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Practically all elastic single crystals are anisotropic, which calls for an appropriate universal measure to
quantify the extent of anisotropy. A review of the existing anisotropy measures in the literature leads to a
conclusion that they lack universality in the sense that they are nonunique and ignore contributions from
the bulk part of the elastic stiffness (or compliance) tensor. Proceeding from extremal principles of
elasticity, we introduce a new universal anisotropy index that overcomes the above limitations.
Furthermore, we establish special relationships between the proposed anisotropy index and the existing
anisotropy measures for special cases. A new elastic anisotropy diagram is constructed for over 100
different crystals (from cubic through triclinic), demonstrating that the proposed anisotropy measure is
applicable to all types of elastic single crystals, and thus fills an important void in the existing literature.
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Introduction.—The elastic response of a single crystal is
seldom isotropic so that an appropriate measure to quantify
the extent of anisotropy is needed. Ledbetter and Migliori
[1] rightly point out the importance of elastic anisotropy in
diverse applications such as phase transformations, dislo-
cation dynamics, and other geophysical applications, to
name a few. More recently, it has been demonstrated that
the elastic anisotropy influences the nanoscale precursor
textures in shape memory alloys [2] and others [3] have
reasoned out the high anisotropy exhibited by polonium
simple cubic crystal. The quantification of the elastic an-
isotropy in terms of a single parameter goes back to Zener
who first introduced an anisotropy index for cubic crystals
[4]. Subsequently, Chung and Buessem [5] empirically
modified the Zener anisotropy index to make it single
valued. Both the above measures are applicable to cubic
crystals and become meaningless in other crystal classes.
Recently, Ledbetter and Migliori [1] defined a general
anisotropy measure based on the solution of Christoffel’s
equations that could be potentially used for all crystal
classes. Their definition of elastic anisotropy is based on
the shear component of the modulus and neglects the
spherical component. Thus, all the currently available
measures for anisotropy in the literature lack universality.
The above definitions also have limited use in understand-
ing the finite-size scaling behavior (i.e., passage from the
level of one crystal to that of an effective or homogenized
continuum [6,7]) for a variety of polycrystals [8]. Such a
role is played by the universal anisotropy index. In the
subsequent sections, we briefly review the existing anisot-
ropy measures and highlight their limitations. We then
propose a new universal anisotropy index and establish
its relationship to the existing anisotropy measures for
special cases.

Zener anisotropy index.—Zener [4] introduced this mea-
sure to quantify the anisotropy of cubic crystals

 A �
2C44

C11 � C12
; (1)

where C11, C12, and C44 are the three independent compo-
nents that completely represent the elastic modulus tensor.
Some authors [9] prefer to quantify the anisotropy as " �
1� A instead of A. Physically, C44 represents the resist-
ance to deformation with respect to a shearing stress ap-
plied across the (100) plane in the [010] direction.
Similarly, �C11�C12�

2 represents the resistance to shear defor-
mation by a shear stress applied across the (110) plane in
the �1�10� direction. For a locally isotropic crystal, the
above shear resistances would turn out to be identical.
Also, for cubic crystals, the bulk resistance ( C11�2C12

3 ) is
isotropic. Based on these observations, Zener proposed
Eq. (1) to quantify the extent of anisotropy in cubic single
crystals. Notice that Zener could have indeed used A�1

instead of A to quantify the anisotropy. Thus, A is restricted
to cubic crystals and lacks universality.

Chung-Buessem anisotropy index.—In order to obtain a
single-valued anisotropy measure, Chung and Buessem [5]
proposed the following empirical measure

 AC �
GV �GR

GV �GR �
3�A� 1�2

3�A� 1�2 � 25A
; (2)

where GV and GR are the shear modulus’ Voigt and the
Reuss estimates, respectively. Note that AC is generally
different if A�1 is used instead of A. Thus, AC is empiri-
cally motivated and applicable only to cubic crystals.

Ledbetter-Migliori anisotropy index.—In an attempt to
come up with a generic anisotropy measure, Ledbetter and
Migliori [1] introduced

 A� � v2
2=v

2
1; (3)

where v1 and v2 denote the minimum and maximum shear
sound-wave velocities among all propagation directions n
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and polarization directions p. Although Ledbetter and
Migliori [1] claim that Eq. (3) applies to all seven crystal
symmetries, we argue otherwise. First, note that A� is not a
unique anisotropy measure: one could have defined A� �
v2

1=v
2
2 instead of Eq. (3) to describe the crystal anisotropy.

Furthermore, Ledbetter and Migliori [1] conclude that
A� � A for cubic crystals. Now, by definition, A� 	 1.
However, a variety of cubic crystals such as alkali halides
(CsF, KBr, KCl, NaF, etc.) have Zener anisotropies less
than unity, so that Eq. (3) fails to quantify the anisotropy of
such crystals. Thus, A� lacks universality like all other
existing measures.

Perhaps the key reason for the nonuniversal nature of
Eqs. (1)–(3) is that such definitions do not account for the
full tensorial nature of the elastic stiffness of a given
crystal, so that any contribution of the bulk part of that
tensor is disregarded. The definitions Eqs. (1)–(3) are in-
deed helpful as long as one considers cubic crystals that
exhibit an isotropic bulk resistance. For all other crystal
types, the bulk response is in general anisotropic and one
must account for such contributions in order to quantify the
extent of anisotropy accurately.

Universal anisotropy index.—We now proceed to derive
a new measure to quantify the single crystal anisotropy,
overcoming the dilemma of nonuniqueness in its definition
and also accounting for the bulk contributions. Consider a
particular realization !�2 �� of a single crystal exhibiting
an anisotropic response subjected to either of these bound-
ary conditions [6]: (i) uniform displacement, ui � "0

ijxj;
(ii) uniform traction, ti � �0

ijnj. The first of these yields a
stiffness tensor Cd�!� so that the volume averaged stress
���!� becomes

 

���!� � Cd�!�:"0; (4)

while the second one yields a compliance tensor St�!�:

 

�"�!� � St�!�:�0: (5)

Now, recall the extremum principle of elasticity theory
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where the stars on the left-hand side indicate statically
admissible fields, while the double stars on the right-
hand side indicate kinematically admissible fields.
Clearly, the expression in the middle takes the absolute
minimum value of the function of the pair (��:"�) and the
absolute maximum value of the function of the pair
(���:"��). Given that the crystal is homogeneous (although
anisotropic), implies that Cd�!� � St�!��1, 8 ! 2 �.
Now, by assigning the single crystal orientation uniformly

on a sphere of 3D distributions, and upon ensemble aver-
aging, one obtains an isotropic single crystal response.
Thus, the ensemble averaged stiffness and compliance
tensors can be expressed in terms of the shear modulus G
and the bulk modulus K as follows:
 

CV � hCdi � 2GVK� 3KVJ; (7a)

SR � hSti �
1

2GR K�
1

3KR J: (7b)

In the above, J and K represent the spherical and the
deviatoric parts of the unit fourth-order tensor. The super-
scripts V and R represent the Voigt and Reuss estimates,
respectively. Note that CV � �SR��1 in the particular case
when the crystal is perfectly isotropic. By contracting
Eqs. (7a) and (7b), we obtain

 C V :SR � hCdi:hSti � 5
GV

GR �
KV

KR : (8)

The above equation takes a minimum value of 6 when the
crystal is locally isotropic. At this stage, we introduce the
universal anisotropy index:

 AU � CV :SR � 6 � 5
GV

GR �
KV

KR � 6 	 0: (9)

Equation (9) can also be interpreted as a generalization of
the Zener anisotropy index. This is because instead of
taking ratios of individual stiffness coefficients to define
anisotropy, we take into account all the stiffness coeffi-
cients by recognizing the tensorial nature of the elastic
stiffness. AU is identically zero for locally isotropic single
crystals. The departure of AU from zero defines the extent
of single crystal anisotropy and accounts for both the shear
and the bulk contributions unlike all other existing anisot-
ropy measures. Thus, AU represents a universal measure to
quantify the single crystal elastic anisotropy.

Discussion.—In the special case of cubic crystals, KV �
KR ([10]) and Eq. (9) takes the following form relating AU

and A:

 AU �
6

5

� ����
A
p
�

1����
A
p

�
2
: (10)

Notice that AU is a single-valued measure and remains
unchanged if A is replaced by A�1. Similarly, using
Eqs. (2) and (10), we obtain the following relationship
between AU and AC:

 AU � 10
�

AC

1� AC

�
: (11)

We plot Eqs. (10) and (11) for a variety of cubic crystals as
illustrated in Fig. 1. We observe from the plot that the
Zener anisotropy index predicts much different anisotro-
pies for Nb (A 
 0:49) and �-Zr (A 
 2:07) single crys-
tals. On the contrary, our universal anisotropy index
(AU 
 0:63) and the Chung-Buessem anisotropy index
(AC 
 0:06) are single valued for these crystals. Notice
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that the AC predicts much lower value for anisotropy than
all other measures. For a locally isotropic crystal, A � 1
but AU � AC � 0. Also, as AU increases, it approaches A,
albeit predicting lower values for anisotropy.

Let us now consider crystals of hexagonal type. The only
measures that can now be used are AU or A�. It is indeed
difficult to compare these measures directly since the
former quantifies the extent of anisotropy based on the
departure from zero while the latter quantifies it with the
departure from unity. To enable some comparison, we
introduce an equivalent Zener anisotropy measure Aeq by
observing Eq. (10), so that

 Aeq �

�
1�

5

12
AU

�
�

���������������������������������������
1�

5

12
AU

�
2
� 1

s
: (12)

Note that, for a locally isotropic crystal, Aeq � 1 while
AU � 0. We now compare the three measures, namely A�,
AU, and Aeq, for a variety of hexagonal crystals as depicted
in Table I. As expected, one cannot really compare A� and
AU directly, but A� and Aeq are strikingly identical. For
most crystals, the margin of error is 1%. The differences
between these measures are much greater in highly aniso-
tropic Cd (16.5%) and Zn (25.5%) single crystals. Table I
suggests that the errors are indeed associated with the
contributions arising from the bulk part of the modulus.

Elastic anisotropy diagram (EAD).—Using Eq. (9), we
construct an elastic anisotropy diagram in the ( G

V

GR , KV

KR )
space as shown in Fig. 2. The advantage of such a diagram
is that one can map all the known elastic crystals in one
single plot and infer the following.

(i) Physically, the region ( G
V

GR � 1, K
V

KR � 1) is inadmis-
sible and hence no crystals lie there.

(ii) Lines of constant universal anisotropy index appear
as straight lines with a slope of ‘‘�5.’’ Thus, an increment
along the ( G

V

GR ) axis influences the anisotropy much more

than an identical increment along the ( K
V

KR ) axis. All crys-
tals lying on the line (AU � c) are equally anisotropic. This
implies that Zn (hexagonal), SnF2 (monoclinic), bismuth
(trigonal), and Cu (cubic) are equally anisotropic with
AU 
 1:8. Similarly, for 1,3,5-triphenylbenzene (ortho-
rhombic) and In (tetragonal), AU 
 3.

(iii) Almost locally isotropic crystals cluster around
( G

V

GR 
 1, KV

KR 
 1), irrespective of their crystal class. For
example, cubic: �-W, �-O, etc.; hexagonal: �-Lu, Ho,
etc.; monoclinic: diallage, MgCaSi2O6, etc.; orthorhom-
bic: enstatite, bronzite, etc.; tetragonal: Sr4KLiNb10O30,
etc.; trigonal: LiNbO3, Fe2O3, etc.

(iv) All cubic crystals lie scattered along the line KV

KR � 1.
The anisotropy index increases as we move to our right
along this line. For example, Cs is more anisotropic than
Pb. Similarly, Cu is more anisotropic than �-Ce.

(v) Although indium (In) and tin (Sn) belong to tetrago-
nal crystal class, they are elastically similar to cubic crys-
tals. One can draw similar conclusions for all other crystals
lying along KV

KR � 1.
(vi) The majority of hexagonal crystals get clustered

around ( G
V

GR 
 1, KV

KR 
 1) and are thus the crystal class
with least anisotropy consistent with [1].

TABLE I. Comparison of the equivalent Zener anisotropy
measure and the Ledbetter-Migliori measure. Single crystal
data obtained from [11].

Hexagonal crystal GV

GR
KV

KR A� AU Aeq % error

�-Be 1.010 1.003 1.22 0.05 1.24 �1:61
Cd 1.197 1.207 2.18 1.19 2.61 �16:5
�-Co 1.039 1.000 1.49 0.20 1.50 �0:67
�-Dy 1.004 1.000 1.12 0.02 1.13 �0:88
�-Er 1.004 1.001 1.13 0.02 1.15 �1:74
�-Gd 1.006 1.000 1.17 0.03 1.18 �0:85
�-Hf 1.006 1.000 1.18 0.03 1.18 0.00
Ho 1.003 1.000 1.12 0.02 1.12 0.00
�-Lu 1.001 1.002 1.04 0.01 1.07 �2:80
Mg 1.007 1.000 1.19 0.04 1.19 0.00
�-Nd 1.026 1.000 1.37 0.13 1.39 �1:44
�-Pr 1.038 1.000 1.47 0.19 1.48 �0:68
Re 1.022 1.000 1.37 0.11 1.35 1.48
Ru 1.006 1.001 1.17 0.03 1.17 0.00
�-Se 1.017 1.000 1.33 0.08 1.30 2.31
�-Tb 1.005 1.000 1.15 0.02 1.15 0.00
�-Ti 1.038 1.000 1.49 0.19 1.48 0.68
�-Tl 1.396 1.003 3.39 1.98 3.35 1.19
Y 1.008 1.003 1.18 0.04 1.21 �2:48
Zn 1.320 1.222 2.39 1.82 3.21 �25:5
�-Zr 1.021 1.002 1.38 0.11 1.35 2.22
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FIG. 1 (color online). Anisotropy measures for cubic crystals
(Zener and Ledbetter-Migliori anisotropy measures coincide for
cubic crystals). Single crystal data obtained from [3,11].
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Conclusion.—We have proposed a new universal index,
AU, to quantify the single crystal elastic anisotropy. One
can readily generalize the concept to characterize the ex-
tent of anisotropy in tensors of second rank, third rank, and
so on. For example, the anisotropy index for the second
order thermal conductivity tensor [12] can be defined as
3�c

V

cR � 1�, where cV and cR are the Voigt and Reuss esti-
mates in conductivity. Finally, the EAD offers a simple, yet
powerful framework to unify and map all the known elastic
crystals onto a single diagram. One can further attempt to
relate the vacant regions, outliers, and local clustering in
the EAD to the atomic lattice with a goal to unveil other
mysteries in material elasticity.
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FIG. 2 (color online). Elastic anisotropy diagram (EAD). Single crystal data obtained from [11,13–17].
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