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Associated to any toric ideal are two special generating sets:
the universal Gröbner basis and the Graver basis, which encode
polyhedral and combinatorial properties of the ideal, or equiv-
alently, its defining matrix. If the two sets coincide, then the
complexity of the Graver bases of the higher Lawrence liftings of
the toric matrices is bounded.

While a general classification of all matrices for which both sets
agree is far from known, we identify all such matrices within
two families of nonunimodular matrices, namely, those defin-
ing rational normal scrolls and those encoding homogeneous
primitive colored partition identities. This also allows us to show
that higher Lawrence liftings of matrices with fixed Gröbner and
Graver complexities do not preserve equality of the two bases.

The proof of our classification combines computations with the
theoretical tool of Graver complexity of a pair of matrices.

1. INTRODUCTION

Toric ideals, their generating sets, and Gröbner bases
play a prominent role in many different areas, such
as algebraic geometry [Fulton 93], commutative alge-
bra [Villarreal 01], graph theory, integer programming
[Sturmfels 96], and algebraic statistics [Drton et al. 09].
The underlying combinatorics allow for relatively efficient
computation and have inspired several important algo-
rithms, for example those implemented in software pack-
ages 4ti2 and Gfan.1 In this note, we explore the problem
of equality of two special generating sets of toric ideals
for two families of projective varieties.

For a matrix A ∈ Zd×n , IA will denote its associated
toric ideal: IA = 〈xu+ − xu−

: Au = 0〉, where we write
u = u+ − u− such that both u+ and u− have only non-
negative coordinates and disjoint support. The minimal
universal Gröbner basis of IA , denoted by U(A), is the

1 Available at www.4ti2.de and http://www.math.tu-berlin.de/
∼jensen/software/gfan/gfan.html respectively.
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union of all of the (finitely many) reduced Gröbner bases
of IA . It is contained in the Graver basis G(A), consisting
of all primitive binomials in the ideal, where a binomial
xu+ − xu− ∈ IA is primitive if there is no other binomial
xv+ − xv− ∈ IA such that xv+

divides xu+
and xv−

di-
vides xu−

.
It is known that the universal Gröbner and

Graver bases agree for some special toric ideals
(e.g., toric ideals of unimodular matrices [Sturmfels 92,
Sturmfels and Thomas 97]). However, a general classifi-
cation of matrices for which U(A) = G(A) is not known.
The equality of the two sets has an important conse-
quence for higher Lawrence liftings of A, as we discuss
below.

In our main result, Theorem 2.2, we solve this classi-
fication problem for two families of nonunimodular ma-
trices indexed by partitions. A motivation for this work
is provided by the connection between partition iden-
tities and Graver bases of rational normal scrolls, ex-
plored in [Petrović 08]. Rational normal scrolls are a
classical family of projective varieties representing one
of the partition-indexed families we study. The work
[Eisenbud and Harris 87] surveys the geometry of these
scrolls: they belong to the family of nondegenerate pro-
jective varieties of minimum possible degree, just one
more than the codimension. The case c = 1 represents
the rational normal curve in P n−1 . They are studied in
[Conca et al. 07] from the perspective of Gröbner theory:
in particular, all of their Cohen–Macaulay initial ideals
are classified. A classification of the remaining initial ide-
als, or equivalently, a determination of the remainder of
the Gröbner fan, remains open. This question is related
to universal Gröbner bases, and one approach to this
problem is to first understand an approximation of the
set U(A).

In proving our result, we study the complexity
of the elements in the two bases. For matrix fami-
lies known as N -fold matrices of a pair (A,B), this
complexity is bounded as N grows. These bounds
are called the Graver complexity g(A,B), defined in
[Santos and Sturmfels 03], and the Gröbner complexity
u(A,B), defined in [Hemmecke and Nairn 09]. N -fold
matrices are also known as generalized higher Lawrence
liftings of a matrix A with respect to the matrix B (e.g.,
[Santos and Sturmfels 03]).

Equality of the Graver and universal Gröbner bases
has an important consequence for higher Lawrence
liftings of A: if G(A) = U(A), then u(A,B) = g(A,B)
for all integer matrices B of suitable dimension (see
[Hemmecke and Nairn 09, Theorem 1]). However, the

question whether N -fold matrices with fixed Gröbner
and Graver complexities preserve equality of universal
Gröbner and Graver bases was left open. Our two families
of matrices demonstrate with infinitely many examples
that the answer to this question is negative (see Corol-
lary 5.5).

More generally, if the two sets do not coincide, it is
not clear whether the ratio |U(A)| / |G(A)| tends to 0
as the size of the matrix A increases within a family.
It is also an interesting open question whether the spe-
cial structure of our matrices implies that there are only
finitely many fundamental counterexamples to equality
of universal Gröbner basis and Graver basis, from which
all other counterexamples can be derived. Our results
and methods offer a first step toward understanding such
questions, which still pose a computational challenge.

2. PARTITIONS, SCROLLS, AND THE MAIN
THEOREM

Let us introduce the two families of matrices we will
study.

Definition 2.1. Given a partition n1 ≥ n2 ≥ · · · ≥ nc of a
positive integer n, define

AS (n1 −1,...,nc −1)

:=

⎡
⎢⎢⎢⎣

1 2 · · · n1 1 · · · n2 · · · 1 · · · nc

1 1 · · · 1 0 · · · 0 · · · 0 · · · 0
0 0 · · · 0 1 · · · 1 · · · 0 · · · 0
...

...
...

. . .
...

0 0 · · · 0 0 · · · 0 · · · 1 · · · 1

⎤
⎥⎥⎥⎦

and

AH (n1 ,...,nc )

:=

⎡
⎢⎢⎢⎣

1 1 · · · 1 1 · · · 1 · · · 1 · · · 1
1 2 · · · n1 0 · · · 0 · · · 0 · · · 0
0 0 · · · 0 1 · · · n2 · · · 0 · · · 0
...

...
...

. . .
...

0 0 · · · 0 0 · · · 0 · · · 1 · · · nc

⎤
⎥⎥⎥⎦.

The toric ideal associated to the first matrix is the
defining ideal of the c-dimensional rational normal scroll
S := S(n1 − 1, . . . , nc − 1) in P n−1 ; see [Petrović 08,
Lemma 2.1]. This ideal is generated by the 2 × 2 mi-
nors of the matrix M = [Mn1 | · · · |Mnc

] of indetermi-
nates, where

Mnj
=

[
xj,1 · · · xj,nj −1

xj,2 · · · xj,nj

]
.

These two families of toric ideals have a nice com-
binatorial interpretation. The binomials xa1 xa2 · · ·xak
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− xb1 xb2 · · ·xbk
in the ideal IS (n1 −1) of a rational normal

curve encode homogeneous partition identities:

a1 + · · · + ak = b1 + · · · + bk ,

where a1 , . . . , ak , b1 , . . . , bk are positive integers, not nec-
essarily distinct [Diaconis 96]. Similarly, the binomi-
als in the ideal IS of a rational normal scroll encode
color-homogeneous colored partition identities (color-
homogeneous cpi’s) [Petrović 08]:

a1,1 + · · · + a1,k1 + · · · + ac,1 + · · · + ac,kc

= b1,1 + · · · + b1,k1 + · · · + bc,1 + · · · + bc,kc
.

For example,

11 + 51 + 12 + 52 = 21 + 61 + 22 + 22

is a color-homogeneous cpi encoded by the binomial
x1,1x1,5x2,1x2,5 − x1,2x1,6x

2
2,2 . (We have used black and

dark gray to represent two colors, say red and blue.)
Among such identities, those with no proper sub-
identities are again called primitive and are encoded by
the elements of G(AS ) [Petrović 08].

Similarly,

11 + 51 + 12 = 31 + 12 + 32

is a cpi that is homogeneous, but not color-
homogeneous, and is encoded by the binomial
x1,1x1,5x2,1 − x1,3x2,1x2,3 . Primitive homogeneous
cpi’s correspond to the elements of G(AH ).

This attractive characterization of the Graver bases
makes it especially useful to classify which scrolls have
the property that the universal Gröbner basis is equal to
the Graver basis.

Within these two families of matrices, we will classify
those for which the universal Gröbner and Graver bases
coincide. To state the classification, we use the dominance
partial order on partitions: (n1 , . . . , nc) � (m1 , . . . ,md)
if c ≤ d and nj ≤ mj for j = 1, . . . , c. In this case, we
say that S(m1 , . . . ,md) dominates S(n1 , . . . , nc), and
H(m1 , . . . ,md) dominates H(n1 , . . . , nc).

Theorem 2.2. The universal Gröbner basis of S = S(n1 −
1, . . . , nc − 1) equals its Graver basis if and only if S does
not dominate S(6), S(5, 4), or S(4, 3, 2).

The universal Gröbner basis of H = H(n1 , . . . , nc)
equals its Graver basis if and only if H does not dom-
inate H(7), H(6, 2), or H(4, 3).

The proof will proceed as follows. First, we review the
geometry of Graver bases and universal Gröbner bases
as discussed in [Sturmfels 96, Sturmfels and Thomas 97].

This geometry allows us to conclude that equality of the
two sets is preserved under passing to a scroll lower in the
dominance order. Next we use computational tools to ex-
hibit explicit Graver elements demonstrating inequality
in each dominance-minimal case mentioned in the the-
orem, and also to verify equality in certain other cases.
The computational step is critical to our result in that it
was very hard to find minimal counterexamples to equal-
ity by hand. But with hindsight, we were able to verify
them by hand. We then apply Graver complexity to re-
duce the infinite list of remaining cases, that is, those
for which we need to verify equality, to the finitely many
cases we have considered.

3. GEOMETRY OF UNIVERSAL GRÖBNER BASES
AND GRAVER BASES

Fix a graded toric ideal IA by fixing A ∈ Zd×n such
that the row span of A contains a vector strictly in the
positive orthant of R n . Then for any b ∈ N d , the set
PI

b := conv({u : Au = b,u ∈ Zn
+}) is a polytope, called

the fiber of b.

Proposition 3.1. [Sturmfels 96] An integer vector u+ −
u− (with u+ ,u− ≥ 0) lies in U(A) if and only if the line
segment [u+ ,u−] is an edge of the fiber PI

Au+ and con-
tains no lattice points other than its endpoints.

Proposition 3.1 implies a well-known and very useful
fact, namely, that certain projections preserve elements
in the universal Gröbner and Graver bases:

Corollary 3.2. [Sturmfels 96, Proposition 4.13] Suppose
u ∈ kerZ A and σ ⊆ [n] are such that ui = 0 for i /∈ σ.
Let Aσ be the submatrix of A of columns indexed by σ,
and let uσ be the projection of u to R σ . Then:

(a) u ∈ U(A) if and only if uσ ∈ U(Aσ ).

(b) u ∈ G(A) if and only if uσ ∈ G(Aσ ).

Proof. To prove claim (a), observe that since the hyper-
planes xi = 0 (i /∈ σ) do not pass through the interior of
PAu+ , the polytope PAσ u+

σ
is a face of PAu+ . It follows

that the segment [u+ ,u−] is an edge of PAσ u+
σ

if and only
if it is an edge of PAu+ .

To prove claim (b), simply observe that the minimality
property of xv+ − xv− ∈ IA is the same for both matrices
A and Aσ , since the variables indexed by elements of σ

do not appear in either case.
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Corollary 3.2 immediately implies that equality of the
two sets is inherited by submatrices:

Corollary 3.3. Let Aσ be obtained from A by first choos-
ing the submatrix of A consisting of the columns in-
dexed by σ ⊆ [n] and then eliminating some or all rows
consisting entirely of zeros. Then U(A) = G(A) implies
U(Aσ ) = G(Aσ ).

By inspection of the matrices associated to a pair of
partitions related in dominance order, we then obtain the
desired consequence for our classification problem.

Corollary 3.4. Suppose (n1 , . . . , nc) ≺ (m1 , . . . ,md).
Then U (AS (m 1 ,...,md )

)
= G (AS (m 1 ,...,md )

)
implies

U (AS (n1 ,...,nc )
)

= G (AS (n1 ,...,nc )
)
.

Similarly, U (AH (m 1 ,...,md )
)

= G (AH (m 1 ,...,md )
)

im-
plies U (AH (n1 ,...,nc )

)
= G (AH (n1 ,...,nc )

)
.

4. COMPUTATIONS

Proposition 3.1 allows us to check computationally
whether U(A) = G(A) for any given matrix A as follows.
First, we compute the Graver basis G(A); this can be
done rapidly with the software package 4ti2. Then we
test the statement in Proposition 3.1 for every g ∈ G(A).
To check this condition, we first enumerate the set V of
all lattice points in the polytope PAg+ and then check
whether g is an edge of this polytope that contains no
interior lattice point. This can be done by first testing
whether g+ and g− are vertices of PAg+ (that is, they are
not convex combinations of V \ {g−} and of V \ {g+}, re-
spectively). If g+ and g− are vertices of PAg+ , then g is
an edge with no integer point in its interior if and only if
there does not exist a decomposition

g = g+ − g− =
∑

u∈V \{g+ ,g−}
λu(u − g−)

with nonnegative real coefficients λv . This feasibility
problem can be decided by any code that solves lin-
ear programs. We applied the commercial solver CPLEX
Callable Library 9.1.3.

The problem of enumerating points in a lattice poly-
tope of varying dimension is still computationally diffi-
cult. In practice, however, this is better than computing
universal Gröbner bases. For small scrolls, the universal
Gröbner basis can be computed by the software package
Gfan. Once we reached nine variables, this computation
failed to terminate. Even when the universal Gröbner ba-
sis itself is not especially large, each of its binomials typ-

ically occurs in many different reduced Gröbner bases,
each of which Gfan must compute in order to verify that
the entire universal Gröbner basis has been found.

Our computational method produced the dominance-
minimal examples in the main theorem. In each of these
cases, it is not difficult to verify inequality by hand, as
we demonstrate below.

Lemma 4.1. The universal Gröbner basis and the Graver
basis do not coincide for the defining matrices of S(6),
S(5, 4), S(4, 3, 2), H(7), H(6, 2), and H(4, 3).

Proof. The defining matrix of S(6) is

AS (6) =

(
1 2 3 4 5 6 7
1 1 1 1 1 1 1

)
.

Consider the vector g = (1,−1, 1,−1,−1, 0, 1) ∈
ker(AS (6)) and the three vectors u1 = (1, 0, 0, 0, 2, 0, 0),
u2 = (0, 2, 0, 0, 0, 0, 1), u3 = (0, 0, 1, 2, 0, 0, 0) in the fiber
{u : AS (6)u = AS (6)g+ ,u ∈ Z7

+} of g. Notice that

g = g+ − g−

= 1 · (u1 − g−) + 1 · (u2 − g−) + 1 · (u3 − g−),

and thus g is not an edge of PI
g+ . Consequently, xg+ −

xg− �∈ U(AS (6)). Yet g represents the homogeneous prim-
itive partition identity

1 + 3 + 7 = 2 + 4 + 5,

and thus xg+ − xg− ∈ G(AS (6)) \ U(AS (6)).
The other cases are proved in the same manner, so

we will simply enumerate the vectors g+ ,u1 , . . . ,uk and
coefficients λ1 , . . . , λk that are used in each case in Ta-
ble 1. Note that the matrices for S(6) and H(7) are
identical. Also, for S(5, 4) and H(4, 3), we find that
g+ = 1

2 u1 + 1
2 u2 , so the argument simply shows that g+

is not a vertex of its fiber.

Our computational method also yields the following,
which we will need in order to complete the proof of
Theorem 2.2. The exponential notation here indicates
repetition.

Lemma 4.2. The Graver basis and the universal Gröbner
basis coincide for the defining matrices of S(35), H(35),
S(5, 3, 17), S(5, 28), S(4, 4, 15), and H(5, 212).
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Case g+ g− k u1 , . . . ,uk λ1 , . . . , λk

S(6) = H(7) e1 + e3 + e7 e2 + e4 + e5 3
e1 + 2e5

2e2 + e7

e3 + 2e4

1
1
1

S(5, 4) e1 ,1 + e1 ,5 + e2 ,1 + e2 ,5 e1 ,2 + e1 ,6 + 2e2 ,2 2
2e1 ,5 + 2e2 ,1

2e1 ,1 + 2e2 ,5

1/2
1/2

S(4, 3, 2) e5 ,1 + e1 ,2 + e3 ,2 + e1 ,3 e1 ,1 + e2 ,2 + e4 ,2 + e3 ,3 4

e1 ,5 + e2 ,2 + 2e3 ,1

e1 ,1 + 2e2 ,4 + e3 ,1

e1 ,5 + 2e2 ,1 + e3 ,3

e1 ,1 + 2e2 ,3 + e3 ,3

1/2
1/2
1/2
1/2

H(6, 2) e1 ,2 + e1 ,6 + 2e2 ,1 e1 ,1 + e1 ,3 + e1 ,4 + e2 ,2 3
2e1 ,4 + 2e1 ,5

2e1 ,1 + e1 ,6 + e2 ,2

e1 ,2 + 2e1 ,3 + e1 ,6

1/2
1/2
1/2

H(4, 3) e1 ,1 + 2e1 ,2 + e1 ,3 + e2 ,3 2e1 ,4 + 3e2 ,1 2
2e1 ,1 + 2e1 ,3 + e2 ,3

4e1 ,2 + e2 ,3

1/2
1/2

TABLE 1. Cases of the proof of Lemma 4.1.

5. GRAVER COMPLEXITY AND THE REMAINDER
OF THE PROOF

Given integer matrices C and D of the same width and
a number c, define the c-fold matrix

Mc(C,D) :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

D D · · · D

C 0 0
0 C 0

. . .

0 0 C

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
c copies of D

.

Such matrices represent higher Lawrence liftings.
Their special structure implies that as c grows,
the Graver bases of Mc(C,D) eventually stabilize
(see [Hoşten and Sullivant 07]), in the sense that the
type

∣∣i : u(i) �= 0
∣∣ of a vector u =

(
u(1) , . . . ,u(c)

) ∈
G (Mc(C,D)) is bounded by a constant g(C,D), the
so-called Graver complexity of C and D. In general,
g(C,D) �= g(D,C). However, Graver complexity can be
computed as follows.

Proposition 5.1. [Hoşten and Sullivant 07, Theorem 3.5]
For any integer matrices C and D of the same width,

g(C,D) = max{‖v‖1 : v ∈ G(D · G(C))},
where the set G(D · G(C)) denotes the Graver basis of
the matrix obtained by multiplying each element of the
Graver basis G(C) by the matrix D.

Lemma 5.2. For any fixed width m, C = (1, 1, . . . , 1),
and D = (1, 2, . . . ,m), we have g(C,D) = 2m − 3 and
g(D,C) ≤ 4m − 7.

Proof. The first equality follows because the Graver basis
of the 1 × m matrix C = (1, 1, . . . , 1) consists of all vec-
tors ei − ej , 1 ≤ i �= j ≤ m. Multiplying these elements
by the 1 × m matrix D = (1, 2, 3, . . . ,m), we conclude
by Proposition 5.1 that g(C,D) equals the maximum
1-norm among the Graver basis elements of the matrix
(1, 2, 3, . . . ,m − 1), which is known to be 2(m − 1) − 1 =
2m − 3 [Diaconis 96].

Similarly, we can compute g(D,C). The Graver basis
elements of D = (1, 2, 3, . . . ,m) have a maximum 1-norm
of 2m − 1. However, since no element in G(D) has only
nonnegative entries, we have that |Cg| ≤ 2m − 3. Hence
by Proposition 5.1, g(D,C) is bounded from above by
the maximum 1-norm among the Graver basis elements of
the matrix (1, 2, 3, . . . , 2m − 3), which is 2(2m − 3) − 1 =
4m − 7.

We now apply this technique to our matrices.
Let Sc,m−1 := S((m − 1)c) and Hc,m := S(mc). Then
we have Ac,m−1 := AS ((m−1)c ) = Mc(C,D) and Bc,m :=
AH (mc ) = Mc(D,C), where C and D are as above.

Lemma 5.3. The universal Gröbner basis equals the
Graver basis for Ac,3 and for Bc,3 for every c ∈ Z>0 .

Proof. For c ≤ 5, this holds by Lemma 4.2 and Corol-
lary 3.4. Suppose g ∈ G(Ac,3) for some c > 5. By
Lemma 5.2, the type of any Graver basis element of
Ac,3 is at most 2 · 4 − 3 = 5, so g represents a color-
homogeneous primitive partition identity with at most
five colors. Define g′ by restricting g to the 20 coordi-
nates that represent these five colors (eliminating only
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zeros). Then g′ ∈ G(A5,3) = U(A5,3). Thus, by applying
Corollary 3.2, we see that g ∈ U(Ac,3).

Similar arguments apply to Bc,3 . Here the type of any
Graver basis element is bounded by 4 · 3 − 7 = 5, and the
result follows from the equality of the universal Gröbner
basis and Graver basis for B5,3 .

Lemma 5.4. The Graver basis and the universal
Gröbner basis coincide for the defining matrices of S(5),
S(5, 3, 1k ), S(5, 2k ), S(4, 4, 1k ), H(6), and H(5, 2k ) for
all natural numbers k.

Proof. We consider just the last case of H(5, 2k ), the oth-
ers being analogous. If k ≤ 12, the result follows from
Lemma 4.2 and Corollary 3.4. So suppose k > 12 and let
g ∈ G(AH (5,2k )). First observe that AH (5,2k ) can be ob-
tained from AH (5k ) by deleting certain columns and zero
rows thereafter. Thus, g can be lifted (by adding only
components 0) to g′ ∈ G(AH (5k )) by Corollary 3.2. The
type of any Graver basis element of AH (5k ) is bounded
by 4 · 5 − 7 = 13. This implies that the type of g′ is
at most 13. Therefore, it can be projected (by remov-
ing only zero components) to a Graver basis element
g′′ ∈ G(AH (5,21 2 )). By Lemma 4.2, we conclude that g′′ ∈
U(AH (5,21 2 ) . Applying Corollary 3.2 twice, we conclude
that g ∈ U(AH (5,2k )) and thus that U(AH ) = G(AH ) as
claimed.

Remainder of proof of Theorem 2.2. We can now com-
plete the proof of Theorem 2.2. The “only if” direction
follows immediately from Lemma 4.1 and Corollary 3.4.
The “if” direction will follow from straightforward case
analysis. Suppose that S is a scroll that does not domi-
nate S(6), S(5, 4), or S(4, 3, 2). Then one of the following
holds:

Case 1: n1 ≤ 4. Then S � Sc,3 for some c and thus equal-
ity holds by Lemma 5.3.

Case 2: n1 = n2 = 5. Then n3 ≤ 2 to avoid dominating
S(4, 3, 2). Thus, we have S = S(4, 4, 1, . . . , 1).

Case 3: n1 = 5 or 6, n2 ≤ 3. Then S � S(5, 2, . . . , 2).

Case 4: n1 = 5 or 6, n2 = 4. Then n3 ≤ 2 to avoid domi-
nating S(4, 3, 2). Thus, we have S � S(5, 3, 1, . . . , 1).

By Corollary 3.4 and Lemma 5.4, the universal
Gröbner basis and Graver basis coincide for the scrolls
S in Cases 2, 3, and 4.

Similarly, suppose H does not dominate H(7), H(6, 2),
or H(4, 3). Then one of the following holds:

Case 1: n1 ≤ 3. Then H � Hc,3 for some c and thus
equality holds by Lemma 5.3.

Case 2: n1 = 4 or 5. Then n2 ≤ 2 to avoid dominating
H(4, 3). Then H � H(5, 2, . . . , 2).

Case 3: n1 = 6. Then n2 ≤ 1 to avoid dominating
H(6, 2). But then H has the same toric ideal as H(6).

By Corollary 3.4 and Lemma 5.4, the universal
Gröbner basis and Graver basis coincide for H in Cases
2 and 3.

Although equality of Graver and Gröbner bases im-
plies that the Graver and Gröbner complexities are equal,
the converse does not hold. We close with a negative an-
swer to the question of Hemmecke and Nairn: N -fold ma-
trices with fixed Gröbner and Graver complexities do not
preserve equality of universal Gröbner and Graver bases.
Specifically, we have the following.

Corollary 5.5. There exist integer matrices A and
B, of appropriate dimensions, satisfying G(A) = U(A),
and hence u(A,B) = g(A,B), but that still satisfy
U(MN (A,B)) � G(MN (A,B)) for all N -folds for N > 1.

Proof. One such example is given by the rational normal
curve S(5) in P 5 . The corresponding matrices are A =
(1, 1, 1, 1, 1, 1) and B = (1, 2, 3, 4, 5, 6). By Lemma 5.4,
the Graver and universal Gröbner bases of the curve co-
incide. The Graver and Gröbner complexities thus agree
by [Hemmecke and Nairn 09, Theorem 1]. On the other
hand, the matrices MN (A,B), by definition, correspond
to N -dimensional scrolls S(5, 5, . . . , 5). But by Theo-
rem 2.2, these dominate the minimal counterexamples,
and therefore the Graver and universal Gröbner bases of
these N -fold matrices do not agree.
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Sonja Petrović, Department of Statistics, Pennsylvania State University, 326 Thomas Building, University Park, PA 16802
(petrovic@psu.edu)


