relation to Liouville theory

In section 1.6, we observed the relation between our universal object C0 and the DOZZ

formula for the structure constants of Liouville theory,

C0(P1, P2, P3) ∝ CDOZZ(P1, P2, P3)(∏3
k=1 S0(Pk)ρ0(Pk)

) 1
2

. (5.1)

We then sketched an argument which explained this relation from a common origin in

representation theory. We here give more details of that argument, explaining why the

DOZZ formula must be constructed from the identity fusion kernel, as the unique solution

to crossing built from only scalar Virasoro primaries.

To this end, we give general arguments for the identities which establish that the iden-

tity fusion kernel provides a solution to crossing with scalar primaries, applicable for any

chiral algebra. Many of the methods are familiar in the context of rational CFTs. Sec-

ondly, we explicitly demonstrate that the relevant identities hold for the Virasoro crossing

kernels of [21, 22, 28], which is a consistency check that these arguments extend to this

non-rational situation.

We perform this analysis for two cases. First, we study four-point crossing, where our

arguments are very similar to those given in [60], for example. Secondly, we give similar

arguments for modular S-invariance of the torus one-point function.

5.1 Four-point crossing symmetry

Following the general arguments of section 1.6, the four-point crossing equation (3.8) with

only scalar primaries becomes

F−1
PtPs

ρs(Ps) = FPsPt ρt(Pt), (5.2)
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Figure 8. The sequence of crossing moves applied to the sphere five-point conformal block leading

to the pentagon identity (5.4) for the fusion kernel.

where we have inverted one of the fusion kernels to move it to the left hand side. We can

write this relation with explicit dependence on the external operators as follows:

Fts
[

41

32

]
ρs = Fst

[
21

34

]
ρt . (5.3)

We have used the fact that the inverse fusion kernel is the same as the fusion kernel with

a permutation of external operators. Here and in the following, for brevity of notation we

have suppressed momentum labels by replacing Pi simply with i; in particular, the external

operator labelled by 1 is not to be confused with the identity representation, denoted by

1. Our aim in the following is to find an identity of the form (5.3), and hence a solution to

crossing. Note that if we have one solution to this equation, any other solution is related

by multiplying ρs, ρt by the same constant (independent of Ps, Pt, but not the external

operators since we cannot fix their normalisations). The only exception to this occurs

when the fusion kernel is block diagonal, in which case there is an independent solution for

each block.

To proceed, we make use of a consistency condition satisfied by fusion kernels, the

famous pentagon identity, which in our notation reads∑
r

Frp
[

1q

23

]
Fsq

[
15

r4

]
Ftr

[
2s

34

]
= Ftq

[
p5

34

]
Fsp

[
15

2 t

]
. (5.4)

We have written this with a sum over r, as appropriate for the fusion matrix in ratio-

nal CFTs. For the c > 1 Virasoro fusion kernels of [21, 22] with continuous families of

representations, the sum becomes an integral with the appropriate measure. The identity

follows from considering two possible sequences of fusion moves applied to the five-point

conformal blocks, sketched in figure 8, which must act in the same way.

We only require a special case of the identity, taking q = 1, which also sets 5 = 4

and p = 3 so that the blocks and fusion kernels are well-defined (otherwise, they become

infinite signalling the disallowed fusion). The first fusion move then becomes trivial, giving

a δ-function that sets r = 1

Fr3
[

11

2 3

]
= δ1r. (5.5)
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This relation can be explicitly verified for the Ponsot-Teschner fusion kernel (A.2) by taking

the appropriate limit: the kernel vanishes at generic Pr in the limit, but a delta-function

δ(Pr − P1) is produced by two poles which pinch the contour, with finite residue in the

limit. This leaves us with an identity without an internal sum,

Fs1
[

14

14

]
Ft1

[
2s

34

]
= Ft1

[
34

34

]
Fs3

[
14

2 t

]
, (5.6)

which one can check from the explicit form of the Ponsot-Teschner fusion kernel (A.2). To

see this, we note that we can rewrite the desired equality (5.6) as

Fs1
[

14

14

]
Ft1̃

[
2s

34̃

]
= Ft1

[
34

34

]
Fs3

[
2 t

14

]
, (5.7)

where by the tilded entries ĩ, we mean that we replace Pi → −Pi, an operation under

which the fusion kernel is invariant. Written in this form, (5.7) is immediate from the

expressions (A.2) after a shift of the variable in the contour integrals, and using Sb(x) =

Sb(Q− x)−1.

Now, by permuting labels in (5.6) (1→ t→ s→ 1), we have

F11

[
t4

t4

]
Fst

[
21

34

]
= Fs1

[
34

34

]
F13

[
t 4

2s

]
, (5.8)

where we recognise one term on the left as the fusion kernel of interest in (5.3). By another

permutation of labels, swapping 2 ↔ 4 and t ↔ s in (5.8), we find an identity involving

the inverse fusion kernel of interest,

F11

[
s2

s2

]
Fts

[
41

32

]
= Ft1

[
32

32

]
F13

[
s2

4 t

]
. (5.9)

Now, since the fusion kernels are invariant under exchange of rows or columns, the F13

kernels appearing in the two identities are the same, so we can combine (5.8) and (5.9)

to find

Fs1
[

34

34

]
F11

[
s2

s2

]
Fts

[
41

32

]
= Fst

[
21

34

]
F11

[
t4

t4

]
Ft1

[
32

32

]
. (5.10)

This is an identity precisely of the form (5.3) and hence a scalar solution to four-point

crossing, with

ρs = k Fs1
[

34

34

]
F11

[
s2

s2

]
, ρt = k F11

[
t4

t4

]
Ft1

[
32

32

]
, (5.11)

where k is independent of Ps, Pt, but otherwise arbitrary. Using the expression (3.9) for

the identity fusion kernel in terms of our universal functions C0 and ρ0, we can write this

solution as

ρs(Ps) = k ρ0(Ps)C0(P1, P2, Ps)C0(Ps, P3, P4), ρt = k ρ0(Pt)C0(P1, P4, Pt)C0(Pt, P2, P3) ,

(5.12)

where a factor of ρ0(P1) has been absorbed into k. From the relation (1.26) between C0

and the DOZZ formula, we see that ρs and ρt are precisely the S- and T-channel spectral

densities in Liouville theory, making an appropriate choice of k.
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5.2 S-invariance of torus one-point functions

We now make a similar argument to show that Liouville theory provides the unique modular

covariant torus one-point functions for scalars. We begin by writing the equation for one-

point S-invariance (3.16) for scalars in a form analogous to (5.3), using the fact that S is

its own inverse:

Sts[O]ρO(s) = Sst[O]ρO(t). (5.13)

Here, the same torus one-point spectral density ρO (where ρO(s) is the density of internal

states ρ(s) times OPE coefficients COss) appears on both sides.

To find a relation of the form (5.13), we require an identity for the modular S-kernel S
to play an analagous role to the pentagon identity in the above. Such an identity arises from

consistency of torus two-point functions, where two different sequences of moves applied

to a vacuum block must be equivalent:

FO1
[
t t

t t

]
Sst[O] = Ss1[1]

∑
u

e2πi(hs+ht−hu−hO/2)Fu1
[
st

st

]
FOu

[
t t

ss

]
. (5.14)

This identity is well-known for rational theories [70, 77], but also applies to the Virasoro

kernels at generic central charge [78], with the sum over u replaced by an integral with

appropriate measure. For rational theories, this identity is the key to proofs of the Verlinde

formula [70, 77], so these considerations can be applied to explore analogues of the Verlinde

formula for irrational theories [78].

For us, the most important feature of this identity is that the right-hand side is sym-

metric under swapping s ↔ t, except for the factor of the identity S-matrix Ss1[1]. From

this observation, we find the simple relation

Sst[O]St1[1]FO1
[
t t

t t

]
= Sts[O]Ss1[1]FO1

[
ss

ss

]
. (5.15)

This identity is precisely of the desired form (5.13), with

ρO(P ) ∝ SP1[1]FO1
[
P P

P P

]
= ρ0(PO)ρ0(P )C0(PO, P, P ). (5.16)

Up to a P -independent normalisation constant, this is precisely the torus one-point spectral

density for Liouville theory constructed from the DOZZ formula (1.26).

6 Semiclassical limits

Throughout this paper we have emphasized that our asymptotic formulas apply in any

two-dimensional irrational CFT for any c > 1, providing universal results in a kinematic

limit of large dimension or spin. However, it is natural to expect our results to be par-

ticularly powerful in holographic theories with a weakly coupled AdS3 dual, and to have

a corresponding gravitational interpretation. The basic reason for this is simple: the cor-

rections to the asymptotic formula come from the lightest operators in the theory, and

existence of a holographic dual requires having few such operators (a sparse light spec-

trum) [31, 79, 80]. For example, in higher dimensions generic theories contain double-twist
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operators with anomalous dimensions suppressed at large spin [24, 25]; in holographic the-

ories, the ‘t Hooft limit extends this to double-trace operators with anomalous dimensions

suppressed at large N , now at finite spin. The corresponding gravitational interpretation

involves two-particle states in AdS, which generically are weakly interacting only with very

large orbital angular momentum, when the particles are widely separated, but in holo-

graphic theories also interact weakly at finite separation. An example in d = 2 is the

density of states, which for holographic theories is given by the Cardy formula not just

for very heavy operators, but also at large c for energies of order c [31], interpreted as the

Bekenstein-Hawking entropy of BTZ black holes [81].

With this in mind, in this section we will give gravitational interpretations of our

universal OPE coefficients C0 in various large c limits. We will not attempt here to pin

down precisely when these formulas apply, in terms of constraints on the theory and regime

of operator dimensions; see [17] for recent work in this direction.

Nonetheless, it is simpler to interpret and understand this regime in the gravitational

description. Since our formulas come from expanding an identity block in an alterna-

tive channel, we can interpret our formulas as a microcanonical version of ‘vacuum block

domination’, giving the density of states in a regime where a correlation function is well-

approximated by only the identity Virasoro block in the appropriate channel [82–85]. At

large c, an identity block is given by the gravitational action of a particular locally empty

AdS solution (which could be a BTZ black hole or handlebody at higher genus), along with

worldlines of particles propagating between external operator insertions [6, 30, 86–88]:

F1 ≈ e−c Sgrav (6.1)

We therefore expect our formulas to be applicable when the gravitational path integral is

dominated by such a solution, up to loop corrections.29 This holds for a kinematic regime

of parametrically low temperature or small cross-ratios, but for holographic theories is

expected to extend to a regime of kinematics which are fixed in the large c limit. The

question is how far this regime extends before encountering a phase transition. The sim-

plest such phase transitions are first-order ‘Hawking-Page’ transitions, where an identity

block in different channel dominates. However, note that even for local, weakly coupled

gravitational theories, there need not be any channel in which the vacuum dominates:

for example, there may be a phase in which a scalar field condenses after a second-order

phase transition [30, 32]. Vacuum dominance potentially particularly subtle for correlation

functions in kinematic regimes such as those with operators out of time order [89].

We now give our examples of gravitational interpretations of the universal OPE coeffi-

cients C0 in various limits. These are all explored in more detail elsewhere, but we present

them here together as consequences of the same formula, emphasising the unifying nature

of our results. Furthermore, the list may well not be exhaustive, since we have not included

all possible semiclassical limits, and our understanding of the connections to gravity is far

from complete.

29Note that the identity block itself need not be a larger contribution than any other block. Corrections

at one-loop order change the coefficient of e−c Sgrav , and come from light operator exchanges of the same

order as F1.
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6.1 Spectral density of BTZ black holes

For our first example, we take a large c limit of C0 which probes the physics of BTZ

black holes. We take two operators to be heavy, with dimensions h1, h2 scaling with c, to

correspond to black hole states, but with similar dimensions, h1− h2 fixed as c→∞. The

third operator, acting as a probe of the geometry, has h fixed in the limit. In terms of the

momentum variables P , we take

P1 = b−1p+ bδ P2 = b−1p− bδ, P3 = i

(
Q

2
− bh

)
, (6.2)

and fix p, δ, h in the b→ 0 limit. We can then interpret C0 as governing the matrix elements

〈BH2|O|BH1〉 of the probe operator O of dimension h between black hole states of nearby

energies.

This limit of the fusion kernel was studied in [20], with the result

ρ0(b−1p)C0 (P1, P2, P3) ∼ (2p)2h

2πb

Γ(h+ 2iδ)Γ(h− 2iδ)

Γ(2h)
. (6.3)

This is the left-moving half spectral density associated to free matter propagating an a

BTZ black hole background30 [90]. In particular, the poles at imaginary δ are associated

with the frequencies of quasinormal modes governing the approach to equilibrium. This

result is sufficient to recover the ‘heavy-light’ limit of conformal blocks [91, 92]; see [20] for

more details.

6.2 Near-extremal BTZ and the Schwarzian theory

Our second example (based on results to appear [93]) is similar to the first, but treats the

distinct case where the black hole of interest is very close to extremality.

Rotating BTZ black holes exist for dimensions above the extremality bound h > c−1
24 ,

and we will tune our operators close to this, with h− c−1
24 of order c−1. Our third operator

will remain a light probe. This means we have

P1 = bk1 P2 = bk2, P3 = i

(
Q

2
− bh

)
, (6.4)

where we fix k1, k2, h and take b→ 0.

In this limit, our universal density of states ρ0 and OPE coefficients C0 are given by

ρ0(bk) ∼ 8
√

2πb2k sinh(2πk) (6.5)

C0

(
bk1, bk2, i

(
Q

2
− bh

))
∼ b4h√

2(2πb)3

∏
±± Γ(h± ik1 ± ik2)

Γ(2h)
, (6.6)

where the
∏
± refers to a product of four terms with all possible sign combinations. These

expression may be familiar from the Schwarzian theory, which governs the dynamics of

30Strictly speaking, this holds in a case where we are insensitive to the compactness of the spatial circle,

either large black holes or heavy external operators.
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weakly broken conformal symmetry [94–96]. This theory arises in near-extremal black

holes, which have a near-horizon AdS2 region with dynamics governed by Jackiw-Teitelboim

gravity [95, 97]. Specifically, ρ0 is proportional to the density of states for the Schwarzian

theory, and C0 to a transition amplitude appearing in calculations of correlation func-

tions [96, 98, 99].

The appearance of these quantities is a sign that there is a universal sector of large

c CFTs which knows about quantum geometry, where the metric fluctuations are not

suppressed. The connection between the Schwarzian theory, near-extremal BTZ and uni-

versality in CFT will be explored in much greater detail in forthcoming work [93].

6.3 Conical defect action

Finally, we consider a regime where all three operators have dimensions scaling with c. If

we take 24h
c > 1 in this limit, as required for asymptotic formulas, C0 should be interpreted

as giving a three-point function of black hole microstates. It is unclear whether there is

a direct calculation of this quantity, giving the semiclassical limit of C0 as an on-shell

action. However, perhaps surprisingly, if we fix 24h
c < 1 and take c→∞, there is such an

interpretation, shown in [4]. Those authors computed the vacuum fusion kernel in a large

central charge limit,

αi = b−1ηi, b→ 0, fixed ηi, i = 1, 2, 3, (6.7)

and equated it to a suitably regularised on-shell action of a geometry corresponding to

three heavy particles running between the asymptotic boundary and a trivalent vertex.

The action in this case is Einstein-Hilbert, plus an action miLi for each particle, where Li
is a regularised proper length of the particle’s worldline and mi ∼ c

3ηi is its mass. Since

the particles have masses of order c, they backreact to form three conical defects in the

geometry, meeting at the vertex.31

In our notation, we can express the result of [4] as a limit of C0:

logC0 ∼ b−2

(
− 1

2
Sgrav(η1, η2, η3) + iθ(η1, η2, η3)

)
,

−1

2
Sgrav = (F (2η1)− F (η2 + η3 − η1) + (1− 2η1) log(1− 2η1) + (2 permutations))

+ F (0)− F (η1 + η2 + η3)− 2(1− η1 − η2 − η3) log(1− η1 − η2 − η3)

θ =π(η1 + η2 + η3 − 1), (6.8)

where F (z) = I(z) + I(1− z) for I(z) =
∫ z

1
2
dy log Γ(y). The action b−2Sgrav appearing here

is precisely the gravitational action for the conical defect network described above. When

left- and right-moving sectors are combined, for scalars the phase θ cancels.

When conformal blocks are computed at large c as an on-shell gravitational action, this

conical defect action, and hence this limit of C0, appear as the natural normalisation of the

31No particle action was included in [4], but they also included no singular contribution to the Ein-

stein Hilbert action localised on the worldline. These two terms are equal and opposite, so the results

are equivalent.
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blocks [29, 30]. While the relation with our universal asymptotic formulas is suggestive, it

remains rather mysterious from that point of view, and deserves to be better understood.

7 Torus one-point functions & the Eigenstate Thermalization Hypothe-

sis

Although the primary focus of our paper is on the asymptotic behaviour of the Cijk
2,

similar techniques can be applied to other observables in two-dimensional conformal field

theory. For example, by studying the modular covariance of the torus one-point function of

an operator O0 one obtains an asymptotic formula for diagonal heavy-heavy-light structure

constants COHH , where we average over the heavy operator H. This was discussed in [5],

who found

C0HH ≈N0C0χχ

(
∆H −

c− 1

12

)∆0/2

× exp

[
−π(c− 1)

3

(
1−

√
1− 12∆χ

c− 1

)√
12∆H

c− 1
− 1

]
, (7.1)

in the limit that ∆H → ∞. Here χ is the lightest operator to which O0 couples (i.e. for

which C0χχ 6= 0), and is assumed to be sufficiently light, ∆χ <
c−1
12 . The normalization

factor N0 depends only on c, ∆χ and ∆0. This analysis was performed at the level of

the scaling blocks in [5] and was generalized to include the contribution of global blocks

in [6]. When regarded as a formula for the average value of the primary operators, however,

equation (7.1) is true only at leading order in 1/c; the inclusion of Virasoro blocks provides

corrections which are only subleading at large c.

We can now write down the finite c version of this formula using the modular S kernel

introduced in section 3.3 for torus one point functions. Following the same logic that led

to our other asymptotic formulas, we conclude that

C0HH ≈ C0χχ

SPHPχ [P0]SP̄H P̄χ [P̄0]

ρ0(PH)ρ0(P̄H)
, PH , P̄H →∞ (7.2)

provided that χ, the lightest operator that couples to O0, is sufficiently light (αχ lies in

the discrete range in the sense of [20]) and that there exists a gap above this lightest

operator so that corrections due to the inversion of the contributions of other operators in

the original channel are indeed suppressed. The large P asymptotics of this formula are

straightforward to find by taking the large PH limit of the modular S kernel, namely

SPHPχ [P0]

ρ0(PH)
≈ e−4παχPHP h0

H . (7.3)

This reproduces the earlier result (7.1) in the appropriate limit.

We would like to emphasize two important qualitative differences between this formula

and our other asymptotic formulas. The first is that it is not universal in the same sense

as our other formulas, as it explicitly depends on the lightest operator that couples to
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O0, both through its conformal weights and OPE coefficient (this is because the vacuum

Verma module cannot propagate as an intermediate state in either channel of the torus

one-point function). Second, its derivation is on even less rigorous footing than our other

asymptotic formulas because the structure constants that appear in the conformal block

decomposition of the torus one-point function need not be positive, and so the spectral

densities ρ[O0], ρ̃[O0] do not in general have definite sign and may oscillate when integrated.

This is unlike the product of structure constants that appear in the necklace channel

conformal block decomposition of the torus two-point function of identical operators or

the sunset channel of the genus-two partition function, which are positive in a unitary

CFT. In fact, if the lightest operator that couples to O is sufficiently heavy (in particular,

if it has twist > c−1
12 ), then one cannot even argue that the asymptotics of the structure

constants are universal as corrections due to the propagation of other operators in the

original channel are not parametrically suppressed.

As discussed in section 1.5, the fact that the averaged diagonal heavy-heavy-light

OPE coefficients are exponentially suppressed (via e.g. (7.3)) implies a different hierarchy

of suppression between the averaged diagonal and non-diagonal heavy-heavy-light structure

constants than would naively have been expected from the usual statement of the Eigenstate

Thermalization Hypothesis, where fO is order one and gO ≈ e−
1
2
S(∆). Indeed, if the lightest

operator that couples to O0 satisfies Re(αχ + ᾱχ) ≥ Q
2 (for scalars, this corresponds to

dimension ∆χ ≥ c−1
16 ), then there is no suppression whatsoever of the averaged off-diagonal

structure constants compared to the diagonal, and indeed the diagonal terms may be even

smaller than the off-diagonal in this regime. This may be seen by comparing equation (7.3)

with equation (4.13). This contrast is particularly sharp in holographic theories with a large

gap in the spectrum of primary operators, with only Planckian degrees of freedom. Indeed

the dual of a theory of “pure” quantum gravity in AdS3 is in a sense one where the averaged

diagonal heavy-heavy-light structure constants are smallest.
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A Explicit forms of elementary crossing kernels

In this section we will review the explicit forms of the elementary crossing kernels used

in this paper, with a focus on the analytic structure of the kernels as a function of the

intermediate weights.

A.1 Sphere four-point

We will start by reviewing the explicit form of the fusion kernel, which implements the

fusion transformation relating sphere four-point Virasoro conformal blocks in different OPE

channels (see equation (3.7)). The fusion kernel was worked out in explicit detail by

Ponsot and Teschner [21, 22]. The expression involves the special functions Γb(x), which

is a meromorphic function with no zeros that one may think of as a generalization of the

ordinary gamma function, but with simple poles at x = −(mb+nb−1) for m,n ∈ Z≥0, and

Sb(x) =
Γb(x)

Γb(Q− x)
. (A.1)

Many properties of these special functions, including large argument and small b asymp-

totics, were summarized in [20] (see in particular appendix A of that paper). The explicit

expression for the kernel involves a contour integral and is given by

FPsPt
[
P2P1

P3P4

]
= Pb(Pi;Ps, Pt)Pb(Pi;−Ps,−Pt)

∫
C′

ds

i

4∏
k=1

Sb(s+ Uk)

Sb(s+ Vk)
, (A.2)

where the prefactor Pb is given by

Pb(Pi;Ps, Pt) =
Γb(

Q
2 + i(Ps + P3 − P4))Γb(

Q
2 + i(Ps − P3 − P4))Γb(

Q
2 + i(Ps + P2 − P1))

Γb(
Q
2 + i(Pt + P1 − P4))Γb(

Q
2 + i(Pt − P1 − P4))Γb(

Q
2 + i(Pt + P2 − P3))

×
Γb(

Q
2 + i(Ps + P1 + P2))Γb(Q+ 2iPt)

Γb(2iPs)Γb(
Q
2 + i(Pt + P2 + P3))

(A.3)

and the arguments of the special functions in the integrand are

U1 = i(P1 − P4)

U2 = −i(P1 + P4)

U3 = i(P2 + P3)

U4 = i(P2 − P3)

V1 = Q/2 + i(−Ps + P2 − P4)

V2 = Q/2 + i(Ps + P2 − P4)

V3 = Q/2 + iPt

V4 = Q/2− iPt

(A.4)

The contour C′ runs from −i∞ to i∞, traversing between the towers of poles running to

the left at s = −Ui−mb−nb−1 and to the right at s = Q−Vj +mb+nb−1 in the complex

s plane, for m,n ∈ Z≥0.

Viewed as a function of the internal weight Ps, the kernel (A.2) has eight semi-infinite

lines of poles extending to both the top and bottom of the complex plane

FPsPt
[
P2P1

P3P4

]
: simple poles at Ps = ±i

(
Q

2
+ iP0 +mb+ nb−1

)
, for m,n ∈ Z≥0,

where P0 = P1 + P2, P3 + P4

(and six permutations under reflection Pi → −Pi).

(A.5)
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Roughly, half of these poles are explicit singularities of special functions in the prefac-

tor (A.3), while the other half arise from singularities of the contour integral, which occur

when poles of the integrand pinch the contour. In the case particularly relevant for this

paper of pairwise identical operators P4 = P1, P3 = P2, these singularities are enhanced

to double poles, although there is an exception when the T-channel internal weight Pt is

degenerate (Pt = ± i
2((m+ 1)b+ (n+ 1)b−1), m, n ∈ Z≥0), in which case the poles remain

simple when the external operators have weights consistent with the fusion rules.

In most cases, the contour of integration over the internal weight Ps in the fusion

transformation (3.7) can be taken to run along the real axis. However, as emphasized

in [20, 61], when the external operators are sufficiently light, in particular when

Re(i(P1 + P2)) < −Q
2

or Re(i(P3 + P4)) < −Q
2

(A.6)

then some poles of the fusion kernel (A.5) cross the real Ps axis and the contour must

be deformed, leading to a finite number of discrete residue contributions to the S-channel

decomposition of the T-channel Virasoro block. These correspond to the Virasoro analog

of double-twist operators [20].

In the special case of pairwise identical operators with T-channel exchange of the

identity, the contour integral can be computed very explicitly and the fusion kernel takes

the following simple form, which makes the analytic structure manifest

FPs1
[
P2P1

P2P1

]

=
Γb(2Q)

Γb(Q)3

Γb(
Q
2 + i(P1 + P2 − Ps))× (7 permutations under reflection P → −P )

Γb(2iPs)Γb(−2iPs)Γb(Q+ 2iP1)Γb(Q− 2iP1)Γb(Q+ 2iP2)Γb(Q− 2iP2)

= ρ0(Ps)C0(P1, P2, Ps). (A.7)

A.2 Torus one-point

The crossing kernel that implements the modular S transformation on torus one-point

Virasoro blocks (see equation (3.15)) was worked out by Teschner [28]. Similarly to the

fusion kernel, its explicit form involves a contour integral and is given by

SPP ′ [P0] =
ρ0(P )

Sb(
Q
2 + iP0)

Γb(Q+ 2iP ′)Γb(Q− 2iP ′)Γb(
Q
2 + i(2P − P0))Γb(

Q
2 − i(2P + P0))

Γb(Q+ 2iP )Γb(Q− 2iP )Γb(
Q
2 + i(2P ′ − P0))Γb(

Q
2 − i(2P ′ + P0))

×
∫
C

dξ

i
e−4πP ′ξ Sb(ξ + Q

4 + i(P + 1
2P0))Sb(ξ + Q

4 − i(P −
1
2P0))

Sb(ξ + 3Q
4 + i(P − 1

2P0))Sb(ξ + 3Q
4 − i(P + 1

2P0))

≡Qb(P, P ′, P0)

∫
C

dξ

i
e−4πP ′ξTb(ξ, P, P0). (A.8)

This integral representation only converges when

1

2
Re(α0) < Re(α′) < Re

(
Q− 1

2
α0

)
. (A.9)
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Outside of this range, the kernel is defined via analytic continuation, using the fact that it

satisfies a shift relation that we will make explicit shortly.

The integral contributes the following series of poles in the P plane, one extending to

the top and the other extending to the bottom

integral: poles at P = ± i
2

(
Q

2
+ iP0 +mb+ nb−1

)
, m, n ∈ Z≥0. (A.10)

Together with the prefactor, the full kernel has the following polar structure in the P plane

SPP ′ [P0] : poles at P =
i

2

(
Q

2
− iP0 +mb+ nb−1

)
,

m, n ∈ Z≥0, and all possible reflections (in P, P0).

(A.11)

One can think of these poles as arising in the case that the external operator is a (Virasoro)

double-twist of the internal operator. Unlike the case of the fusion kernel, for unitary values

of the weights none of these poles can cross the contour of integration Im(P ) = 0.

Similarly to the case of the fusion kernel, the modular S kernel can be straightforwardly

evaluated in the case that the external operator is the identity, P0 = iQ2 . In this case, the

prefactor vanishes and so we only need to extract the singularities of the contour integral.

By carefully studying this limit, one finds

SPP ′ [1] = 2
√

2 cos(4πPP ′), (A.12)

precisely reproducing the non-degenerate modular S matrix for the Virasoro charac-

ters (2.7). To study the limit in which the internal operator in the original channel is

also the identity one must be more careful, for the simple reason that the Virasoro vacuum

character is not the same as the h′ → 0 limit of the non-degenerate Virasoro character; in

the latter case, there are null states that do not decouple continuously.

To study this limit more carefully, we note that the modular kernel satisfies the fol-

lowing shift relation (see e.g. [75])

2 cosh(2πbP )SPP ′ [P0] =

(
Γ(b(Q+ 2iP ′))Γ(2ibP ′)

Γ(b(Q2 + i(2P ′ − P0)))Γ(b(Q2 + i(2P ′ + P0)))
SP,P ′−i b

2
[P0]

+
Γ(b(Q− 2iP ′))Γ(−2ibP ′)

Γ(b(Q2 − i(2P ′ + P0)))Γ(b(Q2 − i(2P ′ − P0)))
SP,P ′+i b

2
[P0]

)
.

(A.13)

Now consider the limit P ′ → i b
−1

2 of this equality. The first term on the right-hand side

will be singular unless we take P0 to iQ2 at the same time. To facilitate the study of this

limit, we write P ′ = i
2(b−1 − ε), P0 = i

(
Q
2 − ε

)
, and take ε→ 0. Taking the limit, we find

lim
ε→0

SP, i
2

(Q−ε)

[
i

(
Q

2
− ε
)]

= 2 cosh(2πbP )S
P,i b

−1

2

[
i
Q

2

]
− 2SP, i

2
(b−1−b)

[
i
Q

2

]
= 4
√

2 sinh(2πbP ) sinh(2πb−1P ),

(A.14)

precisely reproducing the modular S matrix for the inversion of the Virasoro vacuum char-

acter (2.11). Note that one cannot recover this by taking the appropriate limit of (A.8),

as α0 = 2α′ is at the boundary of the regime of convergence of the integral representation.
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B Asymptotics of crossing kernels

In this section we will collect results for the asymptotic form of the elementary crossing

kernels when some of the weights are taken to be heavy. These results are important for

establishing both the form of our asymptotic formulas and their validity, via the suppression

of corrections due to the propagation of non-vacuum primaries.

B.1 Fusion kernel

In [20], the asymptotic form of the fusion kernel when the S-channel internal weight Ps was

taken to be heavy with fixed external weights was extensively studied. The main result

of that analysis was the following asymptotic form of the vacuum fusion kernel (A.7) with

pairwise identical operators, which follows directly from the asymptotics of the special

function Γb that were established in that paper

FPs1
[
P2P1

P2P1

]
∼ 2−4P 2

s eπQPsP
4(h1+h2)− 3Q2+1

2
s

× 2
Q2+1

6 Γ0(b)6Γb(2Q)

Γb(Q)3Γb(Q+ 2iP1)Γb(Q− 2iP1)Γb(Q+ 2iP2)Γb(Q− 2iP2)
, Ps →∞

(B.1)

where

log Γ0(b) = −
∫ ∞

0

dt

t

(
e−Qt/2

(1− e−bt)(1− e−b−1t)
− t−2 − Q2 − 2

24
e−t

)
(B.2)

appears in the large-argument asymptotics of Γb(x).

By carefully studying the asymptotics of the contour integral in the definition of the

fusion kernel, in [20] it was also established that the fusion kernel with non-zero T-channel

weight is exponentially suppressed at large Ps compared to the vacuum kernel

FPsPt
[
P2P1

P2P1

]

FPs1
[
P2P1

P2P1

] ∼ e−2παtPs

(
Γb(Q+ 2iP1)Γb(Q− 2iP1)

Γb(
Q
2 + i(2P1 − Pt))Γb(Q2 − i(2P1 + Pt))

× (P1 → P2)

)

× Γb(Q− 2iPt)Γb(−2iPt)Γb(Q)3

Γb(2Q)Γb(
Q
2 − iPt)4

, Ps →∞.

(B.3)

Thus we learn that corrections to the heavy-light-light asymptotic formula (4.4) due to the

exchange of non-vacuum primaries in the T-channel are exponentially suppressed.

B.1.1 With heavy external operators

In order to establish the validity of the off-diagonal HHL and HHH asymptotic formulas,

we need to ensure that the propagation of non-vacuum primaries is suppressed compared

to that of the vacuum. The only nontrivial step is establishing the suppression of

FP2P ′2

[
P1P3

P1P3

]

FP21

[
P1P3

P1P3

] (B.4)
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when one or both of the external operators P1, P3 are taken to be heavy along with the

S-channel internal weight P2.

Let’s start with the case relevant for the torus two-point kernel. For simplicity and

clarity of presentation, we will explicitly present the case where α1, α2 = Q
2 + iP, P →∞,

with α3 ≡ α0 and α′2 fixed. Focusing on the contour integral involved in the definition of

the four-point kernel and writing the integration variable as s = σP , we have the following

asymptotics of the integrand

log

4∏
k=1

Sb(s+ Uk)

Sb(s+ Vk)

∼


2π(α0 + iQσ)P − πi((Q− α0)2 + h′2) +O(P−1), Im(σ) > 2

−2π(α0 − iQσ + iα0σ)P − πi((Q− α0)2 − h0 + h′2) +O(P−1), 0 < Im(σ) < 2

−2π(α0 + iQσ)P + πi((Q− α0)2 + h′2) +O(P−1), Im(σ) < 0

(B.5)

The integrand decays exponentially at σ = ±i∞ and no poles cross the contour so we

evaluate the integral using these leading approximations for the integrand. In this way

one finds ∫
ds

i

4∏
k=1

Sb(s+ Uk)

Sb(s+ Vk)
∼ (order-one)e−2πα0P , (B.6)

so that all together we have

FP2P ′2

[
P0P1

P0P1

]
∼ (order-one)(P )2h0−h′2 , (B.7)

and corrections due to the propagation of non-vacuum primaries with 0 < α′2 < Q
2 are

encoded by the ratio

FP2P ′2

[
P0P1

P0P1

]

FP21

[
P0P1

P0P1

] ∼ (order-one)P−h
′
2 . (B.8)

The analysis is similar for corrections to the HHH asymptotics due to propagation of

non-vacuum primaries in the dumbbell channel. One finds the following for the asymptotics

of the integrand when all three weights α1, α2, α3 = Q
2 + iP are taken to be heavy and we

scale the integration variable with P as before

log
4∏

k=1

Sb(s+ Uk)

Sb(s+ Vk)

∼



3πiP 2 + 2πiQσP − πi
4 (Q2 + 4h′2) +O(P−1), Im(σ) > 2

−πi(1 + 4iσ − σ2)P 2 + πQ(−2 + iσ)P − πi
12(−2 +Q2 + 12h′2) +O(P−1),

1 < Im(σ) < 2

2πσP 2 + πQ(−2 + iσ)P − πih′2 +O(P−1), 0 < Im(σ) < 1

c.c., Im(σ) < 0

.

(B.9)
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In this case the dominant contribution turns out to be of the form∫
ds

i

4∏
k=1

Sb(s+ Uk)

Sb(s+ Vk)
∼ (order-one)e−2πQP , (B.10)

leading to

FP2P ′2

[
P1P3

P1P3

]
∼ (order-one)

(
27

16

)3P 2

e−πQPP−2h′2+ 5Q2−1
6 . (B.11)

Thus non-vacuum corrections to the HHH asymptotic formula are suppressed via the ratio

FP2P ′2

[
P1P3

P1P3

]

FP21

[
P1P3

P1P3

] ∼ (order-one)P−2h′2 . (B.12)

B.2 Torus one-point

In order to establish the validity of the heavy-heavy-light and heavy-heavy-heavy universal

formulas, we also need to study the asymptotics of the torus one-point kernel in the limit

that the internal weight in one of the channels becomes heavy, namely the limit P → ∞.

In this limit, the prefactor Qb reduces to the following

logQb(P, P
′, P0) ∼ 2π(Q− α0)P + h0 log(2P )

+ log
√

2
Γb(Q+ 2iP ′)Γb(Q− 2iP ′)

Sb(
Q
2 + iP0)Γb(

Q
2 + i(2P ′ − P0))Γb(

Q
2 − i(2P ′ + P0))

+O(P−1)

(B.13)

To study the asymptotics of the contour integral, we start by considering scaling the

integration variable with P , ie. ξ = σP . Then the integrand behaves in the following way

at large P depending on the imaginary part of σ

log Tb(σP, P, P0) ∼


2πiσ(Q− α0)P +O(P−1), Im(σ) > 1

−2π(Q− α0)P +O(P−1), −1 < Im(σ) < 1

−2πiσ(Q− α0)P +O(P−1), Im(σ) < −1

. (B.14)

In this limit, there are poles extending to the left and right at Im(σ) = ±1 pinching

the contour.

For α′ in the discrete range, we cannot evaluate the integral by deforming the contour

and summing over residues e.g. in the ξ right half-plane since the integrand does not decay

exponentially along the arc at infinity. However, so long as the internal weight α′ obeys the

condition (A.9), the integral along the contour Re(ξ) = 0 converges nicely and the integral

in this limit can easily be computed by using the asymptotics (B.14). When α′ ∈ (0, Q2 ),

we have∫
C

dξ

i
e−4πξP ′Tb(ξ, P, P0) ≈

Q
2 − iP0

2π(−2iP ′)(Q2 + i(2P ′ − P0))
e−2πP (Q

2
+i(2P ′−P0)). (B.15)
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Comining with the asymptotics of the prefactor, we recover the following asymptotics

SPP ′ [P0] ≈

(
Q
2 − iP0√

2π(−2iP ′)(Q2 + i(2P ′ − P0))

× Γb(Q+ 2iP ′)Γb(Q− 2iP ′)

Sb(
Q
2 + iP0)Γb(

Q
2 + i(2P ′ − P0))Γb(

Q
2 − i(2P ′ + P0))

)

× e−4πiPP ′(2P )h0

(B.16)

To compute the kernel when α′ is outside of the regime (A.9), we can make use of

the shift relations (A.13). Note that in the large-P limit, the prefactor on the right-hand

side will be exponentially enhanced. So, if α′ + n
2 Re(b) > 1

2Re(α0) (but α′ + n−1
2 Re(b) <

1
2Re(α0))), then in this limit we have

SPP ′ [P0] ≈

(
n∏
k=1

f(P ′ − ik b
2
, P0)

)
e2πnbPSP,P ′−in

2
b[P0], (B.17)

where

f(P ′, P0) =
Γ(b(Q2 − i(2P

′ + P0)))Γ(b(Q2 + i(−2P ′ + P0)))

Γ(b(Q− 2iP ′))Γ(−2ibP ′)
. (B.18)

Notice that the exponential part of the prefactor cancels the different exponential asymp-

totics of the shifted kernel SP,P ′−in
2
b so that the overall asymptotics are preserved.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] A.A. Belavin, A.M. Polyakov and A.B. Zamolodchikov, Infinite conformal symmetry in

two-dimensional quantum field theory, Nucl. Phys. B 241 (1984) 333 [INSPIRE].

[2] J.L. Cardy, Operator content of two-dimensional conformally invariant theories, Nucl. Phys.

B 270 (1986) 186 [INSPIRE].

[3] C.-M. Chang and Y.-H. Lin, Bootstrapping 2D CFTs in the semiclassical limit, JHEP 08

(2016) 056 [arXiv:1510.02464] [INSPIRE].

[4] C.-M. Chang and Y.-H. Lin, Bootstrap, universality and horizons, JHEP 10 (2016) 068

[arXiv:1604.01774] [INSPIRE].

[5] P. Kraus and A. Maloney, A Cardy formula for three-point coefficients or how the black hole

got its spots, JHEP 05 (2017) 160 [arXiv:1608.03284] [INSPIRE].

[6] P. Kraus, A. Maloney, H. Maxfield, G.S. Ng and J.Q. Wu, Witten diagrams for torus

conformal blocks, JHEP 09 (2017) 149 [arXiv:1706.00047] [INSPIRE].

[7] P. Kraus, A. Sivaramakrishnan and R. Snively, Black holes from CFT: universality of

correlators at large c, JHEP 08 (2017) 084 [arXiv:1706.00771] [INSPIRE].

– 52 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/0550-3213(84)90052-X
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB241%2C333%22
https://doi.org/10.1016/0550-3213(86)90552-3
https://doi.org/10.1016/0550-3213(86)90552-3
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB270%2C186%22
https://doi.org/10.1007/JHEP08(2016)056
https://doi.org/10.1007/JHEP08(2016)056
https://arxiv.org/abs/1510.02464
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1510.02464
https://doi.org/10.1007/JHEP10(2016)068
https://arxiv.org/abs/1604.01774
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1604.01774
https://doi.org/10.1007/JHEP05(2017)160
https://arxiv.org/abs/1608.03284
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1608.03284
https://doi.org/10.1007/JHEP09(2017)149
https://arxiv.org/abs/1706.00047
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1706.00047
https://doi.org/10.1007/JHEP08(2017)084
https://arxiv.org/abs/1706.00771
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1706.00771


J
H
E
P
0
7
(
2
0
2
0
)
0
7
4

[8] D. Das, S. Datta and S. Pal, Charged structure constants from modularity, JHEP 11 (2017)

183 [arXiv:1706.04612] [INSPIRE].

[9] D. Das, S. Datta and S. Pal, Universal asymptotics of three-point coefficients from elliptic

representation of Virasoro blocks, Phys. Rev. D 98 (2018) 101901 [arXiv:1712.01842]

[INSPIRE].

[10] E.M. Brehm, D. Das and S. Datta, Probing thermality beyond the diagonal, Phys. Rev. D 98

(2018) 126015 [arXiv:1804.07924] [INSPIRE].

[11] Y. Hikida, Y. Kusuki and T. Takayanagi, Eigenstate thermalization hypothesis and modular

invariance of two-dimensional conformal field theories, Phys. Rev. D 98 (2018) 026003

[arXiv:1804.09658] [INSPIRE].
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