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ABSTRACT

A uniform description of natural shapes and phenomena is an important goal in science. Such

description should check some basic principles, related to 1) the complexity of the model, 2) how

well its �its real objects, phenomena and data, and 3) a direct connection with optimization

principles and the calculus of variations. In this article, we present nine principles, three for each

group, and we compare some models with a claim to universality. It is also shown that Gielis

Transformations and power laws have a common origin in conic sections.
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1. INTRODUCTION
Mathematics is a crowning achievement of humanity and a triumph of the human mind. It is also the language of

science with a continous interplay between algebra, analysis and geometry. In the early 17th century, the Scienti�ic

Revolution was initiated by a uniform description of natural phenomena in terms of the classic conic sections, which

had been studied in antiquity. Galileo Galilei (1564‑1642) found that the parabola describes the trajectory of free

moving objects in the earth’s gravitational �ield, and Johannes Kepler (1571‑1630) showed that the orbits of planets

are ellipses. Building on these foundations, Isaac Newton (1643‑1727) developed methods based on isotropic spaces

with the Euclidean circle, to deal with the anisotropy of the other conic sections, which are projective equivalent to the

circle. Newton brought the ideas of the Ancient Greek mathematicians back to center stage. Indeed, our main methods

in science are straight lines and circles, and we measure deviations from these two main tendencies (curvature in its

manifold disguises). One major consequence was the development of mathematical physics with solutions to general

problems in physics in terms of (partial) differential equations.

The Scienti�ic Revolution led to great successes in physics, but also to a dif�icult relationship with biological objects

and phenomena. Historically, common strategies have been to apply results from physics to biology by inference (and

chemistry). However, the abstraction that proved successful for physics is no guarantee for success. Not so long ago

Marcel Berger wrote explicitly [1]: “Present models of geometry, even if quite numerous, are not able to answer various
essential questions. For example: among all possible con�igurations of a living organism, describe its trajectory (life) in
time”.

A different strategy is to search for a uniform description of biological shapes and phenomena, which encompasses the

conic sections, as generalization of the circle. It is widely believed that such a universal description for the wide variety

of biological shapes in our everyday world (and more generally natural forms) does not exist, but recent botanical and

biological research suggests otherwise.

Botany and biology may then be the next step, but a uniform description is only the �irst step. Any method with a

claim to universalitymust be transformed into a full‑�ledged scienti�icmethodology, linked to existingmathematics and

going beyond plants and botany. This raises the intriguing question of what is or should be a universal formula? What
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criteria must a universal equation meet? An important principle is the Universality Principle: Universality reminds us

of Newton and our successful 20th‑century theories for the large and the small, so, how far can a formula or equation

be applied?

Using the past as our guide, this description will need to be closely related to conic sections and the circle, it will have

to �it many observables in nature, and it will need to be connected to fundamental geometry andmathematical physics.

To this end, nine guiding principles are proposed, in groups of three. The �irst group is related to the simplicity of the

model; the second to how well it �its real data and the third deals with the relation to mathematical physics.

We discuss three examples.

First, allometry in natural phenomena, animals and plants. Starting as a theory of relative growth [2], a wide range of

publications in the past 25 years have focused on allometry in plants, animals, ecosystem and even urban cities. The

work of West, Brown, and Enquist (and the WBE equations) in the 1990s led to numerous articles on allometry in

biology [3–6]. In the past twenty years an enormous amount of empirical allometry relationships have been unveiled

in biology at all levels, from the giant to the small, and for living and non‑living. It has been called a theory of everything.

Second, superellipses and their generalisation as Gielis Transformations, a generic geometric transformation that

uni�ies a wide variety of abstract and natural shapes, including polygons, tree rings, �lowers, plant leaves and seeds,

seastars, and diatoms [7–14]. Gielis curves, surfaces, and transformations GT provide for a uniform description of

natural shapes at all levels and scales. It was called “Universal Natural Shapes” [15,16], and “A magic formula of
Nature” [17] and when the original article [7] was published, the website of the American Mathematical Society wrote:

“A botanical Kepler awaiting his Newton”.

A third example is a recent universal formula for describing the shape of bird eggs, hereafter referred to as the NRG

equation [18]. The NRG equation is not only presented as a mathematical formula to �it all types of avian eggs into one

formula but it is also promoted as a universal equation for bird eggs. By far, most eggs tend to be spherical, ellipsoidal,

or ovoid, but the pear‑shaped form is observed in the eggs of Common Guillemots (Uria aalge). Stoddard et al. [19]

have shown that two biologically relevant parameters, asymmetry, and ellipticity, are suf�icient to quantify egg shape

diversity. The concept of asymmetry is a relative measure that indicates the deviation from a circle or ellipse in one

direction since all eggs exhibit bilateral symmetry in their cross‑section from top to bottom. Avian eggs are an example

of going from spherical isotropic geometry to anisotropy in one direction.

Before listing the nine principles it should be noted that usefulness or applicability is perhaps the least interesting

criterion from a mathematical point of view, at least as a starting point. Typically, there are various ways to develop

formulas to describe shapes and phenomena. Various equations for bird eggs have been reviewed recently [20], and

there aremanymore [21,22]. Themain goal should be to applymathematics to the natural sciences in the best possible

way. Best is always a relative term, but in our view, in deriving a general equation for many (or any) natural shapes or

phenomenons, there are at least nine principles, divided into three groups.

2. A LIST OF PRINCIPLES FOR UNIVERSAL EQUATIONS

2.1. The First Group of Three Principles

This relates to compact and simple descriptions.

P1. Oresme-Newton Principle. This refers to the least deviation from a circle or the Pythagorean theorem. In his work,

Isaac Newton (1643‑1727) incorporated Kepler’s laws and the work of Galileo into a coherent framework. The circle

as a measure of deviations from straight lines, proposed by Nicolas Oresme (c1320‑1382), became fundamental in all

�ields of science. Following Newton’s principle, the most mathematically elegant way to develop methods for studying

anisotropic shapes is to start from a circle and the notion of isotropy (equal in all directions), in the spirit of Pythagoras.

Eggs are slightly anisotropic in one direction but retain their bilateral symmetry in one plane and their circular

symmetry in the perpendicular plane.

P2. Hein Principle on single curves, named after the Danish mathematician Piet Hein (1905‑1996). In the 1960s,

architects redesigning Sergel’s Torg in Stockholm were looking for an aesthetically pleasing shape to optimize both

the available space for an underground shopping center and traf�ic �low. They devised a shape in between an ellipse

and a rectangle, composed of various arcs and lines, but mathematician Piet Hein informed the architects that their

solution could be considered as a single curve, a superellipse [23] de�ined by:

|x/a|n + | y/b|n = Rn (1)
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These curves were �irst considered in full generality by Gabriel Lamé (1795‑1860) to model the shape of crystals [24].

A singlemathematical equation and puremathematical elegance; a generalization of Pythagoras and the circle de�ining

a family of curves including circles and conic sections, ellipses, diamonds and squares, rectangles and diamonds, and

all shapes in between. It is derived from the equation of a circle, but this is only historically so; in fact, the Euclidean

circle should be considered as a special case. In three dimensions, spheres and cubes, ellipsoids and beams, cylinders

and supereggs result [25,26]. For any value of n, special trigonometric functions can be derived, and a generalized

Pythagorean Theorem of the form

(cosnθ )n + (sinnθ )n = 1 (2)

Gielis curves further generalize Lamé‑curves avoiding the limitation of symmetry of superellipses. When transforming

supercircles into polar coordinates, the introduction of symmetry parameter m allows the orthogonal axes to fold in

and out like a fan, determining the number of �ixed points on a circle [7].

P3. Arnold-Oleinik Principle is named after the Russian mathematicians Vladimir I. Arnold (1937‑2010) and Olga A.

Oleinik (1925‑2001). The simpler the model and its derivatives are, the better, in the spirit of Ockham’s principle.

According to V.I. Arnold [27], “Complex models are rarely useful”. In mathematical terminology [28]: “What is essential
for the topological complexity of an object is not the degree of the equation, but rather the number of monomials that
appear in the polynomial with nonzero coef�icients. Thus, we have the problems of oligomials, i.e., the topology of objects
speci�ied by polynomials of arbitrarily large degree but with a restricted number of monomials.” Eq. (1) is, of course,
an excellent example of a trinomial in two variables, with one control variable, the exponent n. This principle prefers
compact descriptions over expansions or polynomials.

2.2. The Second Group of Three Principles

This determines how reliable amodel equation �its real data and objects, whether it is the best possible �it for individual

objects and groups of objects, and how widely applicable the model with claims to universality is.

P4. Gauss-Chebyshev Principle is named after Carl Friedrich Gauss (1777‑1855) for his method of least squares and

Pafnuty Chebyshev (1821‑1894), who searched for the best possible coordinate system �it to shapes (historically the

origin of Chebyshev polynomials). Do universal equations also provide the best possible �it? Does this result in the best

possible coordinate system adapted to shape? In recent years, for example, superellipses have proven to be excellent

methods for describing a variety of natural shapes, as we will show below.

P5A andB.TwoFeynmanPrinciples on complete sharing of experimental data and critical thinking, named after Richard

Feynman (1918‑1988). Since it is easy to be fooled by overcon�idence in one’s models, Principle 5A states that rigorous

testing and experimentation are key, especially by other researchers. Principle 5B states that all data, including the

methods used, must be made available to other scientists to test the limitations of the methods. It is important for

progress in science that others can test and verify hypotheses and results.

P6. Universality-Unity Principle: If an equation works in one domain, does it work in other domains? For other shapes?

For the small and the large? How “universal” is it?What is relevant to the natural sciences is not only how it can describe

a quantity at the statistical level, but also individual forms, including outliers (Whether it holds in 97 dimensions

is a mathematical question and less relevant here). Obviously, the higher its universality score (bringing more and

more natural shapes and phenomena under the same umbrella), the higher it scores on the scale of uni�ication. Full

uni�ication with the focus on shapes is the geometrical version of Pythagoras’ “All is number”.

2.3. The Third Group of Three Principles

This determines how closely the model is related to mathematical physics and the computational complexity.

P7. Fourier-Lamé Principle of mathematical physics. Does it generate analytical solutions to classical boundary value

problems? The names Joseph Fourier (1768‑1830) and Lamé refer to the Fourier series solution of the heat equation

and elasticity theory, respectively. The Laplacian is a key element in most common boundary value problems BVP,

such as the Laplace, Helmholtz, Poisson, and Schrödinger equations. A 20th‑century name that can be added here is

Alan Turing (1912‑1954), because of his chemical basis of morphogenesis [29]. In the spirit of Gabriel Lamé’s Unique

Rational Science, P4 is closely linked to P7: having best‑�it coordinate systems adapted to the shape, one can then solve

the relevant BVP on this system.
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P8. Laplace-Plateau Principle of Shape Optimization. Another way of thinking about growth concerns the optimal

shapes for certain natural curvature conditions. It bears the name of Pierre‑Simon Laplace (1749‑1827) for capillary

forces and the Laplacian, and Joseph Plateau (1801‑1883), who studied soap �ilms. A key inequality is K ≤ H2, with

K the Gaussian curvature and H the mean curvature. Well‑known are Delaunay’s surfaces of revolution with constant

mean curvature CMC (catenoids and planes for H = 0; spheres, nodoids and unduloids for H �= 0. A remarkable

geometrical fact is that the curves de�ining the rotational CMC surfaces are the conic sections). This principle involves

various maximum or minimum principles.

P9. Principle of Computability. A simple formula that would take ages to compute is not what we strive for. Ideally, the

computational methods should align withmethods already available. Eq. (1) presents its ownmathematical challenges

(the Last Theorem of Fermat and Lamé curves are very closely related) but it opened the door to the application of

Fourier projection methods to solve a variety of boundary value problems on very different domains [30]. There are

also direct connections with special polynomials, as will be shown further.

The focus on geometry is intentional because “While algebra and analysis form the foundations ofmathematics, geometry
is the core” [31]. Shiing‑Shen Chern (1911‑2004) saw two major tasks for the geometry of the 21st century: �irst, the

extension of geometry with polyeders, polyhedrons, and piecewise‑linear structures, to combine the differences and

differentials into one framework. Second, is the extension of Riemannian geometry with Finsler geometry, which he

called “Riemannian geometry without the quadratic restriction” [32]. Eq. (1) can play an important role, as the simplest

examples of Lamé‑Minkowski and Riemann‑Finsler geometries, and because squares and diamonds are special cases

of Eq. (1).

3. ALLOMETRY, NRG AND THE PRINCIPLES
Allometry clearly checks all the boxes in Groups 1 and 2, namely a simple model with a lot of data to support the claims

to universality, since it applies to the small and the great, and much in between. More details will be discussed further

in Section 6.

Let us now see how the NRG and other egg variants �it in with these principles. Starting from the Pythagorean Theorem

y(x) =
√

(1 − x2) ellipses, ovoid, and other shapes can be obtained by introducing a function f (x):

y(x) = f (x)
√

(1 − x2)

When f (x) = T = 1 it is a circle, and f (x) = T < 1 yield an ellipse with its long axis horizontal. The next simplest

function gives Preston’s Simple Ovoid:

y(x) = T(1 + ax)
√

(1 − x2)

For pyriform egg shapes a cubic equation is used, Preston’s Alcid Ovoid:

y(x) = T(1 + ax + bx2 + cx3)
√

(1 − x2)

For all practical purposes, T , a, b and c give an excellent �it, and these four parameters perfectly capture the shape of

an egg better than other equations [20].

Preston’s formulas and Lamé’s superellipses (Eq. (1)) satisfy P1, P2, and P3. Simple and easy curves, as a generalization

of the Pythagorean theorem, and curves de�ined by a single equation and low topological complexity. On the other hand,

NRG is a composition of single curves [18], but it cannot be considered simple in any sense of the word, violating P2

and P3.

y = ±B
2

√
L2 − 4x2

L2 + 8wx+ 4w2
×

⎡
⎣1 −

√
5.5L2 + 11Lw+ 4w2 ×

(√
3BL− 2DL/4

√
L2 + 2wL+ 4w2

)
√
3BL

(√
5.5L2 + 11Lw+ 4w2 − 2

√
L2 + 2wL+ 4w2

)

×
(
1 −

√
L

(
L2 + 8wx+ 4w2

)
2 (L− 2w) x2 + (

L2 + 8Lw− 4w2
)
x + 2Lw2 + L2w+ L3

)]

In the NRG equation the four parameters L,B,w and DL/4 relate to real measurements of direct use on avian eggs and

poultry. The same is true for the parameters T , a, b, c in the Preston equation. Concerning P6, both the Preston formula

and the NRG equation are limited by their de�initions and cannot handle many other natural forms, and cannot �it

superellipses. They may �ind use in a few unrelated �ields, such as pear‑shaped atomic nuclei [33]. Moreover, [18]

presents the formula without �itting it to real eggs. As a pure description it does not check the second group or third

group of principles.
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4. GIELIS TRANSFORMATIONS AND THE PRINCIPLES
The limitation of Eq. (1) is that it can only represent a limited number of shapes with the symmetry of diamonds,

squares, and rectangles. The generalization to Gielis Transformations GT (Eq. (3)) widens the descriptive potential

of superellipses. They can act as a transformation on planar functions f (θ ). When this is a constant function R, GT
transform the circle with radius R.

ρ(ϑ ;m,A,B, n1, n2, n3) = 1

n1

√∣∣∣ 1A cos (m
4

ϑ
)∣∣∣n2 +

∣∣∣ 1B sin (m
4

ϑ
)∣∣∣n3

f (ϑ ) (3)

In Eq. (3) Gielis Transformations are a generalization of superellipses describing a much wider range of abstract and

natural shapes. By transforming supercircles into polar coordinates, they can deal with any symmetry by introducing

the symmetry parameterm.

The parameter m
4
divides the plane intom sectors, de�ining superellipses form = 4 (and supercircles when in addition

A = B ). Form = 2 the plane is divided into two parts of 180°, for shapes with bilateral symmetry. Form = 1, one side

is more pointed, like a teardrop (see Table 1 in [7]). m = 5 determines �ive sectors of 72° for pentagons and star�ish.

Self‑intersecting shapes result whenm is rational or irrational;m = 5
2
also gives �ive sectors, but with a spacing of 144°,

giving the symmetry of the pentagram. They can be used as transformations on plane curves, de�ined by f (θ ), such as

spirals and trigonometric functions to handle mollusk shells and �lowers, respectively.

4.1. P1-P3: Complexity of the Model

As a generalization of the Pythagorean Theorem, Gielis transformations correspond to Principles P1, P2, and P3. To

model natural shapes the number of parameters can generally be reduced to four or even to one or two (in the special

cases of circles and ellipses). Even when the full six parameters are used, all supershapes form a six‑dimensional

manifold only.

The original expression is in polar coordinates but can be rewritten into algebraic form because of the natural

connection between cos(mθ ), sin(mθ ) and Chebyshev polynomials of the �irst and second kind, respectively. Hence

shapes can be expressed both in polar form and as algebraic polynomials [12]. Fig. 1 shows the closure of this scheme.

4.2. P4-P6: Modeling, Experimental Data, and Universality

Regarding the second group of principles, GT has been tested on over 40000 biological samples over the last decade

[9–13,34] and proved to be an excellent model (P4‑P5). Tested rigorously with the appropriate statistical methods, it

was shown that GT �it many natural shapes very well. In the seminal article on tree rings [9] a simpli�ied version with

fewer (two) parameters of Eq. (3) was compared with methods based on circles. The two methods were compared

with Aikake Information Criterion AIC and Bayesian Information Criterion BIC. These criteria allow for comparing

methods based on their ef�iciency (how well it performs) and the number of parameters. Both AIC and BIC con�irmed

the superiority of GT overmethods based on circles [9]. In softwoods, the tree rings closely resemble circles (see Fig. 2),

but this is misleading: they are superellipses. In Fig. 2 one can observe supercircular shapes in white cedar.

Figure 1. Closure of the scheme.
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Figure 2. Superelliptical tree rings in softwoods. (a) Jack pine (Pinus banksiana), (b) red pine (Pinus resinosa), (c) tamarack (Larix laricinia)
and (d) white cedar (Thuja occidentalis) [9].

Importantly GT opens doors to uni�ication and geometrization of natural form linking the description of shape to

optimization principles. At the same time, a full methodological method has been developed for science, validating

GT as a valuable experimental tool. More and more natural shapes can be described with GT, including avian eggs as

proposed in [35].

In the experimental sciences, it is data that matter, for the Gielis equation as well as for the NRG equation.

In Eq. (3) there are six parameters need to be �itted:m,A,B, n1, n2, n3. For closed non‑intersecting curves, the parameter

m is an integer, which determines the number number of �ixed, equally spaced points on a circle. To reduce the

complexity of the model in depicting avian egg shapes, we propose a new simpli�ied version where m is �ixed to be

1, a = A
n2
n1 ,B = A and n2 = n3. So a, n1 and n2 are constants to be �itted, which is similar results in to another simpli�ied

version of the original Gielis equation withm = 1 (Simpli�ied Gielis Equation SGE‑1) [36].

ρ(ϑ ;A,B, n1, n2) = 1

n1

√∣∣∣ 1A cos (
ϑ
4

)∣∣∣n2 +
∣∣∣ 1B sin (

ϑ
4

)∣∣∣n2
(4)

The choice for m = 1 is because, in bird eggs, one observes mirror symmetry in one direction and asymmetry in the

perpendicular (longest) direction. It has already been established that the simplest geometric way to produce such

mirror symmetry in one direction and asymmetry (up and down) in the other direction is a monogon with m = 1

[35]. By choosing appropriate values for the exponents in the one‑angles or monogons, a whole range of eggs can

be described. The description of egg shapes in 3D as a surface of revolution or with slight deviations from circular

symmetry is straightforward.

In [36] conclusive evidence is presented that SGE‑1 (Eq. (4)) is a much better model than the NRG, even with one

parameter less. Moreover, the goodness‑of‑�it of the NRG, which is not a best‑�it (P4), depends on the estimation of the

principal axis by SGE‑1, since the complexity of Eq. (2), prohibits directly estimating the parameters of the NRG [36].

Although the NRG equation models the eggs reasonably well, it is not Chebyshev‑proof.

P5: The full methodology, data, and results have been made available in the various published articles and

as supplementary information [9,10,34,37–39]. The complete R‑software has been published in full on the

Comprehensive R Archive Network CRAN [40]. Other researchers have used GT independently in modeling petioles

and understanding the relation of form to resistance against bending and twisting [41].
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Figure 3. (a,c) Spatial distribution of the partial sum of order N approximating the solution of the interior Dirichlet problem for the
Helmholtz equation in the flower-shaped domains with different degrees of fusion. (b) Flowers of Stapelia arenosa. (d) Nectar disc of
Hekistocarpa (Rubiaceae) [58].

P6: Universality of GT in nature will be discussed in the �inal section, but it is remarked that the original article [3]

has been cited over 570 times to date in a variety of �ields in mathematics, physics, psychology, biology, education,

and various �ields of technology and engineering. The �irst and third author co‑founded The Antenna Company, where

Eq. (3) is key to new antenna designs and fast computational methods [42–53].

4.3. P7-P9: Mathematical Physics and Computations

Regarding P7, once a best‑�it coordinate system P4, is established, the relevant boundary problems can be solved

directly. Remarkably, GT inspired a generalization of Laplacian for stretchable radii so that the Fourier series solution

could be extended to solve boundary value problems BVP on arbitrary normal polar domains, including 3D domains

and Riemann surfaces (P7). This includes Laplace, Poisson, Helmholtz equations, and various other equations involving

the Laplacian [54–57]. The application to egg shapes withm = 1 can already be found in [35].

Fig. 3 juxtaposes solutions to the Helmholtz equation of domains with fusion of petals, and examples of �lowers and

plant organs [58]. The connection between form, development and applied maths, translated as forces or stresses,

is crucial [59,60]. A recent paper describes the formation of �loral organs as the result of differential responses to

mechanical forces [61] and we now can �ind a link between mechanical stresses and geometrical description.

P8 is the principle related to optimal shapes and optimization problems. The nearly universal principle in the natural

sciences is that the equilibrium con�iguration of a system can be found by minimizing its total energy among all

admissible con�igurations. When considering the surface interface between two or more immiscible materials, the

surface geometry is determined by minimizing the surface tension subject to whatever additional constraints are

imposed by the environment. In physics, one thinks of soap �ilms, but nature has been much more inventive. Two

examples are given, one on snow�lakes and one on star�ish.

Concerning optimal shapes, CMC surfaces have been generalized to CAMC, constant anisotropic mean curvature

surfaces [62,63]. In CMC the stress adjustment on the surface is done by agents that can move freely across the surface,

for example, soap molecules in soap �ilms. In crystals, however, the structure prevents atoms from moving in certain

directions.

To de�ine anisotropic analogs of CMC surfaces, aWulff shape is the sphere for the “anisotropic energy” in the sense that

it is the minimizer for the energy for a �ixed volume. Wulff shapes can be cubes or hexagonal prisms or superellipsoids,

instead of spheres (as in the case of soap). The resulting minimal surfaces and surfaces of evenly distributed stresses

then have a very different shapes. The corresponding catenoid based on a hexagonal prism is shown in Fig. 4, right.

The supercatenoid has the property that suf�iciently small pieces of it minimize the anisotropic energy de�ined by the

Wulff shapes, among all surfaces having the same boundary [62].

One can compare this with capped‑columnar snow�lakes, types that also exist in nature (Fig. 4). In this case, the

corresponding minimal surface retains the hexagonal symmetry of ice molecules. Capped‑column snow�lakes are very

different from the classic archetypical six‑pointed dendritic types, but they are formed under certain conditions of

temperature and humidity. One can �ind many other types of snow�lakes like plates, needles, hollow and solid prisms,

and irregular ones [12]. Theymay now be studied as equilibrium shapes, as zero‑anisotropic stress surfaces, in analogy

with soap �ilms.
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Figure 4. Capped column snowflake (left) and supercatenoid.

Figure 5. Culcita novaeguineae.

Figure 6. Stellaster equestris (left) and Tosia sp. (Cookie starfish).

Another example of archetypical shapes is star�ish, which are also a successful group of animals with an optimal form

for the environments in which they live. Nature has run many experiments, however. One can �ind almost spherical

cushion star�ish with pentagonal cross‑section (Fig. 5), and almost �lat pentagonal shapes (cookie star�ish, Fig. 6) [13].

In the case of cushion star�ish (the genus Culcita, mainly found in the Philippines, Fig. 5) one may consider this as an

experiment run by nature with a solution for optimal surfaces or body in between a soap bubble and an archetypical

star�ish (Fig. 6, left). Cookie star�ish (Tosia sp.) are smaller but almost �lat. Natural shapes are the result of evolutionary

and developmental processes integrating a wide variety of internal and external in�luences.

P9: GT also led to fast computational algorithms in antenna design [46] and acoustics [52], among others. It is

interesting to see how nature “computes” shape and optimization. Lamé curves and GT are non‑linear, but if one

considers the formation of a tree ring [9] or a square bamboo culm [10] as the result of both evolutionary and

developmental processes, dealing with biotic (insects, fungi, viruses) and abiotic (light, temperature, rainfall, soil,

frost, . . . ) in�luences and stresses at very different time scales, it is at least remarkable that the resulting shapes are

described by superellipses with exponent n �= 2 but not too different from 2. The formation of tree rings builds on the

tree ring of previous years, incorporating all in�luences of the current year, to prepare for the next years. Trees convert

a multi‑objective optimization problem involving n‑dimensional volumes, into a conservation law in two dimensions

(this is Eq. (1)). This provides a completely new perspective on form and function, in many cases directly opposite to

current views.
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5. REFLECTIONS ON THE STATE OF THE NATURAL SCIENCES

5.1. Unit Circles and Continuity

A uni�ied description of natural phenomena is the basis of the Scienti�ic Revolution. Therefore, the search for unifying

descriptions of a more general nature is important for scienti�ic progress. As a generalization of the Euclidean circle,

one can consider all forms described by Eq. (1) as unit circles in their own measure or metric and with their internal

symmetry, in contrast to the multitude of methods in the natural sciences based on isotropy, which is the same in all

directions and based on circles and spheres. In his book Minkowski Geometry, A.C. Thompson writes [64]: “Space to
Euclid and Newtonwas uniform and “isotropic”, the same in all directions. Such a notion �lies in the face of daily experience,
where the connotation of up and down is different from that of east to west. There are preferred directions. Another good
example is the preferred directions that cause crystals to grow as polyhedra and not spherically like soap bubbles. Unit
circles and spheres are not the familiar round objects from Euclidean geometry, but are some other convex shape, called
the unit ball.”

Richard Feynman wrote: “We have in our mind a tendency to accept symmetry as some kind of perfection. In fact, it is
the old idea of the Greeks that circles were perfect and it was rather horrible to believe that planetary orbits were not
circles, but only nearly circles. The difference between being a circle and being nearly a circle is not a small difference; it
is a fundamental change so far as the mind is concerned. There is a sign of perfection and symmetry in the circle that is
no longer there the moment the circle is slightly off. That is the end of it; it is no longer symmetrical. Then the question is
why it is only nearly a circle – that is a muchmore dif�icult question.... So, our problem is to explain where symmetry comes
from. Why is nature so nearly symmetrical? No one has any idea why” [65].

The problem seems to exist only in our minds. Supercircles |x|n + |y|n = Rn with n = 1.9999567 or n = 2.00567

are unit circles, with the classic Euclidean circle for n = 2. If we can de�ine unit circles and coordinate systems best

suited to the shape or phenomenon under study, the internal symmetry is as perfect as the symmetry of the circle. In

the spirit of Lamé, the classical coordinate systems (spherical, cylindrical, even toroidal) are generalized and can be

continuously transformed into any of the other coordinate systems. GT provides one‑to‑one transformations from one

shape to one coordinate system and back.

In a discrete world it should be stressed that GT are continuous transformations. Having anisotropy in one direction,

creating polarity, is essential in the evolution of life [66]. In eggs in one plane the polarity induced by selecting m = 1

in Eq. (3), generates a mirror symmetry in one direction and asymmetry (up‑down) in the other. In three dimensions,

avian eggs are a rotation around a central axis of symmetry de�ined by the asymmetry. Other solutions are found in

algae, where spherical, ellipsoids and cylindrical shapes are observed [67].

5.2. From the Qualitative to the Quantitative (but not all the way)

Themathematical description brings the shape and geometry of natural shapes into the realm of the quantitative. With

the equation also come the characteristic formulae to compute length, area and moment of inertia. Terms like ovoid

or pear‑shaped loose their meaning when a geometric transformation can turn one type into the other. “Elliptical” is

a common term for the shape of many leaves in botany, but most are not elliptical at all, but superelliptical [68]. In

the case of bamboo leaves, terms such as lanceolate or linear also lose their meaning when shapes can be perfectly

quanti�ied by two parameters, one for size and one for shape [69,70]. The variety of shapes in diatoms can also be

uni�ied via Eq. (3) (Fig. 7) [14,71].

To quantify the area of eggs or leaves, one does not need any shape equation; for leaves, simple measurements of

L and W are suf�icient. One can use the Montgomery equation, which is a rectangle Wmax × Lmax multiplied by a

constant that indicates howmuch of the rectangle is occupied by the area of the leaf [72] or the egg. The question then

arises whether dimensions such as L andW of eggs are important for (practical or universal) formulas when modern

techniques in image processing, robotics, and machine learning can use �itting methods without prior knowledge.

Shape properties such as perimeter, area, moment of inertia, or curvature can then be calculated directly using the

appropriate mathematical formula or recipe (e.g., number of pixels).

On the other hand, striving towards a complete quanti�ication of phenomena would be a tragic mistake. The work of

Henri Poincaré (1854‑1912) in this �ield is of lasting importance. Richard Feynman wrote [65]: “The next great era of
awakening of human intellect may well produce a method of understanding the qualitative content of equations. . . . Today
we cannot see whether Schrödinger’s equation contains frogs, musical composers, or morality – or whether it does not. We
cannot say whether something beyond it like God is needed, or not. And so, we can all hold strong opinions either way”.
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Figure 7. Digital diatoms [71] Courtesy of Max Seeger.

Figure 8. Left and center left: fossil and reconstruction of living Entogonites saharensis [77] Center right: Parawocklumeria [75]. Right: LEDA
074886, a remarkably rectangular looking galaxy [78].

Figure 9. Silver halide crystals, all hexagonal, either with the same side length or with alternating long and short sides.

6. CONIC SECTIONS AT THE CORE, ONCE MORE

6.1. Universal Natural Shapes

GT checks all the principles, and work is ongoing to determine how universal it is. In general, application of

the corresponding Gielis transformations to the “most natural” curves and surfaces of Euclidean geometry (for

dimension 2: the circles and the logarithmic spirals), results in many of the forms that we do observe in nature, in

biology, crystallography, physics and chemistry [8]. So far we have focused on transformations of the circle (or constant

functions), but there aremultiple examples with spirals, in mollusk shells [73,74] and ammonoids. In various groups of

ammonoids triangular [75,76], and quadrangular coiling [77], has been reported (Fig. 8). The universe itself provides

examples of superelliptical galaxies (Fig. 8) [78,79].

On the theoretical side, properties of GT have been studied in [80,81]. They can describe regular polygons [57] or

regular polygons with alternating long and short sides or edges, when A �= B in Eq. (3). Unsurprisingly – at least with

knowledge of GT – one �inds such shapes in silver halide crystals (Fig. 9), and in triangular snow�lakes. But whereas in
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our modern times one would recognize a truncated triangle, where symmetry breaking from six to three is necessary,

with GT it is a hexagonwith alternating short and long sides, in the sameway a rectangle is related to the square.Within

the framework of GT, this shape preserves the hexagonal symmetry of ice and silverhalide. No symmetry‑breaking of

any kind needs to be invoked, nor are extra assumptions or hypotheses required.

GT provides a new set of glasses or lenses, allowing us to adjust our perception of natural shapes and phenomena, as

variations of a single principle, as examples of a continuum, also in geometry andmathematics. The Lorentz‑Fitzgerald

transformations of Special Relativity Theory are a special case, and the origin of elliptic functions reveals the same

mathematical structure. Moreover, our relativistic space‑time universe itself is also described by similar formulae

(Friedman‑Lemaı̂tre‑Robertson‑Walker) [8]. They are all examples of the simplest Minkowski geometry (Eq. (5a), [61])

[64], and the simplest Riemann‑Finsler metrics (Eq. (5b)) [57]:

‖x‖p = (|x1|p + |x2|p + · · · + |xn|p)1/p (5a)

ds =
{ n∑
i=1

(dxi)p
}1/p

(5b)

In his famousHabilitationsschrift, B. Riemann (1826‑1866) had alreadymentioned the geometric tangent 2D‑indicatrix

x41 + x42 = 1 as a relevant extension of the Euclidean circle. This geometry –Riemannian geometrywithout the quadratic

restriction [26] – will be a main focus of the geometry of the 21st century. We already have a multitude of examples

generated from biology, including the Antonelli metric in ecology, introduced in 1993 [82].

ds = eϕ(x) [
(dx1)n + (dx2)n

]1/n
(6)

Peter L. Antonelli (1941‑2020) wrote [82]: “As is well known, Riemann foresaw the advent of Finsler geometry (the
1918 thesis of P. Finsler, a student of Carathéodory) when he gave an example of a line-element de�ined as the 4th
root of the sum of 4th powers of the independent coordinate increments, which contrasted sharply with the familiar
Pythagorean expression. Nevertheless, if there were no scienti�ically useful examples, Riemann’s cursory remarks would
hardly constitute reason for a scienti�ic study”. Since the 1990’s we have many, many examples from biology and other

�ields in the natural sciences. GT are used in the geometry of wave propagation in seismic phenomena [83]. Meanwhile,

GT have already won their place in the history of geometry and mathematics [84].

6.2. Allometry and Parabola’s

Using the two main mathematical operations, addition and multiplication, the Universality‑Uni�ication principle P6

suddenly becomes very clear.

Superellipses result when two variables x, y raised to powers n and m are added. When, but if they are multiplied

(xn × ym), or compared (xn/ym). As a result, one obtains all the power laws as superparabolas (Table 1). Both power

laws and superellipses are examples of conservation of area (in this case n‑area).

Power laws are ubiquitous in the natural sciences. Hence, large numbers of phenomena in the natural sciences can

be encompassed in a single framework, namely a generalization of conic sections. The planar graphs or curves,

super‑versions of the classic conic sections, are then two‑dimensional conservation laws, based on n‑dimensional

volumes (a sum or product of n orm‑dimensional cubes), where the dimensions need not be integer. In the same way,

as supercircles are generalizations of circles, these power relations are superparabola’s, generalizations of the classic

parabola y = x2.

Variables x , y
Exponents n, m Addition Product

Result xn + ym

|x|n + |y|m
ym = xn

y = xn/m
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Means Arithmetic means Geometric means
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Curves Lamé curves
Superellipses

Superparabolas
Power laws

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Effect Shape and size Allometry

Table 1. Lamé curves and superparabolas.
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Figure 10. Left: sub- and superparabolas in the interval [0;1]; Right: Metabolism MT versus biomass GT from smallest plants to the
largest trees [85].

Figure 11. Kepler’s Law of Equal Areas in equal times (left) and his law on the square of orbital period versus the cube of the semi-major
axes of the elliptic orbit (right) [12].

In Fig. 10 left superparabola’s ym = xn are shown in the interval [0;1], with the exponents ranging from n = 1/2 to

n = 2 with steps of 1/5. The cases for n > 1 and n < 1 have y = x with n = 1 as the symmetry axis (the bisectrix).

A classic parabola is a machine that turns a rectangle with an area 1 × y into a square with the same area, and side x.
In the same way a superparabola ym = xn turns a beam with an n‑volume into a cube with an m‑volume (for n < m).

All power laws have simple graphical expressions. They are most often represented as straight lines, using logarithmic

transformations.

Fig. 10 right shows the allometric relationships between biomass and metabolism in plants over a wide range

of plant sizes, from small algae to the largest trees. Fig. 11 displays such relationships in planets, codi�ied in

Kepler’s Law.

6.3. Allometry: A Theory of Everything?

Allometric laws are called laws because they do the same as the laws of physics, namely reducing complex relationships

to simple relations between two measurable quantities. The relation between metabolism and size is shown in Fig. 10,

as one example. These relations may be linear, or the quantities may be raised to some power (e.g. in Kepler’s Law of

Equal Areas, Fig. 11). All laws of physics �it in this framework as well.

K.J. Niklas investigated the state of the art [85]: “The importance of the study of allometry extends beyond description or
prediction. If certain trends are size-dependent and ‘invariant’ with regard to phyletic af�inity or habitat, they draw sharp
attention to the existence of properties that are rooted in all, or at least, most living things. Identifying these properties
using a �irst principles approach, therefore, has become something of a Holy Grail in biological allometry because any
successful theory would unify as many diverse phenomena in biology as Einstein’s general theory of relativity has for
physics”.

He concludes [85]: “These comparisons provide strong statistical support for each of the allometric predictions. This
support is taken as evidence that a general unifying allometric theory for plant biology is near at hand. Nevertheless, the
validation of this theory requires much additional work and raises a number of procedural and conceptual concerns that
must be resolved before a single ‘global’ theory is accepted”.
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From a geometrical perspective, if allometry is thought of as a collection of straight lines obtained by least squares

�itting of pairs of data points on morphology, physiology, or ecology for individuals, or populations, with a single

regression line for each data pair, then allometry becomes a sort of species‑speci�ic blue‑print of internal architecture,

or of external architecture as observed in plant phyllotaxis, the forms of �lowers or in seashells (e.g. [86]). Finsler

geometry plays a crucial role [87], and “one important �inding in Finsler science is the equivalency toHilbert’s 4th problem,
that of classifying the Finsler geometries having straight lines as shortest distances between two points, where straight
lines are allometries holding globally” [86]. Finsler geometry is also directly related to Hilbert’s 23rd problem on the

calculus of variations [88].

6.4. Only Half the Story

Power laws are found everywhere, as well, from the size of cities to the power noise in time series, but superelliptical

structures are also found everywhere, in physics, chemistry, biology, and even in the economy [89,90].

A prime example of allometry in economy is the Cobb‑Douglas production function, with the certain exponent,

depending on the substitution parameter δ . This is equivalent to an expression like z = xn · ym. In the case of

Cobb‑Douglas n = 1 − m. The Cobb‑Douglas model is a limiting case of the CES (constant elasticity substitution)

production models (in the case of δ = 0 elasticity reduces to unity) [89]:

V = γ
[
δKr + (1 − δ )Lr

]1/r

with K Capital, L labor, γ ef�iciency parameter, r substitution parameter (transform of elasticity of substitution), and

δ distribution parameter (δ and (1 − δ ) makes this into a weighted mean). In the past decade, a considerable number

of publications can be found on these production functions, from a geometric point of view [91].

Lamé’s footprint is everywhere. Despite different appearances it all �its into one coherent framework, of generalized

conic sections (Table 1, [12]). In the framework of conic sections, we can safely say that power laws are only half of the

story. Moreover, the general unifying allometric theory for plant biology should also adhere to the nine principles. They

do check P1‑3 and P4‑6, and by integrating this allometric theory of biology into the broader geometrical framework

described above, also P7‑9, many more shapes and phenomena can be uni�ied.

Still, we are only one step beyond the conic sections of Apollonius, Kepler, Galilei, and Descartes. By extending

conic sections with power laws and GT, star�ish, �lowers, leaves, eggs, tree rings, and superelliptical galaxies are all

comparable or commensurable. They provide a universal framework for geometrically describing a very wide range

of natural shapes at all scales, treating both population‑level and ensemble‑levels in general, and describing individual

differences with arbitrary precision, as a complete scienti�ic methodology.

7. CONCLUSION

7.1. Nine Principles

There are numerousways of applyingmathematics in the natural sciences. But if we assume that a further development

in the Scienti�ic Revolution is possible, it will involve the two phases, the Keplerian and the Newtonian phase (R. May

distinguished three phases, named after Tycho Brahe (1546‑1601), Kepler and Newton: observed facts, patterns that

give coherence to the observations, fundamental laws that explain the patterns [92]). A uni�ied description should

then be in the spirit and tradition of the ancient Greek mathematicians, and it must be tested against each of the nine

principles, not only to understand the potential but also to establish its limitations and its limits.

Three groups were de�ined, with three principles each. The �irst group focuses on the complexity of the model,

with single curves and topologically simple. This follows another scienti�ic tradition, namely that many solutions to

problems in physics and biology are found to be a limited number of curves (conic sections, catenary, cardioid, . . . ).

The second and third group build a bridge between mathematics and the real, observable world. The second group

focusses on howwell the models �it the data. This group is crucial to establish a given model as a scienti�ic method, but

at the same time it explores how widely applicable a uniform description is. Obviously, this Universality Principle is

open ended, or unbounded. The third set of principles relates to mathematical physics and to what extent the uniform

description allows us to understand the why and how of natural shapes, forms and phenomena.

It was shown how developments including allometry, superellipses and Gielis Transformations, comply with the nine

principles. These principles provide a standard for universal equations in the context of the scienti�ic revolution,
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and in this context, the NRG equation for eggs has only limited validity. Compliance with these principles is only

a start; a huge amount of theoretical and practical work is needed, in cooperation with experts in various �ields of

science.

7.2. Geometry at the Core, Once More

We stressed the importance of the �irst set of principles (P1‑P3). The full statement of V.I. Arnold on complex models

is [27]: “Complex models are rarely useful (unless for those writing their dissertations). The mathematical technique
of modeling consists of ignoring this trouble and speaking about your deductive model in such a way as if it coincided
with reality. The fact that this path, which is obviously incorrect from the point of view of natural science, often leads
to useful results in physics is called “the inconceivable effectiveness of mathematics in natural sciences” (or “the Wigner
principle”). Here we can add a remark by I.M. Gel’fand: there exists yet another phenomenon which is comparable in
its inconceivability with the inconceivable effectiveness of mathematics in physics noted by Wigner – this is the equally
inconceivable ineffectiveness of mathematics in biology.”

Geometry provides a new perspective. GT are a simple generalization of circle, ellipse, and the other conic sections,

which formed the foundation of the Kepler‑Newton model of science [92] for all the great successes of science up to

the present day, especially for the great and the small. It began with Kepler’s step of unifying descriptions of certain

phenomena and culminated in Newton’s laws of motion guiding those phenomena (without the need for hypotheses

of any kind), with analysis as the toolbox.

The �irst step in this program is a unifying description of shapes and phenomena, using allometry and Lamé’s

superellipses. The full title of [8] is:Universal Natural Shapes: from the supereggs of Piet Hein to the cosmic egg of Georges
Lemaı̂tre. Supereggs, avian eggs and the cosmic egg, the mathematical basis of the Big Bang, are now captured in one

framework, along with all the power laws, ubiquitous in biology and science. We showed that these are all simple

extensions of the very classic conic sections and the application of areas, known to the Pythagoreans, but with very

clear contemporary links in geometry and mathematics.

The geometrization of the natural world, including the living, is far from complete [1]; we only are taking the �irst

steps. We provide a method of investigation of the natural world, not a �inal theory or law. Like Galilei’s telescope and

Hooke’s and Van Leeuwenhoek’s microscopes, it allows us to see the unseen, and opens the door to new discoveries.

Moreover, we should never forget that science, including all physics, are only models and approximations of reality.

However, it provides for a coherent framework to look at objects, phenomena and dynamical systems from a uniform

and uni�ied perspective, ensuring that eggs, star�ish, �lowers and many, many more shapes, objects and phenomena,

become commensurable. In his On the Origin of Species [93], Darwin wrote: “There is grandeur in this view of life, ...,
from so simple a beginning endless forms most beautiful and most wonderful have been, and are being, evolved”. In this

case, the so‑simple‑a‑beginning is the conic sections, with parabola for precise �itting, and hyperbola and ellipse for too

much and too little, known to the Pythagoreans.
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